干货 详解高速铁路七大技术体系
(完整)中国高铁核心技术

中国高铁核心技术高速铁路从技术体系上讲大致可以分为这样一个板块:公路工程,牵引供电、运行控制与通信、高速列车、客运服务、综合维修、安全防灾和应急处理、工务工程。
1、工务工程。
工务工程一般包括轨道结构、路基、桥梁、隧道、房建工程等各个子系统,我国铁路建设在公路工程方面主要依靠技术创新。
我们国家的高速铁路一般采用全线高架、无砟轨道、高速道和超长无缝钢轨等技...高速铁路从技术体系上讲大致可以分为这样一个板块:公路工程,牵引供电、运行控制与通信、高速列车、客运服务、综合维修、安全防灾和应急处理、工务工程。
1、工务工程。
工务工程一般包括轨道结构、路基、桥梁、隧道、房建工程等各个子系统,我国铁路建设在公路工程方面主要依靠技术创新。
我们国家的高速铁路一般采用全线高架、无砟轨道、高速道和超长无缝钢轨等技术。
京津城际采用CRTS-II型板式无渣轨道结构,6.5米轨道板纵向连接,专业化制造,加工机施工安装精度高。
运营一年表明,无砟轨道京都高稳定性好,刚组均匀。
我们的无缝线路,采用60公斤/米、100米定尺、U71Muk高性能钢轨。
现场焊接、弹性扣件、轨温锁定技术。
跨区间超长无缝路线。
高速道岔。
大号码高速道岔,直向通过速度350km/h,侧向通过速度120-250km/h。
中国高铁技术适应复杂地形。
日本国土面积小,铁路所跨越的地区气候和地质条件比较类似。
而中国国土面积大,地形复杂,横跨多个不同的气候和地质区域,因此在高铁的实际建设中完全照搬引进日法德的技术显然行不通,技术必须进行创新。
因此,作为应对复杂地形方面,贯穿辽阔国土面积的中国高铁,在设计上自然有更多的实际经验,技术上也比日本具有更多的优势。
铁道部总工程师何华武就指出,中国京津、武广、郑西高速铁路非常典型:京津城际是软土路基,武广高铁是岩溶路基,郑西高铁是黄土湿陷性路基,这样的地质条件下建铁路,尤其是建高速铁路,需要处理好地基以及路基的填入技术。
而日本、法国、德国都没有这样的地质条件。
中国高速铁路技术体系

中国高速铁路技术创新
武广高速铁路全长1068.6公里,其中路基 323公里、桥梁684座468公里、隧道226座177 公里,桥隧比66.7%。 武广高速铁路 桥梁和隧道技术创 造多项世界第一; 动车组、列控、节 能环保技术均处于 世界一流水平;运 输组织世界最优。
中国高速铁路技术创新
郑西高速铁路穿越 豫西山地和渭河冲积平 原,南倚秦岭,北临黄河, 沿线80%区段为黄土覆 盖, 桥梁和隧道长度占 全长的59.75%,湿陷性 黄土地区施工是高速铁 路建设的技术难题。
中国高速铁路技术创新
CRH2-300型动车组
高速动车组技术创新
牵引功率8208kW,6动2拖,定员610人,最高运营 时速350公里。
中国高速铁路技术创新
CRH3型动车组
高速动车组技术创新
牵引功率8800kW,4动4拖,定员556人,最高运营 时速350公里。
中国高速铁路技术创新
CRH5型动车组
国外高速铁路列控系统发展趋势 德国、日本和法国现有的三种高速列控系统 自成体系,相互不兼容,技术不开放。 欧洲铁路欧盟为实现各国铁路互联互通,确 定了欧洲铁路列车运行控制系统统一的技术平 台,即ETCS 。其中,基于GSM-R无线传输的 ETCS2用于高速铁路,现已成功投入商业运营, 代表未来高速列车运行控制技术的发展方向。
中国高速铁路技术创新
工务工程技术创新
京津城际铁路采用双线混凝土箱梁高架桥,桥 梁占全线总长87%,实现了与公路全立交,有效控 制了工后沉降。
中国高速铁路技术创新
质处理和沉降控制试验研究。
工务工程技术创新
郑西高速铁路在湿陷性黄土地区开展了大量地
中国高速铁路技术创新
工务工程技术创新
高速铁路技术体系(何)

系统集成中DB的主要任务
车辆工程
轨道工程
高速铁路
系统界面
调度/ 控制系统
提出总体技术要求; 组织核心技术开发; 确定各子系统接口界面; 系统运营的技术支持和优化; 技术标准制定; 产品检验和系统符合性验证; 运营管理创新技术。
DB Systemtechnik
德国铁路DB的系统集成
工程咨询机构
设 和
钢轨采用60kg/m、定尺长度100m
(三)轨道工程
轨道具有可靠的稳定性和高平顺性
幅值(mm) 弦长(m)
有碴轨道平顺度铺设精度标准
高低
轨向
水平 扭曲(2.5m)
2
2
2
2
10
轨距 ±2
幅值(mm) 弦长(m)
无碴轨道平顺度铺设精度标准
高低
轨向
水平 扭曲(2.5m)
2
2
2
1
10
轨距 ±1
(三)轨道工程 无碴轨道、扣件和高速道岔
开关断路器(B)
「闭合」
(A)电源 架线
中间断电区
轮轨
※ 在线检测
※进入中间断电区、在线检测
(B)电源
(四)自动过分相
开关断路器(A)
「断开」
开关断路器(B)
「断开」
(A)电源 架线
中间断电区
轮轨
在线
※开关断路器(B)「断开」
(B)电源
(四)自动过分相
开关断路器(A)
「闭合」
开关断路器(B)
「断开」
1.无碴轨道路基 工后沉降变形量一般不大于15mm,长度大于20m的区段,其工 后沉降变形量不大于30mm,且轨道铺设后满足轨道竖曲线半径要求; 过渡段交界处的差异沉降量小于5mm,弯折角不大于1‰。 2.有碴轨道路基 工后沉降变形量不大于5cm ,路桥等过渡段工后沉降变形量不 大于3cm,初年沉降速率小于2cm/y。
干货详解高速铁路七大技术体系

客室内的传递。据了解,这项专利技术可适用于时速200公 里等级及以上的动车组车体结构,目前广泛应用于
CRH2C—300系列动车组车体,及CRH2长大编组系列动 车组车体,已装用700余辆,总价值近10亿元。
旅客服务系统大量运用了信息技术,需要给各位专家报告的
间0.3秒左右,高速列车动力丢失少,长距离运行节能效果
采用简单链型、弹性连型悬挂技术,研发高强高导接触网导 线。保证接触网与受电弓匹配良好、受流稳定。武广客运专
线接触网采用弹性缝型悬挂方式, 实现时速350公里双弓稳
系统的主体设备接触网,已经开始实现关键零部件的国产化。
3、列车运行控制列控系统是确保列车行车安全的控制系统,
速列车由45000个零部件组成,工程中分为九大关键技术。
韩国。二是车体制造。三是牵引系统,牵引系统是高铁竞争 的核心之一,主要由变压器九变流器、牵引控制、电机几个 不同的部分组成。高速列车所有的用电设备和运动器件都采 用传感器进行实时的监控。高速转向架,高速列车的转向架 是列车技术的核心也是轮轨技术的核心。高速专项架的结构 功能,高速列车技术的核心,具有承载、导向、减震、牵引 及制动等功能。传统意义上的火车头已经看不见了,转向架 技术创新点主要在于抑制它的蛇行运动,由于车轮的反面很 锥形,需要良好的工作曲线,锥形的爬点就形成了固有的刺 激震动,这也是转向架能跑多高速度的核心。还有脱轨安全 性。我们在研究高速列车转向架轮轨安全的时候做了一个突 破性的测试,世界各国高速铁路和它的普速铁路是不相吻的, 也就是说它不做跨线运行的技术准备,所以大多数国家,包 括日本,它的轮轨匹配都是按照高速线和普速线来设计。我 们国家高速铁路和现在了路网形成跨线,这个路网的效应就 会非常的好,我们在设计我们国家的轮轨匹配的时候采用了 特有方案,这个方案比德国的明显好,不仅可以满足本线运 行,而且还可以实现跨线运行,这项技术我们在本国和多国 申报了专利。高速转向架,我们希望有较高的临界速度,比 如时速350公里高速列车转向架理论上是490公里,在西南 交通大学做到了410公里,最后的实验没有做下去,只做到 了410公里。为了验证我们高速转向架的性能,我们用了
高速铁路机车车辆关键技术解析

高速铁路机车车辆关键技术解析高速铁路在现在快节奏的生活下已经被广泛的应用,其中所涉及的机车车辆技术涵盖了牵引传动技术以及外形空气动力学等技术等。
文章围绕高速铁路机车车辆的关键技术,分析了其中应用的几种技术。
标签:高速铁路;机车车辆;技术0 引言高速列车是推动高速铁路运行的主要技术核心,同时也是机车车辆逐渐现代化的主体形式。
在现阶段快节奏的生活环境下,高速列车已经被广泛的应用于交通出行中。
若高速铁路可以体现现代化的科学技术,那么高速列车则融合了机械与电子等多方面的技术形式[1]。
受铁路网规划要求的影响,我国在修建高速铁路的工作中已经有了既定的规划,为了实现这一目标,相关人员对高速铁路机车车辆关键技术进行研究,全面推动机车车辆技术水平的提升已经逐渐成为现阶段铁路相关工作人员进行思考的重要问题。
为此,文章中针对高速铁路机车车辆关键技术,对其所应用的几种技术进行了分析。
1 牵引传动技术高速列车和普通列车不同之处在于,高速列车的牵引设备要比较大的功率,并且其牵引机的重要比较轻,可以运行于比较恶劣的环境中,同时需要维修。
高速列车的牵引设备能够可控逆转,加强在高速下的黏着利用,设备中电机没有转换向,这样便不会造成电机出现比较大的耗损。
在高速列车中应用比较广泛的牵引传动技术是交-直-交变流体系,该技术被广泛应用的原因是可以把单相交流电转换成为可以进行调频变压的三相交流电,以此作为牵引力的主要牵引动力。
高速列车中的交流传动体系作用于工业行业中的交流设备中,不管是调速范围或是控制性能都存在比较大的提升,在快速动态的响应方面存在一定的优势,在其中可以将牵引和再生制动进行转换,并且具有较高的运行效率以及防震性能。
2 复合制动技术在高速列车的运行系统中,复合制动技术也是十分重要的技术,在选择制动系统时,务必要将制动距离缩短,同时确保在高速制动状态下车轮处于不滑行的状态,减少制动系统中的簧下重量,确保高速列车运行的安全性。
中国高铁核心技术

中国高铁核心技术高速铁路从技术体系上讲大致可以分为这样一个板块:公路工程,牵引供电、运行控制与通信、高速列车、客运服务、综合维修、安全防灾和应急处理、工务工程。
1、工务工程。
工务工程一般包括轨道结构、路基、桥梁、隧道、房建工程等各个子系统,我国铁路建设在公路工程方面主要依靠技术创新。
我们国家的高速铁路一般采用全线高架、无砟轨道、高速道和超长无缝钢轨等技...铁道部总工程师何华武就指出,中国京津、武广、郑西高速铁路非常典型:京津城际是软土路基,武广高铁是岩溶路基,郑西高铁是黄土湿陷性路基,这样的地质条件下建铁路,尤其是建高速铁路,需要处理好地基以及路基的填入技术。
而日本、法国、德国都没有这样的地质条件。
“中国的综合能力超过他们。
”许克亮表示:“如果说中国的‘线上’(主要指机车)是走‘引进、消化、吸收’之路,那么线下工程(主要指土建)则是由中国人自己创造的一个完整系统的标准。
中国高铁经过的地方地质难度较大,要穿越水下60米深的浏阳河,还要从70多米高的地方跨越山谷等,地质的难度,决定了中国高铁的线下功夫。
”3、列车运行控制。
列控系统是确保列车行车安全的控制系统,我国采用的“中国列车运行控制系统”(CTCS)。
CTCS-1级,人控优先,超速防护,普速铁路。
CTCS-2级,机控制优先,基于轨道电路+应答器的地对车单向信息传递,250km/h客专,5分钟追踪。
CTCS-3级:疾控,基于无限数据传输平台(GSM-R)车地双向列控信息传递。
350km/h客专,3分钟追踪;CTCS-4级,移动闭塞或虚拟闭塞。
另外,武广高铁的“列控中心系统平台”发明已经向国家知识产权局提出了专利申请。
它主要是运用“二乘二取二”的冗余技术,“二乘二取二”是一种广泛应用于铁路方面的技术,具有更高的安全性和可靠性。
二乘二侧重于系统的可用性和可靠性,二取二侧重于系统的安全性和稳定性。
而在技术实现上主要有两种方式:指令级同步和任务级同步,即系统平台采用多层次的安全防护措施,所有的安全输出均由两套独立、非相关的软、硬件子系统共同确定,符合故障—安全原则,命令在输出前进行比较,检查有错误便不产生输出。
高速铁路技术简介

高速铁路技术简介一、概述(一)线路地理位置和径路(二)线路在国民经济与路网中的意义和作用(三)研究工作概述二、高速铁路主要技术条件铁路等级:高速铁路;正线数目:双线;运输组织模式:本线和跨线列车混合运行的客运专线模式;设计速度:设计最高运行速度350km/h,初期最高运行速度300km/h。
跨线列车运行速度200km/h及以上;列车类型:本线列车采用最高运行速度300km/h及以上的动车组;跨线列车采用最高运行速度200km/h及以上的动车组;线间距:5.0m;最小曲线半径:7000m;最大坡度:12‰;到发线有效长度:700m;牵引种类:电力;列车运行控制方式:自动控制;调度指挥方式:综合调度集中;三、高速铁路的设计特点高速铁路设计速度350km/h,初期开通运行速度300km/h,与传统铁路相比,表面上看,只是列车运行速度提高了。
但实际上,由于速度的提高,各种运行工况下的不利因素在高速条件下被放大了:行车事故的后果在高速条件下被放大了;对列车运行控制系统的安全性要求和技术难度在高速条件下提高了;弓网受流特性在高速条件下更复杂了;线路平纵断面条件和轨道不平顺对旅客乘座舒适度的影响在高速条件下更敏感了;列车运行对周围环境的影响在高速条件下增大了……。
因此,高速铁路不是列车运行速度的简单提高,也不是单项专业技术标准的简单提高,而是当代新型牵引动力、高性能轻型车辆、高质量线路、高速运行控制指挥和经营管理等方面技术进步的集中反映,它具有不同于传统铁路的技术内涵和特定要求。
高速铁路以高速、安全、准时、方便、舒适、全天候为综合优势,需要以高性能的技术装备、高质量的基础设施、高水平的运营管理和高度科学的规划布局为支撑条件。
作为高速铁路的设计,必须充分体现高速铁路的以上技术经济优势,具备高度的系统工程观念,系统地解决由于行车速度的提高而带来的一系列技术难点,确保高速列车高速、安全、舒适地运营。
1.运输组织模式高速铁路的运输组织模式与其他铁路一样,与国情、路情和沿线经济、社会条件等密切相关,具有很强的地域特征,不可能完全照搬国外现成的模式。
高铁技术详解

高铁技术详解随着科技的发展,交通运输领域也在不断创新和进步。
高铁作为一种新型的交通工具,以其快速、安全、便捷的特点,受到了越来越多人的青睐。
高铁技术是指在高速铁路建设和运营中所涉及的各种技术,包括轨道、车辆、信号、通信等方面的技术。
本文将从这些方面对高铁技术进行详细解析。
一、轨道技术。
高铁的轨道技术是其基础技术之一,也是保证高铁列车安全、平稳运行的重要因素。
高铁轨道采用了混凝土轨道,其优点是强度高、耐磨损、寿命长,能够适应高速列车的运行需求。
此外,高铁轨道还采用了预应力技术,使得轨道更加坚固,能够承受更大的载荷。
同时,高铁轨道还采用了无缝轨道技术,确保了列车在高速运行时的平稳性和安全性。
二、车辆技术。
高铁车辆是高铁技术的核心之一,其设计和制造直接关系到列车的运行速度、舒适度和安全性。
高铁车辆采用了轻量化设计,采用了铝合金等轻质材料,使得列车的自重减轻,能够提高列车的运行速度和节能性能。
此外,高铁车辆还采用了空气动力学设计,减小了列车的空气阻力,提高了列车的运行速度和能效比。
高铁车辆还采用了智能控制系统,能够实现列车的自动控制和监测,提高了列车的运行安全性。
三、信号技术。
高铁的信号技术是保证列车安全运行的关键技术之一。
高铁信号系统采用了ETCS(European Train Control System)技术,实现了列车的自动控制和监测。
ETCS技术采用了无线通信技术,能够实时监测列车的位置、速度和状态,确保列车在运行过程中能够及时做出反应。
此外,高铁信号系统还采用了CBTC(Communication Based Train Control)技术,实现了列车的自动调度和运行,提高了列车的运行效率和安全性。
四、通信技术。
高铁的通信技术是保证列车运行和乘客信息传输的重要技术。
高铁列车采用了移动通信技术,能够实现列车与列车、列车与地面的实时通信。
高铁列车还采用了互联网技术,能够为乘客提供高速、稳定的网络连接,满足乘客在列车上上网、通话等需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
干货详解高速铁路七大技术体系2016-05-08转自RT轨道交通地铁二三事导读本文介绍高速铁路七大技术体系。
高速铁路从技术体系上讲大致可以分为这样一个板块:公路工程,牵引供电、运行控制与通信、高速列车、客运服务、综合维修、安全防灾和应急处理、工务工程。
1、工务工程工务工程一般包括轨道结构、路基、桥梁、隧道、房建工程等各个子系统,我国铁路建设在公路工程方面主要依靠技术创新。
我们国家的高速铁路一般采用全线高架、无砟轨道、高速道和超长无缝钢轨等技术。
京津城际采用CRTS-II型板式无渣轨道结构,6.5米轨道板纵向连接,专业化制造,加工机施工安装精度高。
运营一年表明,无砟轨道京都高稳定性好,刚组均匀。
我们的无缝线路,采用60公斤/米、100米定尺、U71Muk高性能钢轨。
现场焊接、弹性扣件、轨温锁定技术。
跨区间超长无缝路线。
高速道岔。
大号码高速道岔,直向通过速度350km/h,侧向通过速度120-250km/h。
中国高铁技术适应复杂地形。
日本国土面积小,铁路所跨越的地区气候和地质条件比较类似。
而中国国土面积大,地形复杂,横跨多个不同的气候和地质区域,因此在高铁的实际建设中完全照搬引进日法德的技术显然行不通,技术必须进行创新。
因此,作为应对复杂地形方面,贯穿辽阔国土面积的中国高铁,在设计上自然有更多的实际经验,技术上也比日本具有更多的优势。
铁道部总工程师何华武就指出,中国京津、武广、郑西高速铁路非常典型:京津城际是软土路基,武广高铁是岩溶路基,郑西高铁是黄土湿陷性路基,这样的地质条件下建铁路,尤其是建高速铁路,需要处理好地基以及路基的填入技术。
而日本、法国、德国都没有这样的地质条件。
“中国的综合能力超过他们。
”许克亮表示:“如果说中国的?线上?(主要指机车)是走引进、消化、吸收?之路,那么线下工程(主要指土建)则是由中国人自己创造的一个完整系统的标准。
中国高铁经过的地方地质难度较大,要穿越水下60米深的浏阳河,还要从70多米高的地方跨越山谷等,地质的难度,决定了中国高铁的线下功夫。
” 2、牵引供电由电力、接触网、变电、供电、远动等构成。
外电110kv/22Okv接入变电所,通过接触网为高速列车供电。
A2β27.5kv的AT供电方式,供电距离60km,比直供延长1倍。
通过SCADA系统实现远程监测、控制与调节、实现保护、控制一体化和越区供电。
我国高铁采取综合接地、防雷、融冰雪技术。
自动过分相,端点过分相:利用列车惯性通过无电区。
时速250公里的线路采用这个技术。
我们在时速350公里的线路上采用了不断电过分相技术,通过地面和车载装置,实现列车瞬间通过无电区的系统控制,切换时间0.3秒左右,高速列车动力丢失少,长距离运行节能效果非常明显,大幅压缩运行时分。
高速接触网,在明线、隧道、桥梁和不同气候条件等复杂工程下,时速350公里,采用简单链型、弹性连型悬挂技术,研发高强高导接触网导线。
保证接触网与受电弓匹配良好、受流稳定。
武广客运专线接触网采用弹性缝型悬挂方式,实现时速350公里双弓稳定受流,为世界首创。
尤其是高速电气化铁路牵引供电系统的主体设备接触网,已经开始实现关键零部件的国产化。
3、列车运行控制列控系统是确保列车行车安全的控制系统,我国采用的“中国列车运行控制系统”(CTCS)。
CTCS-1级,人控优先,超速防护,普速铁路。
CTCS-2级,机控制优先,基于轨道电路+应答器的地对车单向信息传递,250km/h客专,5分钟追踪。
CTCS-3级:疾控,基于无限数据传输平台(GSM-R)车地双向列控信息传递。
350km/h客专,3分钟追踪;CTCS-4级,移动闭塞或虚拟闭塞。
另外,武广高铁的“列控中心系统平台”发明已经向国家知识产权局提出了专利申请。
它主要是运用“二乘二取二”的冗余技术,“二乘二取二”是一种广泛应用于铁路方面的技术,具有更高的安全性和可靠性。
二乘二侧重于系统的可用性和可靠性,二取二侧重于系统的安全性和稳定性。
而在技术实现上主要有两种方式:指令级同步和任务级同步,即系统平台采用多层次的安全防护措施,所有的安全输出均由两套独立、非相关的软、硬件子系统共同确定,符合故障—安全原则,命令在输出前进行比较,检查有错误便不产生输出。
输出后也会检查,保证不产生错误输出。
基于以上的控制系统,武广高铁在32公里范围内互通信息数据,并自动保持14公里的安全车距,如果车距小于14公里,调度中心会给动车发出指令,后车便可自动根据与前车的距离来调整车速。
“C3系统在武广高铁的成功运用,关键在于我们实现了两大创新:一个是系统集成创新,一个是引进消化吸收再创新。
我们参照了一些国外的相关标准,但整个C3系统,包括标准规范体系,系统机构的研发,系统结果的测试,系统产品的制造,施工安装联调联试等,都是完全由中国人自己完成的。
”通号集团C3攻关实施组组长、研究设计院总工程师、集团副总工程师张苑如实阐述“中国创造”四个字。
C3的核心技术在于应用无线传输方式控制列车运行。
其中有两个关键设备,一个在地面,一个在车上。
地面的叫RBC系统,中文名字叫无线闭塞中心系统。
RBC的功能就是让列车“该走的时候走,该停的时候停”;车上的叫ATP系统,中文名字叫列车超速防护系统,功能就是连续不间断地对列车实行速度监督,实现超速防护。
时速350公里高速动车列车如果瞬间刹车制动,需要减速滑行6500米。
通过C3系统的控制,武广高铁全线运营的高速列车在武汉调度中心的RBC 系统监控下,通过RBC系统的控制指令和车载ATP的控制,能确保每辆列车自身不超速并使前后两个列车之间保持安全行车距离。
因C3攻关被评为全国劳模的张苑说,C3级列控系统技术创主要有四大点:首次通过无线通信的方式实现了对长大距离范围内时速350公里列车的安全可靠运行控制;完成了列控系统C2/C3控车模式集成;创建了全速、全景综合设计集成平台和一整套测试验证方法;构建了完整的技术标准体系。
铁道部党组书记、部长刘志军2009年国庆期间检查武广高铁时指出:武广高铁科技含量最高的技术是C3列控系统。
为适应铁路重载运输的需求,南车株机公司通过技术创新和研究,在机车同步操纵技术、大功率交流传动机车技术取得突破性进展,在世界上首次实现机车无线同步操纵技术与GSM-R技术结合,大幅度提升了重载铁路的运输能力。
以和谐1型大功率交流传动机车担当的大秦铁路是世界上年运量最高的重载铁路,为加快发展我国及世界铁路重载运输提供了成功范例。
4、高速列车高速列车高速列车是高速铁路的核心技术之一,也是世界各国在高速铁路当中竞争的制高点。
高速列车由45000个零部件组成,工程中分为九大关键技术。
包括集成技术,目前能够掌握集成技术的德国、法国、日本、韩国。
二是车体制造。
三是牵引系统,牵引系统是高铁竞争的核心之一,主要由变压器九变流器、牵引控制、电机几个不同的部分组成。
高速列车所有的用电设备和运动器件都采用传感器进行实时的监控。
高速转向架,高速列车的转向架是列车技术的核心也是轮轨技术的核心。
高速专项架的结构功能,高速列车技术的核心,具有承载、导向、减震、牵引及制动等功能。
传统意义上的火车头已经看不见了,转向架技术创新点主要在于抑制它的蛇行运动,由于车轮的反面很锥形,需要良好的工作曲线,锥形的爬点就形成了固有的刺激震动,这也是转向架能跑多高速度的核心。
还有脱轨安全性。
我们在研究高速列车转向架轮轨安全的时候做了一个突破性的测试,世界各国高速铁路和它的普速铁路是不相吻的,也就是说它不做跨线运行的技术准备,所以大多数国家,包括日本,它的轮轨匹配都是按照高速线和普速线来设计。
我们国家高速铁路和现在了路网形成跨线,这个路网的效应就会非常的好,我们在设计我们国家的轮轨匹配的时候采用了特有方案,这个方案比德国的明显好,不仅可以满足本线运行,而且还可以实现跨线运行,这项技术我们在本国和多国申报了专利。
高速转向架,我们希望有较高的临界速度,比如时速350公里高速列车转向架理论上是490公里,在西南交通大学做到了410公里,最后的实验没有做下去,只做到了410公里。
为了验证我们高速转向架的性能,我们用了180多天在京津城际对高速转向架做了大量在线试验。
在高速的条件下,启动升力、交会启动激扰对轮重减载率、轮轴横向力等安全性指标的影响进行了测试,实验的结果在394公里的时候脱轨系数只有0.3,轮轴横向力最大有17.5千米,平稳型指标小于2.0,安全性指标和舒适性指标都最大。
又是在头头相交、头尾相交、尾尾相交的时候稳定性非常高,这为京沪高速再提高一点做了很好的铺垫和准备。
车体技术我们国家高速列车的车体设计结构优几个特点,采用了薄壁木筒型铝合金焊接结构。
鼓型宽车体3.3m。
我们用了2年多时间,在我们国家三个企业全部实现了国产化。
我们的技术难点是宽车体、轻量化、复杂交变载荷工况下,解决的技术难题:结构强度、模态匹配、减震降噪、减少阻力。
车体主要的考核指标是气动性能,列车在交会和过隧道的时候,在列车的周边会形成很大的阻压,我们国家实行的气动强度指标是正负4000帕,在各种阻力都做了不同速度下的单车过隧道,双向过隧道的实验,气动强度是不够的。
但是京沪高速,我们希望通过泰山这段22个连续的隧道,气动强度更好一点,新一代的高速列车把气动强度的指标提高到正负6000帕。
高速列车除了有很好的安全性还要有很好的舒适型,振动和噪音控制得当,列车的振动主要来自两个方面,一方面是气体与车体的摩擦产生的振动和噪音,二是线路的不平顺产生的噪音,后者产生的噪音对车不仅有舒适型的影响还有安全性的影响。
可以看出来,线路的阻振的波长与车体的模态匹配很好,因此很多同志,包括国外的同仁(日本人、德国人)坐了京津城际,认为我们在减震和降噪方面做得要比他们好。
比如我们时速350公里的头车的噪音可以做到68个分贝,中国高速列车降噪措施主要在噪声源的控制,车轮采用降噪的涂料,车与车之间的连接使它更加平滑等等。
车体的设计减少运行阻力,是一个很重要的技术工作。
京津城际我们做了大量的实验以后,对我们目前的二型车和三型车在高速运行条件下的运行阻力,特别是车头的阻力和车身的阻力做了详细的分析。
这张图显示京沪高速新一代高速列车的头型设计(见图),我们做了四个头型,一号、二号、三号、十四号。
目前,世界上高速列车的头型发展有两个趋势,以德国和法国为代表的,他们目前一般都在做回型头型,这种头型运行阻力较大,但是噪音较小。
日本做成蛇行,运行阻力较小,但是噪音很高。
我们是把两种技术做了一定的融合,京沪高速会采用一号方案,二号作为储备,14号方案用于时速500公里的实验列车,这个车明年年底也要下线。
牵引传动系统我国高速列车采用交直交、动力分散牵引传动方式。
关键技术:轻量化、大客量变压器。