章末复习(二)一元二次方程
《一元二次方程》总复习、练习、中考真题【题型解析】

一元二次方程总复习考点1:一元二次方程的概念一元二次方程:只含有一个未知数,未知数的最高次数是 2,且系数不为0,这样的方程叫一元二次方程.一般形式:ax2+bx+c=0(a≠0〕。
注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。
考点2:一元二次方程的解法1.直接开平方法:对形如(x+a〕2=b〔b≥0〕的方程两边直接开平方而转化为两个一元一次方程的方法。
x+a= ± b ∴ x1 =-a+ b x2 =-a- b2.配方法:用配方法解一元二次方程:ax2+bx+c=0(k≠0〕的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a〕2=b 的形式;⑤如果b≥0就可以用两边开平方来求出方程的解;如果b≤0,那么原方程无解.3.公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是x = - b ± b 2 - 4ac (b2-4ac≥0)。
步骤:①把方程转化为一般形2a式;②确定 a,b,c 的值;③求出 b2-4ac 的值,当 b2-4ac≥0时代入求根公式。
4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:假设ab=0,那么 a=0 或b=0。
步骤是:①将方程右边化为 0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.因式分解的方法:提公因式、公式法、十字相乘法。
5.一元二次方程的考前须知:⑴在一元二次方程的一般形式中要注意,强调a≠0.因当a=0 时,不含有二次项,即不是一元二次方程.⑵应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a,b,c 的值;②假设b2-4ac<0,那么方程无解.⑶ 利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x+4) 2 =3〔x+4〕中,不能随便约去 x+4。
第二章 一元二次函数、方程和不等式复习课-(新教材人教版必修第一册)(21张PPT)

<m},则 m=________.
根,
m>1, 且m>1⇒1+m=6a,
1·m=a
⇒ma==22., ]
不等式恒成立问题 【例4】 (1)若不等式x2+mx-1<0对于任意x∈{x|m≤x≤m+1}都 成立,则实数m的取值范围是________. (2)对任意-1≤m≤1,函数y=x2+(m-4)x+4-2m的值恒大于零, 求x的取值范围.
c<a 对于C: b2≥0⇒cb2≤ab2 cb2<ab2,C错,即C不一定成立. 对于D:ac<0,a-c>0⇒ac(a-c)<0,D正确,选C.]
不等式真假的判断,要依靠其适用范围和条件来确定,举反例是判 断命题为假的一个好方法,用特例法验证时要注意,适合的不一定对, 不适合的一定错,故特例只能否定选择项,只要四个中排除了三个,剩 下的就是正确答案了.
数学(人教版) 必修第一册
第二章 一元二次函数、方 程和不等式
章末复习课
不等式的性质
【例 1】 如果 a,b,c 满足 c<b<a 且 ac<0,则以下列选项中不
一定成立的是( ) A.ab>ac C.cb2<ab2
B.c(b-a)>0 D.ac(a-c)<0
C [c<b<a,ac<0⇒a>0,c<0. 对于A: ba>>c0⇒ab>ac,A正确. 对于B: bc<<0a⇒b-a<0⇒c·(b-a)>0,B正确.
5.若不等式 ax2-2x+2>0 对于满足 1<x<4 的一切实数 x 恒成立,求 实数 a 的取值范围.
[解] ∵1<x<4, ∴不等式 ax2-2x+2>0 可化为 a>2xx-2 2. 令 y=2xx-2 2,且 1<x<4, 则 y=2xx-2 2=-21x-122+12≤12,
一元二次方程综合复习(含知识点和练习)(含答案)

一元二次方程本章内容“一元二次方程”是《课程标准》“数与代数”的重要内容,也是方程中重点内容,是学习二次函数等内容的基础,本节是本章的起始内容,主要学习下列三个内容:建立一元二次方程此内容是本节课的难点之一,在后续的内容中将继续学习,为此设计较易的[拓展应用]的例4及其变式题,[课时作业]的第6、7题。
1.一元二次方程的概念此内容是本节课的重点,是学习一元二次方程的基础,为此设计[拓展应用]的例1、例3,[当堂检测]的第1、2、4题,[课时作业]的第1—5题。
2.一元二次方程的解的含义利用方程解的含义,可求方程中的待定系数,也可由此把二次三项式变形求值,为此设计[拓展应用]的例2,[当堂检测]的第3题,[选做题]和[备选题目]的问题。
点击一:一元二次方程的定义答案:(5)针对练习。
答案:一元二次方程二次项的系数不等于零。
故m≠-3点击二:一元二次方程的一般形式元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,bx是一次项,c是常数项,a是二次项系数,b是一次项系数,c是常数.任何一个一元二次方程都可以通过整理转化成一般形式.由此,对于一个方程从形式上,应先将这个方程进行整理,看是否符合ax2+bx+c=0(a≠0)的一般形式.其中,尤其注意a≠0的条件,有了a≠0的条件,就能说明ax2+bx+c=0是一元二次方程.若不能确定a≠0,并且b≠0,则需分类讨论:当a≠0时,它是一元二次方程;当a=0时,它是一元一次方程.针对练习3:答案:原方程化为一般形式是:5x2+8x-2=0(若写成-5x2-8x+2=0,则不符合人们的习惯),其中二次项是5x2,二次项系数是5,一次项是8x,一次项系数是8,常数项是-2(因为一元二次方程的一般形式是三个单项式的和,所以不能漏写单项式系数的负号).点击三:一元二次方程的根的定义的意义一元二次方程的根的定义可以当作性质定理使用,即若有实数m是一元二次方程ax 2+bx +c =0(a ≠0)的根,则m 必然满足该方程,将m 代入该方程,便有am 2+bm +c =0(a ≠0);定义也可以当作判定定理使用,即若有数m 能使am 2+bm +c =0(a ≠0)成立,则m 一定是ax 2+bx +c =0的根.我们经常用定义法来解一些常规方法难以解决的问题,能收到事半功倍的效果.针对练习答案: m 3+2m 2+2009=m 3+ m 2+m 2+2009=m (m 2+ m )+ m 2+2009=m+ m 2+2009=1+2009=2010.类型之一:一元二次方程的定义例1.关于x 的方程2322+-=-mx x x mx 是一元二次方程,m 应满足什么条件? 【解析】先把这个方程变为一般形式,只要二次项的系数不为0即可.【解答】由mx 2-3x=x 2-mx+2得到(m -1)x 2+(m -3)x -2=0,所以m -1≠0,即m≠1.所以关于x 的方程2322+-=-mx x x mx 是一元二次方程,m 应满足m≠1.【点评】要特别注意二次项系数a≠0这一条件,当a=0时,上面的方程就不是一元二次方程了.当b=0或c=0时,上面的方程在a≠0的条件下,仍是一元二次方程,只不过是不完全的一元二次方程.类型之二:考查一元二次方程一般形式一元二次方程的一般形式是ax 2+bx+c=0(a 、b 、c 是已知数,a≠0),其中a 叫做二次项系数,b 叫做一次项系数c 叫做常数项.只有将方程化为一般形式之后,才能确定它的二次项系数、一次项系数和常数项.这里特别要注意各项系数的符号。
高中数学 第2章 一元二次函数、方程和不等式 章末复习教学案第一册数学教学案

第2章一元二次函数、方程和不等式知识系统整合规律方法收藏1.比较数(式)的大小依据:a-b>0⇔a>b;a-b<0⇔a<b;a-b=0⇔a=b.适用范围:若数(式)的大小不明显,作差后可化为积或商的形式.步骤:①作差;②变形;③判断差的符号;④下结论.变形技巧:①分解因式;②平方后再作差;③配方法;④分子(分母)有理化.2.利用基本不等式证明不等式(1)充分利用条件是关键,要注意“1”的整体代换及几个“=”必须保证同时成立.(2)利用基本不等式证明不等式是综合法证明不等式的一种情况,其实质就是从已知的不等式入手,借助不等式的性质和基本不等式,经过逐步的逻辑推理,最后推得所证结论,其特征是“由因导果”.(3)证明不等式时要注意灵活变形,可以多次利用基本不等式的变形形式.3.利用基本不等式求最值(1)利用基本不等式求最值,必须同时满足以下三个条件:一正、二定、三相等.即:①x,y都是正数.②积xy(或和x+y)为常数(有时需通过“配凑、分拆”凑出定值).③x与y必须能够相等(等号能够取到).(2)构造定值条件的常用技巧①加项变换;②拆项变换;③统一换元;④平方后利用基本不等式.4.解一元二次不等式的步骤当a>0时,解形如ax2+bx+c>0(≥0)或ax2+bx+c<0(≤0)的一元二次不等式的一般步骤如下:(1)确定对应方程ax2+bx+c=0的解;(2)画出对应函数y=ax2+bx+c的图象的简图;(3)由图象写出不等式的解集.特别提醒:(1)在通过图象获取解集时,注意不等式中的不等号方向、是否为严格不等关系及Δ=0时的特殊情况.(2)当a<0时,解不等式可以从两个方面入手:①画出对应图象进行直接判定(此时图象开口向下);②两边同乘以-1,把a 转变为-a 再进行求解.5.一元二次不等式的实际应用不等式在解决生活、生产中的一些实际问题中有着广泛的应用,主要有范围问题、最值问题等.解一元二次不等式的应用问题的关键在于构造一元二次不等式模型.解题的一般步骤是:(1)理清题意:弄清问题的实际背景和意义,用数学语言来描述问题. (2)简化假设:精选问题中的关键变量. (3)列出关系式:建立变量间的不等关系式. (4)求解:运用数学知识解相应不等式.(5)检验并作答:将所得不等式的解集放回原题中检验是否符合实际情况,然后给出问题的答案.学科思想培优一、常数代换法[典例1] 已知正数x ,y 满足x +y =1,则1x +41+y 的最小值为( )A .5 B.143 C.92D .2解析 因为x +y =1,所以x +(1+y )=2,则2⎝ ⎛⎭⎪⎫1x +41+y =[x +(1+y )]⎝ ⎛⎭⎪⎫1x +41+y =4x 1+y +1+yx+5≥24x 1+y ·1+y x +5=9,所以1x +41+y ≥92,当且仅当⎩⎪⎨⎪⎧4x 1+y =1+y x ,x +y =1,即⎩⎪⎨⎪⎧x =23,y =13时,等号成立,因此1x +41+y 的最小值为92.故选C.答案 C 二、消元法[典例2] 设x ,y ,z 为正实数,满足x -2y +3z =0,则y 2xz 的最小值为________.解析 解法一:由x -2y +3z =0,得y =x +3z2,故y 2xz =(x +3z )24xz =14⎝ ⎛⎭⎪⎫6+x z +9z x ≥14⎝ ⎛⎭⎪⎫6+2x z ·9z x =3, 当且仅当x =y =3z 时取等号,即y 2xz 的最小值为3.解法二:由x -2y +3z =0,得x =2y -3z ,x y=2-3zy>0.y 2xz =y 2(2y -3z )z =3⎝ ⎛⎭⎪⎫2-3z y ·3z y ≥3⎣⎢⎡⎦⎥⎤12⎝⎛⎭⎪⎫2-3z y +3z y 2=3.当且仅当x =y =3z 时取等号,即y2xz 的最小值为3.答案 3 三、配凑法1.从和或积为定值的角度入手配凑某些不等式的约束条件可看成若干变元的和或积的定值,在不等式的变形中,配凑出这些定值,可使问题巧妙获解.常见的配凑变形有化积为和、常数的代换、加法结合律等常规运算和技巧.[典例3] 设x >0,y >0,x 2+y 22=1,求x 1+y 2的最大值.解 ∵x >0,y >0,x 2与y 22的和为定值,∴x 1+y 2=x 2(1+y 2)=2x 2·1+y 22≤2·x 2+1+y 222=2·x 2+y 22+122=324,当且仅当x 2=1+y 22,即x =32,y =22时取等号,即x 1+y 2的最大值为324.[典例4] 已知x ,y ,z 为正数,且满足xyz (x +y +z )=1,求(x +y )(y +z )的最小值. 解 由条件得x +y +z =1xyz,则(x +y )(y +z )=xy +xz +y 2+yz =y (x +y +z )+xz =y ·1xyz +xz =1xz +xz ≥2,当且仅当1xz=xz ,即xz =1时取等号,故(x +y )(y +z )的最小值为2.[典例5] 设a 1,a 2,a 3,…,a n 均为正实数,求证:a 21a 2+a 22a 3+…+a 2n -1a n +a 2n a 1≥a 1+a 2+a 3+…+a n .证明 为了约去a 2k a k +1中的分母,可考虑配上一项a k +1,于是有a 21a 2+a 2≥2a 1,a 22a 3+a 3≥2a 2,…,a 2n -1a n +a n ≥2a n -1,a 2na 1+a 1≥2a n ,当且仅当a 1=a 2=…=a n 时取等号.以上不等式相加,化简,可得原不等式成立.2.从取等号的条件入手配凑在题中约束条件下,各变元将取某个特定值,这就提示我们可考虑用这些值来进行配凑. [典例6] 设a ,b ,c >0,a +b +c =1,求3a +1+3b +1+3c +1的最大值. 解2·3a +1≤2+3a +12=3a +32,2·3b +1≤3b +32,2·3c +1≤3c +32.以上三式相加,并利用a +b +c =1,得2(3a +1+3b +1+3c +1)≤6,故3a +1+3b +1+3c +1的最大值为3 2.四、判别式法在“三个二次”问题中的应用一元二次方程、一元二次不等式与二次函数的关系十分密切,习惯上称为“三个二次”问题.根据判别式法在解一元二次方程中的作用,可见判别式法在“三个二次”问题中的重要性.1.求变量的取值范围[典例7] 不等式(m 2-2m -3)x 2-(m -3)x -1<0对任意x ∈R 恒成立,求实数m 的取值范围.解 (m 2-2m -3)x 2-(m -3)x -1<0对任意x ∈R 恒成立. ①若m 2-2m -3=0,则m =-1或m =3.当m =-1时,不符合题意;当m =3时,符合题意.②若m 2-2m -3≠0,设y =(m 2-2m -3)x 2-(m -3)x -1<0对任意x ∈R 恒成立. 则m 2-2m -3<0,Δ=b 2-4ac =5m 2-14m -3<0, 解得-15<m <3.故实数m 的取值范围是-15<m <3.2.求最值[典例8] 已知正实数a ,b 满足a +2b +ab =30,试求实数a ,b 为何值时,ab 取得最大值.解 构造关于a 的二次方程,应用“判别式法”.设ab =y , ①由已知得a +2b +y =30. ②由①②消去b ,整理得a 2+(y -30)a +2y =0, ③对于③,由Δ=(y -30)2-4×2y ≥0,即y 2-68y +900≥0,解得y ≤18或y ≥50,又y =ab <30,故舍去y ≥50,得y ≤18.把y =18代入③(注意此时Δ=0),得a 2-12a +36=0,即a =6,从而b =3.故当a =6,b =3时,ab 取得最大值18.3.证明不等式[典例9] 已知x ,y ∈R ,证明:2x 2+2xy +y 2-4x +5>0恒成立.证明 不等式可变形为y 2+2xy +2x 2-4x +5>0,将不等式左边看作关于y 的二次函数,令z =y 2+2xy +2x 2-4x +5,则关于y 的一元二次方程y 2+2xy +2x 2-4x +5=0的根的判别式Δ=4x 2-4(2x 2-4x +5)=-4(x -2)2-4<0,即Δ<0.则对于二次函数z =y 2+2xy +2x2-4x +5,其图象开口向上,且在x 轴上方,所以z >0恒成立,即2x 2+2xy +y 2-4x +5>0恒成立.五、含变量的不等式恒成立问题[典例10] 对于满足0≤p ≤4的一切实数,不等式x 2+px >4x +p -3恒成立,试求x 的取值范围.解 原不等式可化为x 2+px -4x -p +3>0, 令y =x 2+px -4x -p +3 =(x -1)p +(x 2-4x +3).由题设得⎩⎪⎨⎪⎧x 2-4x +3>0(p =0),4(x -1)+x 2-4x +3>0(p =4),解得x >3或x <-1.故x 的取值范围是x <-1或x >3.。
复习2:一元二次方程根的判别式

4、若关于x的一元二次方程mx2-2x+1=0有两个不相等实数根,
则m的取值范围是
()
A.m<1
B. m<1且m≠0
C.m≤1
D. m≤1且m≠0
5、若关于x的方程x2+(2k-1)x+k2-7/4=0有两个相等的实数根,则 k= .
6.关于x的一元二次方程mx2-(3m-1)x+2m-1=0, 其根的判别式的值为1,求m的值及该方程的根。
则x1+x2=
;x1x2= ;
2、方程2x2-kx-6=0的一个根是2,则k=
;
另一个根为( )
3、以2,-3为根的一元二次方程是
;
4、已知a、b是方程x2+x-1=0的两实根,则
a2+2a+b=
拓展已知a、b满足6a=a2+4,6b=b2+4,
求 ab ba
思维训练. 1、在一元二次方程
ax2 bx c 0(a 0)中
3、一元二次方程的根与系数的关系:注意:此关系是在( )条件下存 在的。若 ax2+bx+c=0 的两根为 X1、x2,则x1+x2= ;x1x2= ;
4、以x1、x2为根(二次项系数为1)的一元二次方程是——————
➢ 课时训练(一)
Hale Waihona Puke 1、下列一元一次方程中,有实数根的是( )
A
.x2-x+1=0
➢ 要点、考点聚焦
1.一元二次方程ax2+bx+c=0(a≠0)根的情况: (1)当Δ>0时,方程有两个不相等的实数根; (2)当Δ=0时,方程有两个相等的实数根; (3)当Δ<0时,方程无实数根.
湘教版九年级数学上册作业课件 第2章 一元二次方程 章末复习(二)

(2)由BP2+BQ2=52,得(5-x)2+(2x)2=52,整理得x2-2x=0, 解方程得x=0(舍去),x=2. 所以2秒后PQ的长度等于5 cm;
(3)不可能.设12 (5-x)×2x=7,整理得x2-5x+7=0, ∵b2-4ac=-3<0,∴方程没有实数根, 所以△BPQ的面积为的面积不可能等于7 cm2.
11.甲、乙两同学解方程x2+px+q=0,甲看错了一次项,得根2和7, 乙看错了常数项,得根1和-10,则原方程为(D ) A.x2-9x+14=0 B.x2+9x-14=0 C.x2-9x+10=0 D.x2+9x+14=0
12.(2019·贵港)若α,β是关于x的一元二次方程x2-2x+m=0的
方程可化为x2-24x+150=0,Δ=(-24)2-4×150<0,
∴方程无实数解,∴不能围成花圃; (3)∵用n道篱笆隔成小矩形,且这些小矩形为正方形,∴AB=2n4+-2x , 而正方形的边长也为n+x 1 ,∴关系式为2n4+-2x =n+x 1 .
6.(开福区校级期中)一元二次方程x(x-2)=x-2的根是( C ) A.x=2 B.x1=0,x2=2 C.x1=2,x2=1 D.x=-1
7.解一元二次方程: (1)x2-3x=0; 解:x1=0,,x2=3.
(2)(x+1)2-4=0; 解:x1=1, x2=-3;
(3)2x解2-:3x=1=5x-12 , (4)3xx(22=x+3.121)=4x+2.
解:(1)设x秒后,△BPQ的面积为4 cm2,此时AP=x cm,
BP=(5-x)cm,BQ=2x cm,由12 BP×BQ=4,得12 (5-x)×2x=4, 整理得x2-5x+4=0,解得x=1或x=4(舍去).当x=4时,2x=8>7, 说明此时点Q越过点C,不合要求,舍去. 答:1秒后△BPQ的面积为4 cm2.
人教版九年级上册数学精品教学课件 第二十一章 一元二次方程 章末复习

6.随着国家“惠民政策”的陆续出台,为了切实让老百姓得到实惠, 国家卫计委严打药品销售环节中的不正当行为,某种药品原价200 元/瓶,经过连续两次降价后,现仅卖98元/瓶,现假定两次降价的 百分率相同,求该种药品平均每次降价的百分率.
解:设该种药品平均每次降价的百分率是x,由题意得,200(1 -x)2=98,解得x1=1.7(不合题意,舍去),x2=0.3=30%.
答:该种药品平均每次降价的百分率是30%
Thank you!
解:由题意得:k+1=±2(k-1),∴k=3 或 k=1 3
4.解下列方程: (1).2(x-3)2=x2-9.
解:x1=3,x2=9
(3).(x-1)2-2(x-1)=0. 解:x1=3,x2=1
(2).(2x+1)(4x-2)=(2x-1)2+2. 解:x1=-1+2 6 ,x2=-1-2 6
几种常见类型 单(双)循环问题 方案设计问题 数字问题
随堂训练 基础巩固
1.若代数式16x2+kxy+4y2是完全平方式,则k的值为( D ) A.8 B.16 C.-16 D.±16
2.已知4x2+12x+m2是完全平方式,则m=_±__3_.
3.已知关于x的二次三项式x2+(k+1)x+k2-2k+1是完全平方 式,求k的值.
R·九年级上册
第二十一章 一元二次方程 章末复习
新课导入
导入课题
通过对一元二次方程这章的学习,你掌握了哪些知识? 这些知识点间又有哪些联系呢?如何运用这些知识解决问 题呢?
复习目标
(1)梳理本章的知识结构网络,回顾与复习本章知识. (2)能选择适当的方法,快速、准确地解一元二次方程, 知道一元二次方程根的判别式和一元二次方程根与系数的关系, 并能利用它们解决有关问题. (3)列一元二次方程解决实际问题. (4)进一步加深对方程思想、分类思想、转化思想(即 降次)的理解与运用.
高中数学新教材同步必修第一册 第2章 章末复习课

五、通过构造数学模型解决生活中的问题
1.不等式的应用题常以函数为背景,多是解决现实生活、生产中的优 化问题,在解题中主要涉及不等式的解法、基本不等式求最值,根据 题设条件构建数学模型是解题关键. 2.利用不等式解决实际应用问题,重点提升数学建模素养和数学运算 素养.
例5 某商品的成本价为80元/件,售价为100元/件,每天售出100件, 若售价降低x成(1成=10%),售出商品的数量就增加 8 x成,要求售价不
跟踪训练1 若1≤a≤5,-1≤b≤2,则a-b的取值范围为_{_a_-__b__|-__1_≤____ _a_-__b_≤___6_}_.
解析 ∵-1≤b≤2, ∴-2≤-b≤1, 又1≤a≤5, ∴-1≤a-b≤6.
二、利用基本不等式求最值
1.基本不等式: ab≤a+2 b (a>0,b>0)是每年高考的热点,主要考查命 题判断、不等式证明以及求最值问题,特别是求最值问题往往与实际 问题相结合,同时在基本不等式的使用条件上设置一些问题,实际上 是考查学生恒等变形的技巧,另外,基本不等式的和与积的转化在高 考中也经常出现. 2.熟练掌握基本不等式的应用,重点提升数学抽象和数学运算素养.
解 将y=xa+x2+3看作关于a的一次函数, 当a∈[4,6]时,y≥0恒成立,只需在a=4和a=6时y≥0即可, 即xx22++46xx++33≥≥00,, 解得 x≤-3- 6或 x≥-3+ 6, 故 x 的取值范围是{x|x≤-3- 6或 x≥-3+ 6}.
反思感悟 解决不等式恒成立、能成立问题的方法 (1)利用一元二次不等式判别式与图形相结合. (2)分离参数法. (3)转化为最大(小)值问题.
a>0, ⇔Δ<0,
a<0, ax2 + bx + c<0(a≠0) 恒 成 立 ⇔ Δ<0, ax2 + bx + c≥0(a≠0) 恒 成 立