第十一章奇异期权课后习题及答案
金融工程课后题11习题解答gongxun(Lite)

11.1 阐述Black-Scholes 股票期权定价模型中对于一年中股票价格概率分布的假设条件。
Black-Scholes 股票期权定价模型假定一年中股票价格概率分布服从正态分布,同样,它假设股票的连续回报率也是服从正态分布的。
11.2 若一股票价格的波动率为每年30%,则在一个交易日内其相应的价格变化的标准差为多少?在本题中σ=0.3,假设一年中有252个交易日,则 12520.004t ==因此0.019 1.9%or ==11.3 阐述风险中性定价原理。
一个期权或者其他金融衍生品都是通过风险中性定价原理来定价的,期权因此在风险中性下和在真实下有一样的价值。
因此我们为了估价期权而假设这个世界是风险中性的,这简化了分析。
在风险中性情况下,所有证券都期望得到无风险利率的回报率。
因此在一个风险中性世界,用于预计远期现金流的最合适的贴现率是无风险利率。
11.4 计算基于无红利支付股票的欧式看跌期权价格,其中执行价格为$50,现价为$50,有效期3个月期,无风险年收益率为10%,波动率为每年30%。
在本题中050,50,0.1,0.3,0.25S X r T σ=====10.2417d ==210.0917d d =-=欧式看跌期权价格是0.10.250.10.2550(0.0.0917)50(0.2417)500.4634500.4045 2.37N e N e -⨯-⨯---=⨯-⨯=11.5 若在两个月后预期支付的红利为$1.50,则习题11.4中计算会有何变化?在本题中我们在使用BS 公式前必须从股票价格中减去红利的贴现值,因此0S 应该是0.16670.1050 1.5048.52S e-⨯=-= 其他变量不变50,0.1,0.3,0.25X r T σ==== 在本题中10.0414d ==210.1086d d =-=-欧式看跌期权价格是0.10.250.10.2550(0.1086)48.52(0.0414)500.543248.520.4045 3.03N e N e -⨯-⨯---=⨯-⨯=11.6 什么是隐含波动率?如何计算?隐含波动率是使一个期权的Black-Scholes 价格等于它的市场价格的波动率,它用互换程序计算。
详解奇异期权

所以,我们把常见的奇异期权分成三类,即 改变标准收益结构的奇异期权,高维和高阶期 权以及路径相关的奇异期权。其中,路径相关 的奇异期权按照最终收益对标的资产价格历程 的依赖程度又可以分为两大类,即弱路径奇异 期权和强路径奇异期权。
维数(Dimensions)指的是基本的独立变量 的个数。常规期权有两个独立变量S和t,因此 是二维的。弱式路径依赖期权合约和那些除了 不是路径依赖之外其他条件都与之完全相同的 期权合约的维数相同,比如一个障碍期权和与 之相应的常规期权都只有两个变量,都是二维 的。对于这些合约来说,资产价格这个变量的 作用和时间变量的作用是彼此不同的,因为在 布莱克-舒尔斯方程中,包含了对资产价格的 二阶偏导而只有对时间的一阶偏导。
下列关于期权的叙述不正确的是( D )。 A.期权买方拥有权利但没有义务执 行合约 B.看涨期权赋予持有者在一时期内 买入特定资产 C.看涨期权卖方的获利是有限的 D.看跌期权的买方通常会认为标的 资产的价格会上涨
A 期权买方有权利执行合约,但没有义务;期权 卖方承担在规定时间内履行期权合约的义务。 B 看涨期权的所有者当然可以买入特定资产。 看涨期权的意思,就是预计届时实际价格高, 所以提前约定以一个较低价格可以买入。 C 看涨期权的卖方得到的最大利润是出售期 权所得到的期权费,所以是有限的。 D 看跌期权的买方,一定是“看跌”,认为 资产价格将下跌。所以答案D是错误的,这个题 的答案选择D。
下列因素中,与股票欧式期权价格 呈负相关的是:( B ) A. 标的股票市场价格 B.ห้องสมุดไป่ตู้期权执行价格 C.标的股票价格波动率 D.距离期权的到期时间
金融衍生工具课件:奇异(非标准)期权

金融衍生工具
8
第一节 奇异期权概览
➢ 3 交换期权又称做资产交换期权。该投资者本质上是要将 一种外币资产转换为另一种外币资产。
➢ 4 价差期权的特征在于期权的到期支付取决于两标的资产 到期价格之差。通常而言,标的资产分别为两种指数,如 利息率或者股票指数。
金融衍生工具
12
近似模型
➢ 假设 Ssave服从对数正态分布,其一阶、二阶矩与 真实分布的 Ssave 一阶、二阶矩相同。我们可以估 计 Ssave 的一阶、二阶矩,然后再利用对数正态分 布的假设获得亚式期权的近似解。
金融衍生工具
13
第三节 障碍期权
➢ 障碍期权可以归纳为敲出期权(knock-out option) 和敲入期权(knock-in option)两类。
➢ 3 阶梯期权 :阶梯期权的行权价格将基于标的资产价格的变化而周期 性地调整。
金融衍生工具
4
第一节 奇异期权概览
➢ 时间依赖型期权的特征为:在期权到期前,期权的多头有 权在某个时刻选择期权合约的某些特征,从而决定其最终 的收益。最普遍的时间依赖型期权为选择性期权和远期开 始期权。
➢ 1选择性期权在经过一段指定时期后,持有人能任意选择 期权的类型:看涨期权或者看跌期权。
➢ 5 彩虹期权是一大类期权的总称,其关键特征在于期权的 收益取决于两种或多种资产的相对表现。通常而言,彩虹 期权具有三种结构:最好/坏期权、超额表现期权、最大/ 小期权 。
金融衍生工具
9
第二节 亚式期权
➢ 无论是平均价格期权还是平均执行价格期权,亚式期权的 价值都取决于如下几个因素:平均价格的计算方式(算术 平均/几何平均)、平均价格的取样方式(连续取样/离散 取样)、平均价格的取样区间。
期权习题集共计21题(附答案和解析)

1.某投资者于2008年5月份以3.2美元/盎司的权利金买人一张执行价格为380美元/盎司的8月黄金看跌期权,以4.3美元/盎司的权利金卖出一张执行价格为380美元/盎司的8月黄金看涨期权,以380.2美元/盎司的价格买进一张8月黄金期货合约,合约到期时黄金期货价格为356美元/盎司,则该投资者的利润为()美元/盎司。
A.0.9B.1.1C.1.3D.1.5【答案】A【解析】投资者买入看跌期权到8月执行期权后盈利:380-356-3.2=20.8(美元/盎司);投资者卖出的看涨期权在8月份对方不会执行,投资者盈利为权利金4.3美元/盎司;投资者期货合约平仓后亏损:380.2-356=24.2(美元/盎司);投资者净盈利:20.8+4.3-24.2=0.9(美元/盎司)。
2.2008年9月20日,某投资者以120点的权利金买入一张9月份到期、执行价格为10200点的恒生指数看跌期权,同时又以150点的权利金卖出一张9月份到期、执行价格为10000点的恒生指数看跌期权。
那么该投资者的最大可能盈利(不考虑其他费用)是(230)点。
A.160B.170C.180D.190【答案】B【解析】该投资者进行的是空头看跌期权垂直套利,其最大收益=(高执行价格-低执行价格)-净权利金=(10200-10000)-(150-120)=170(点)。
3.某交易者以260美分/蒲式耳的执行价格卖出10手5月份玉米看涨期权,权利金为16美分/蒲式耳,与此同时买入20手执行价格为270美分/蒲式耳的5月份玉米看涨期权,权利金为9美分/蒲式耳,再卖出10手执行价格为280美分/蒲式耳的5月份玉米看涨期权,权利金为4美分/蒲式耳。
这种卖出蝶式套利的最大可能亏损是()美分/蒲式耳。
A.4B.6C.8D.10【答案】C【解析】该策略是一种买入蝶式套利(看涨期权)的操作,它需要支付一个初始的净权利金为2美分/蒲式耳(16-9-9+4)。
期权期货和其它衍生产品第三版约翰赫尔答案

第一章1.1请解释远期多头与远期空头的区别。
答:远期多头指交易者协定将来以某一确定价格购入某种资产;远期空头指交易者协定将来以某一确定价格售出某种资产。
1.2请详细解释套期保值、投机与套利的区别。
答:套期保值指交易者采取一定的措施补偿资产的风险暴露;投机不对风险暴露进行补偿,是一种“赌博行为”;套利是采取两种或更多方式锁定利润。
1.3请解释签订购买远期价格为$50的远期合同与持有执行价格为$50的看涨期权的区别。
答:第一种情况下交易者有义务以50$购买某项资产(交易者没有选择),第二种情况下有权利以50$购买某项资产(交易者可以不执行该权利)。
1.4一位投资者出售了一个棉花期货合约,期货价格为每磅50美分,每个合约交易量为50,000磅。
请问期货合约结束时,当合约到期时棉花价格分别为(a)每磅48.20美分;(b)每磅51.30美分时,这位投资者的收益或损失为多少?答:(a)合约到期时棉花价格为每磅$0.4820时,交易者收入:($0.5000-$0.4820)×50,000=$900;(b)合约到期时棉花价格为每磅$0.5130时,交易者损失:($0.5130-$0.5000) ×50,000=$6501.5假设你出售了一个看跌期权,以$120执行价格出售100股IBM的股票,有效期为3个月。
IBM股票的当前价格为$121。
你是怎么考虑的?你的收益或损失如何?答:当股票价格低于$120时,该期权将不被执行。
当股票价格高于$120美元时,该期权买主执行该期权,我将损失100(st-x)。
1.6你认为某种股票的价格将要上升。
现在该股票价格为$29,3个月期的执行价格为$30的看跌期权的价格为$2.90.你有$5,800资金可以投资。
现有两种策略:直接购买股票或投资于期权,请问各自潜在的收益或损失为多少?答:股票价格低于$29时,购买股票和期权都将损失,前者损失为$5,800$29×(29-p),后者损失为$5,800;当股票价格为(29,30),购买股票收益为$5,800$29×(p-29),购买期权损失为$5,800;当股票价格高于$30时,购买股票收益为$5,800$29×(p-29),购买期权收益为$$5,800$29×(p-30)-5,800。
《衍生金融工具》(第二版)习题及答案第13章

1.试着找出一些本章没有讨论到的奇异期权或者自己设计几类奇异期权。
答:巴拉期权/巴黎期权/重置期权/可参见专著:《奇异期权》张光平(Peter G.Zhang)著这里可以介绍几张近年创新出来的奇异期权。
奇异期权是在常规期权(标准的欧式或美式期权)基础上,通过改变合约条款,满足私人定制收益结构或者路径依赖的场外期权产品。
比如2016年,我国券商推出的结构化收益凭证,同时嵌套了挂钩特定指数的敲入和敲出期权组合,敲入和敲出的观察时间不一致,敲入为每天观察日,敲出为每月特定一个观察日。
另外,当标的指数走势表现出趋势后,还设计了阶梯障碍的敲出期权。
这类“理财产品”受到高净值人群的追捧。
看似高票息的背后,潜藏的市场风险也非常大。
2.为什么奇异期权主要在场外交易?它们可能在交易所交易吗?答:场内交易的期权通常是标准化的金融期权。
而大多数的奇异期权条款都是定制化,挂钩的标的和收益结构都没有统一的标准,往往是金融机构根据客户的具体需求开发出来的,其灵活性和多样性是常规期权所不能比拟的,因此多只能在场外交易的。
相应地,奇异期权流动性也比较差,定价和保值往往也更加困难,奇异期权对模型设定正确与否的依赖性常常很强,合约中潜在的风险通常比较模糊,很容易导致非预期的损失,无论是用标的资产进行保值还是用相应的期权进行保值,都需要很小心。
当然,也有很少的一些流行的(参与这多了,就可以标准)奇异期权在交易所交易。
3.有一类定义在两个资产S(t)和Ŝ(t)上的奇异期权,在到期日T该期权持有者的收益是min[S(T),Ŝ(t)]。
请问该期权应该如何定价?答:这个属于支付两资产中最优或者最差回报的奇异期权。
大致的定价思路为,在S(t)和Ŝ(t)构成的相图以及45度线S(t)=Ŝ(t),利用双变量正态分布密度函数,可以表示出期权价格的积分表达式。
定价推导可参见专著:《奇异期权》张光平(Peter G.Zhang)著,第14章,第26章。
罗斯公司理财第九版第十一章课后答案对应版

第十一章:收益和风险:资本资产定价模型1.系统性风险通常是不可分散的,而非系统性风险是可分散的。
但是,系统风险是可以控制的,这需要很大的降低投资者的期望收益。
2.(1)系统性风险(2)非系统性风险(3)都有,但大多数是系统性风险(4)非系统性风险(5)非系统性风险(6)系统性风险3.否,应在两者之间4.错误,单个资产的方差是对总风险的衡量。
5.是的,组合标准差会比组合中各种资产的标准差小,但是投资组合的贝塔系数不会小于最小的贝塔值。
6. 可能为0,因为当贝塔值为0 时,贝塔值为0 的风险资产收益=无风险资产的收益,也可能存在负的贝塔值,此时风险资产收益小于无风险资产收益。
7.因为协方差可以衡量一种证券与组合中其他证券方差之间的关系。
8. 如果我们假设,在过去3 年市场并没有停留不变,那么南方公司的股价价格缺乏变化表明该股票要么有一个标准差或贝塔值非常接近零。
德州仪器的股票价格变动大并不意味着该公司的贝塔值高,只能说德州仪器总风险很高。
9. 石油股票价格的大幅度波动并不表明这些股票是一个很差的投资。
如果购买的石油股票是作为一个充分多元化的产品组合的一部分,它仅仅对整个投资组合做出了贡献。
这种贡献是系统风险或β来衡量的。
所以,是不恰当的。
10. The statement is false. If a security has a negative beta, investors would want to hold the asset to reduce the variability of their portfolios. Those assets will have expected returns that are lower than the risk-free rate. To see this, examine the Capital Asset Pricing Model:E(R S) = R f + S[E(R M) – R f] If S < 0, then the E(R S) < R f11. Total value = 95($53) + 120($29) = $8,515The portfolio weight for each stock is:WeightA = 95($53)/$8,515 = .5913 WeightB = 120($29)/$8,515 = .4087 12.Total value = $1,900 + 2,300 = $4,200So, the expected return of this portfolio is:E(R p) = ($1,900/$4,200)(0.10) + ($2,300/$4,200)(0.15) = .1274 or 12.74%13. E(R p) = .40(.11) + .35(.17) + .25(.14) = .1385 or 13.85%14. Here we are given the expected return of the portfolio and the expected return of each asset in the portfolio and are asked to find the weight of each asset. We can use the equation for the expected return of a portfolio to solve this problem. Since the total weight of a portfolio must equal 1 (100%), the weight of Stock Y must be one minus the weight of Stock X. Mathematically speaking, this means:E(R p) = .129 = .16w X + .10(1 –w X)We can now solve this equation for the weight of Stock X as:.129 = .16w X + .10 – .10w X w X = 0.4833So, the dollar amount invested in Stock X is the weight of Stock X times the total portfolio value, or: Investment in X = 0.4833($10,000) = $4,833.33And the dollar amount invested in Stock Y is:Investment in Y = (1 – 0.4833)($10,000) = $5,166.6715. E(R) = .2(–.09) + .5(.11) + .3(.23) = .1060 or 10.60%16. E(RA) = .15(.06) + .65(.07) + .20(.11) = .0765 or 7.65%E(RB) = .15(–.2) + .65(.13) + .20(.33) = .1205 or 12.05%17. E(R A) = .10(–.045) + .25 (.044) + .45(.12) + .20(.207) = .1019 or 10.19%方差=.10(–.045 – .1019)⌒2 + .25(.044 – .1019)⌒2 + .45(.12 – .1019)⌒2 + .20(.207 – .1019)⌒2 = .00535标准差= (.00535)1/2 = .0732 or 7.32%18. E(R p) = .15(.08) + .65(.15) + .20(.24) = .1575 or 15.75%If we own this portfolio, we would expect to get a return of 15.75 percent.19. a.Boom: E(R p) = (.07 + .15 + .33)/3 = .1833 or 18.33%Bust: E(R p) = (.13 + .03 .06)/3 = .0333 or 3.33%E(Rp) = .80(.1833) + .20(.0333) = .1533 or 15.33%b. Boom: E(R p)=.20(.07) +.20(.15) + .60(.33) =.2420 or 24.20%Bust: E(R p) =.20(.13) +.20(.03) + .60( .06) = –.0040 or –0.40%E(R p) = .80(.2420) + .20( .004) = .1928 or 19.28%P的方差= .80(.2420 – .1928)⌒2 + .20( .0040 – .1928)⌒2 = .0096820.a.Boom: E(R p) = .30(.3) + .40(.45) + .30(.33) = .3690 or 36.90%Good: E(R p) = .30(.12) + .40(.10) + .30(.15) = .1210 or 12.10%Poor: E(R p) = .30(.01) + .40(–.15) + .30(–.05) = –.0720 or –7.20%Bust: E(R p) = .30(–.06) + .40(–.30) + .30(–.09) = –.1650 or –16.50%E(R p) = .20(.3690) + .35(.1210) + .30(–.0720) + .15(–.1650) = .0698 or 6.98%b. p⌒2 = .20(.3690 – .0698)⌒2 + .35(.1210 – .0698)⌒2 + .30(–.0720 – .0698)⌒2 + .15(–.1650 – .0698)⌒2 = .03312p的标准差= (.03312)⌒1/2 = .1820 or 18.20%21. β= .25(.75) + .20(1.90) + .15(1.38) + .40(1.16) = 1.2422.βp = 1.0 = 1/3(0) + 1/3(1.85) + 1/3(βX) βX = 1.1523.E(R i) = R f + [E(R M) – R f] ×βiE(R i) = .05 + (.12 – .05)(1.25) = .1375 or 13.75%24. We are given the values for the CAPM except for the of the stock. We need to substitute these values into the CAPM, and solve for the of the stock. One important thing we need to realize is that we are given the market risk premium. The market risk premium is the expected return of the market minus the risk-free rate. We must be careful not to use this value as the expected return of the market. Using the CAPM, we find:E(R i) = .142 = .04 + .07βi 则βi = 1.4625. E(R i) = .105 = .055 + [E(R M) – .055](.73) 则E(R M) = .1235 or 12.35%26. E(R i) = .162 = R f + (.11 – R f)(1.75).162 = R f + .1925 – 1.75R f则R f = .0407 or 4.07%27. a. E(R p) = (.103 + .05)/2 = .0765 or 7.65%b. We need to find the portfolio weights that result in a portfolio with a of 0.50. We know the 贝塔of the risk-free asset is zero. We also know the weight of the risk-free asset is one minus the weight of the stock since the portfolio weights must sum to one, or 100 percent. So:c. We need to find the portfolio weights that result in a portfolio with an expected return of 9 percent. We also know the weight of the risk-free asset is one minus the weight of the stock since the portfolio weights must sum to one, or 100 percent. So:d. Solving for the of the portfolio as we did in part a, we find:18. ßp = w W(1.3) + (1 –w W)(0) = 1.3w WSo, to find the βof the portfolio for any weight of the stock, we simply multiply the weight of the stock times its β.Even though we are solving for the and expected return of a portfolio of one stock and the risk-free asset for different portfolio weights, we are really solving for the SML. Any combination of this stock and the risk-free asset will fall on the SML. For that matter, a portfolio of any stock and the risk-free asset, or any portfolio of stocks, will fall on the SML. We know the slope of the SML line is the market risk premium, so using the CAPM and the information concerning this stock, the market risk premium is:E(R W) = .138 = .05 + MRP(1.30)MRP = .088/1.3 = .0677 or 6.77%So, now we know the CAPM equation for any stock is:E(R p) = .05 + .0677*贝塔p29. E(R Y) = .055 + .068(1.35) = .1468 or 14.68%E(R Z) = .055 + .068(0.85) = .1128 or 11.28%Reward-to-risk ratio Y = (.14 – .055) / 1.35 = .0630Reward-to-risk ratio Z = (.115 – .055) / .85 = .070630. (.14 – R f)/1.35 = (.115 – R f)/0.85We can cross multiply to get: 0.85(.14 – R f) = 1.35(.115 – R f)Solving for the risk-free rate, we find:0.119 – 0.85R f = 0.15525 – 1.35R f R f = .0725 or 7.25%31.32. [E(R A) – R f]/ A = [E(R B) – R f]/ßBRP A/β A = RP B/β B βB/βA = RP B/RP A33. Boom: E(R p) = .4(.20) + .4(.35) + .2(.60) = .3400 or 34.00%Normal: E(R p) = .4(.15) + .4(.12) + .2(.05) = .1180 or 11.80%Bust: E(R p) = .4(.01) + .4(–.25) + .2(–.50) = –.1960 or –19.60%E(R p) = .35(.34) + .40(.118) + .25(–.196) = .1172 or 11.72%σp⌒2= .35(.34 – .1172)2 + .40(.118 – .1172)2 + .25(–.196 – .1172)2 = .04190σp= (.04190)1/2 = .2047 or 20.47%b. RP i = E(R p) – R f = .1172 – .038 = .0792 or 7.92%c.Approximate expected real return = .1172 – .035 = .0822 or 8.22%1 + E(R i) = (1 + h)[1 + e(r i)]1.1172 = (1.0350)[1 + e(r i)]e(r i) = (1.1172/1.035) – 1 = .0794 or 7.94%Approximate expected real risk premium = .0792 – .035 = .0442 or 4.42%Exact expected real risk premium = (1.0792/1.035) – 1 = .0427 or 4.27%34. w A = $180,000 / $1,000,000 = .18 w B = $290,000/$1,000,000 = .29βp = 1.0 = w A(.75) + w B(1.30) + w C(1.45) + w Rf(0) w C = .33655172Invest in Stock C = .33655172($1,000,000) = $336,551.721 = w A + w B + w C + w Rf 1 = .18 + .29 + .33655172 + w Rf w Rf = .19344828Invest in risk-free asset = .19344828($1,000,000) = $193,448.28w X(.172) + w Y(.0875) + (1 –w X –w Y)(.055)35. E(R p) = .1070 =βp = .8 = w X(1.8) + w Y(0.50) + (1 –w X – w Y)(0)w X = –0.11111 w Y = 2.00000 w Rf = –0.88889Investment in stock X = –0.11111($100,000) = –$11,111.1136. E(R A) = .33(.082) + .33(.095) + .33(.063) = .0800 or 8.00%E(R B) = .33(–.065) + .33(.124) + .33(.185) = .0813 or 8.13%股票A:方差=.33(.082 – .0800)⌒2 + .33(.095 – .0800)⌒2 + .33(.063 – .0800)⌒2 = .00017 标准差=(.00017)⌒1/2 = .0131 or 1.31%股票B:方差=.33(–.065 – .0813)⌒2 + .33(.124 – .0813)⌒2 + .33(.185 – .0813)⌒2 = .01133 标准差= (.01133)1/2 = .1064 or 1064%Cov(A,B) = .33(.092 – .0800)(–.065 – .0813) + .33(.095 – .0800)(.124 – .0813) + .33(.063– .0800)(.185 – .0813) = –.000472ρA,B = Cov(A,B) / (标准差A 标准差B)= –.000472 / (.0131)(.1064) = –.337337. E(R A) = .30(–.020) + .50(.138) + .20(.218) = .1066 or 10.66%E(R B) = .30(.034) + .50(.062) + .20(.092) = .0596 or 5.96%A的方差 =.30(–.020 – .1066)⌒2 + .50(.138 – .1066)⌒2 + .20(.218 – .1066)⌒2 = .00778 2 A的标准差= (.00778)⌒1/2 = .0882 or 8.82%B的方差=.30(.034 – .0596)⌒2 + .50(.062 – .0596)⌒2 + .20(.092 – .0596)⌒2 = .00041B的标准差= (.00041)⌒1/2 = .0202 or 2.02%Cov(A,B) = .30(–.020 – .1066)(.034 – .0596) + .50(.138 – .1066)(.062 – .0596)+ .20(.218 – .1066)(.092 – .0596) = .001732ρA,B = Cov(A,B) / A的标准差*B的标准差= .001732 / (.0882)(.0202) = .970138. a. E(R P) = w F E(R F) + w G E(R G)E(R P) = .30(.10) + .70(.17) = .1490 or 14.90%b. The variance of a portfolio of two assets can be expressed as:标准差= (.18675)⌒1/2 = .4322 or 43.22%39. a. The expected return of the portfolio is the sum of the weight of each asset times the expected return of each asset, so:E(R P) = w A E(R A) + w B E(R B) = .45(.13) + .55(.19) = .1630 or 16.30%c. As Stock A and Stock B become less correlated, or more negatively correlated, the standard deviation of the portfolio decreases.40.(iv) The market has a correlation of 1 with itself.(v) The beta of the market is 1.(vi) The risk-free asset has zero standard deviation.(vii) The risk-free asset has zero correlation with the market portfolio.(viii) The beta of the risk-free asset is 0.b. Firm A: E(R A) = R f + βA[E(R M) – R f]E(R A) = 0.05 + 0.85(0.12 – 0.05) = .1095 or 10.95%Firm B: E(R B) = R f +βB[E(R M) – R f]E(R B) = 0.05 + 1.5(0.12 – 0.05) = .1550 or 15.50%Firm C: E(R C) = R f + βC[E(R M) – R f]E(R C) = 0.05 + 1.23(0.12 – 0.05) = .1358 or 13.58%According to the CAPM, the expected return on Firm C‘s stock should be 13.58 percent. However, the expected return on Firm C‘s stock given in the table is 17 percent. Therefor e, Firm C‘s stock is underpriced, and you should buy it.43. First, we need to find the standard deviation of the market and the portfolio, which are:M的标准差= (.0429)⌒1/2 = .2071 or 20.71%Z 的标准差= (.1783)⌒1/2 = .4223 or 42.23%Now we can use the equation for beta to find the beta of the portfolio, which is:βZ = (相关系数Z,M)*(标准差Z) / 标准差M = (.39)(.4223) / .2071 = .80Now, we can use the CAPM to find the expected return of the portfolio, which is:E(R Z) = R f + βZ[E(R M) – R f] = .048 + .80(.114 – .048) = .1005 or 10.05%。
郑振龙《金融工程》第2版课后习题(奇异期权)【圣才出品】

郑振龙《金融工程》第2版课后习题第十六章奇异期权1.奇异期权的主要类型有哪些?答:奇异期权的基本类型包括分拆与组合、弱式路径依赖、强式路径依赖、时间依赖、维数和阶数。
(1)分拆与组合:最基本的奇异期权是对常规期权和其他一些金融资产的分拆和组合,以得到所需要的回报。
(2)路径依赖:期权的价值会受到标的变量所遵循路径的影响,它又分为弱式路径依赖和强式路径依赖两种。
强式路径依赖奇异期权必须增加独立路径依赖变量;弱式路径依赖奇异期权则无需增加这样的变量。
(3)时间依赖:在期权特征中加入时间依赖,使期权的一些变量随时间而变化。
(4)多维期权:该类期权存在多个独立变量。
(5)高阶期权:该类期权的损益和价值取决于另一个(些)期权的价值。
2.分别为弱式路径依赖期权、强式路径依赖期权、多维期权、高阶期权举出几例。
答:(1)弱式路径依赖弱式路径依赖期权的价值会受到路径变量的影响,但无需增加独立路径依赖变量。
美式期权、障碍期权都是弱式路径依赖期权。
(2)强式路径依赖强式路径依赖期权的损益除了取决于标的资产的目前价格和时间外,还取决于资产价格路径的一些特征,需增加独立路径依赖变量。
亚式期权、回溯期权都是强式路径依赖期权。
(3)多维期权该类期权存在多个独立变量。
彩虹期权、资产交换期权都是多维期权。
(4)高阶期权高阶期权的损益和价值取决于另一个(些)期权的价值。
复合期权、选择者期权都是高阶期权。
3.分析障碍期权的性质。
答:障碍期权的回报以及它们的价值要受到资产到期前遵循路径的影响,因而属于路径依赖期权。
但是,障碍期权的路径依赖性质是较弱的。
因为该期权只需知道障碍是否被触发,而不需要关于路径的其他任何信息,关于路径的信息也不会成为其定价模型中的一个新增独立变量。
如果障碍水平没有被触发,障碍期权到期时的损益情况仍然和常规期权是相同的。
因此,障碍期权是属于弱式路径依赖。
4.基于某个资产价格的欧式向下敲出期权的价值与基于该资产期货价格的欧式向下敲出期权价值相等吗(该期货合约到期日与期权到期日相同)?答:不相等,因为两者被敲出的可能性大小不同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一章奇异期权
复习思考题
11.1.在到期日的支付依附于标的资产有效期至少一段时间内的平均价格的期权是哪种?()
A、亚式期权
B、障碍期权
C、远期开始期权
D、两值期权
11.2.关于下列期权品种交易场所,说法正确的是:()
A、普通期权主要在场外交易
B、利率期权全部在交易所场内交易
C、奇异期权主要在场外交易
D、奇异期权主要在交易所场内交易
11.3.以下哪种期权可用来对冲标的资产波动率变化带来的风险()
A、后定期权
B、障碍期权
C、一篮子期权
D、叫停期权
11.4.下列说法中错误的是()
A、投资者为了规避金融资产远期波动率带来的风险,可以购买在未来某个时刻生效的期权,即远期开始期权
B、复合期权简单的理解就是期权的期权
C、回望期权给予投资者最优的收益函数
D、一篮子期权的标的资产是单一的
11.5.奇异期权包括()
A、任选期权
B、百慕大期权
C、障碍期权
D、美式期权
11.6.以下属于障碍期权的是()
A、平均价格期权
B、下跌敲入看涨期权
C、平均执行价格期权
D、下跌敲出看涨期权
11.7.常见的非标准美式期权有()
A、固定回报期权
B、远期开始期权
C、百慕大期权
D、加纳利期权
11.8.以下交易所推出了两值期权的产品的是()
A、美国证券交易所
B、芝加哥期权交易所
C、上海证券交易所
D、北美衍生品交易所
11.9.二叉树通常可用于哪些期权的定价()
A、叫停期权
B、一篮子期权
C、美式期权
D、欧式期权
11.10.平均价格期权A的执行价格基于算术平均值,下列数据反映了至今这些期权标的资产的市场价格:100元,102元,105元,104元,106元,这种期权的当期执行价格是多少?
11.11.现有一个新发行的基于不付红利股票的回望看跌期权,执行价格为50,有限期限为3个月,无风险收益率为10%,股票价格波动率是年利率40%,该期权的价值为多少?
11.12.当6个月后的S&P500指数大于1000时,一个衍生品提供的收益为100美元,否则提供的收益为0.设估值的当前水平为960,股指的股息收益率为3%,股指波动率为每年20%,无风险收益率为每年8%,这一衍生品的价格是多少?
讨论题
11.1.奇异型期权与标准化的交易所交易期权存在哪些差异?
11.2.具有同样到期期限的一个回望看涨期权和一个回望看跌期权组合的收益情况是什么样?
11.3.假设在期权开始时,执行价格比股票价格高10%,如何对这样的远期开始看跌期权定价?设标的资产为无息股票。
11.4.静态复制的基本思想是什么?
复习思考题答案
11.1.A
11.2.C
11.3.A
11.4.D
11.5.ABC
11.6.BD
11.7.CD
11.8.ABD
11.9.ACD
11.10. A:100+102+105+104+106
5
=103.40(元)11.11.
由欧式回望看跌期权的价值公式
S max e−rT[N(b1)−
σ
2
2(r−q)
e Y2N(−b3)]+S0e−qT
σ
2
2(r−q)
N(−b2)−S0e−qT N(b2)
其中
b1=ln(S max S0
⁄)+(−r+q+σ
2
2
⁄)T
σ√T
b2=b1−σ√T
b3=ln(S max S0
⁄)+(r−q−σ
2
2
⁄)T
σ√T
Y2=2(r−q+σ
2
2
⁄)ln(S max
S0
⁄)
σ
2
可得,该回望看跌期权的价值为7.79。
11.12.
这是一个现金或空手看涨期权。
该期权的价格为100N(d2)e−0.08∗0.5,其中d2= ln(9601000
⁄)+(0.08−0.03−0.222⁄)∗0.5
0.2∗√0.5
=−0.1826。
因为N(d2)=0.4276,所以该衍生品的价格为41.08美元。
讨论题答案
11.1.奇异期权与标准化的交易所交易期权存在哪些差异?
答:奇异期权通常在选择权性质、基础资产以及期权有效期等内容上与标准期权存在差异,他们是为了满足交易者的特定需求在标准化期权的基础上改变相关属性和条件得到的。
11.2. 具有同样到期期限的一个回望看涨期权和一个回望看跌期权组合的收益情况是什么样?
答:一个浮动回望看涨期权提供的收益为S T−S min;一个回望看跌期权提供的收益为S max−S T;因而,一个回望看涨期权和一个回望看跌期权组合的收益为S max−S min
11.3. 假设在期权开始时,执行价格比股票价格高10%,如何对这样的远期开始看跌期权定价?设标的资产为无息股票。
答:当一个无息股票上的期权执行价格比股票价格高10%时,期权的价格与股票价格成
比例。
与书中给出的远期开始期权定价相似,若t1是期权开始的时间,t2为期权结束的时间,则该期权的价格等于另一个在此刻开始、期限为t2−t1、执行价为1.1倍当前股票价格的期权价格。
11.4. 静态复制的基本思想是什么?
答:静态复制的基本思想是通过市场上的其他资产来构造与资产P具有相同收益函数的资产P‘。
显而易见,如果视P和P‘为时间轴和资产价格轴构成的坐标系中的收益函数,且P 和P‘满足相同的价格方程,那么P和P‘的价格应该是相同的,不然就会存在无风险套利的机会。