第九章 欧氏空间习题

合集下载

欧式空间习题

欧式空间习题

第九章 欧式空间习题1.(填空)设n εεε,,,21 为n 维欧氏空间V 中的基,在此基下向量βα,坐标分别为),,,(21n a a a 与 ),,,(21n b b b ,则内积∑==ni i i b a 1),(βα的充分必要条件是 。

(n εεε,,,21 是V 的标准正交基)2.(填空)21,V V 是有限维欧氏空间的子空间,存在0,2≠∈ααV ,使得1V ⊥α的充分条件是子空间的维数之间满足 。

()维()维(21V V <3.对角矩阵为正交矩阵的充分必要条件是 (对角线上的元素为±1)。

4.(证明)设A 与B 是欧氏空间V 的两个线性变换,并且对任意V ∈α有))(),(())(),((ααααB B A A =,证明A V 与BV 作为欧氏空间是同构的。

证明:A V 与BV 均是欧氏空间V 的子空间,因而对于V 的内积来说作成欧氏空间。

令V B A f ∈∀→ααα),()(:,则f 是一个映射;因为任取V ∈βα,, 若),()(βαA A = 得 ,0)(=-βαA ))(),((0))(),((βαβαβαβα--==--∴B B A A ,从而有,0)(=-βαB 即),()(βαB B =可证f 是单射,又是满射,现证f 是线性的; R k V A A A ∈∀∈∀),()(),(βα,有)()(())()((βαβαβα+=+=+B A f A A f ))(())(()()(βαβαA f A f B B +=+=)()()()(())((αααααkf kB k B k A f kA f ====,再证f 保持内积不变;V ∈∀βα,,有))(),(())(),((2))(),(())(),(βββαααβαβαA A a A A A A A ++=++ ))(),(())(),((2))(),(())(),(βββαααβαβαB B B B B B B B ++=++= 所以))(),(())(),((βαβαB B A A =即))(),(())((),(((βαβαB B A f A f =))(),((βαA A =,从而f 是同构映射,A V 与BV 作为欧氏空间是同构的。

欧几里得空间

欧几里得空间

第九章-欧几里得空间复习题一、判断题1、欧氏空间中两两正交的向量组是线性无关的.2、欧氏空间中保持向量夹角不变的线性变换一定是正交变换.3、两个正交矩阵的乘积一定是正交矩阵.4、n 维欧氏空间n R 的恒等变换,既是正交变换,也是对称变换.5、有限维欧氏空间不同的基的度量矩阵是合同的.6、欧氏空间中保持向量长度不变的变换必是正交变换.7、任意一个(1)n n ≥维欧氏空间都存在标准正交基.8、n 维欧氏空间V 的正交变换在V 的任一组基下的矩阵必是正交矩阵.9、设V 为欧氏空间,βαβα⊥∈,,V ,则222βαβα+=+.10、设V 为有限维欧氏空间,是V 上对称线性变换,1V 为的不变子空间,则⊥1V 也为的不变子空间.11、设1V ,2V 是欧氏空间V 的两个正交子空间,则{}021=V V .12、实对称矩阵A 的任意两个特征向量都正交.13.欧氏空间是定义了内积的线性空间.14.若实对称矩阵A 的特征值全不等于零,则A 必正定.15.若A 是实对称矩阵,则必存在正交矩阵P ,使B =P -1AP =P T AP 为以A 的特征值为对角元的对角矩阵.16.n 阶矩阵A 是正交矩阵的充要条件是||=1A .17.欧氏空间中的正交变换是保持向量内积不变的线性变换.18.与任意向量都正交的向量不一定是零向量.19.同构的两个欧氏空间具有相同的维数.20.对n 维欧氏空间V 中任意两个向量α,β,必有|(α,β)|≤|α|⋅|β|.21.任一n 维欧氏空间V 与R n 同构.22.n 维欧氏空间V 中一定存在某组基的度量矩阵是非正定的.23.设n 维欧氏空间V 的一组基的度量矩阵为A,则在这组基下向量的内积由A 完全确定.24.同一个线性空间对于不同内积构成不同欧氏空间.25.n 维欧氏空间V 中向量α与β正交当且仅当α与β的夹角为π/2.26.设V 为有限维欧氏空间,则V 中任意两个向量在标准正交基下的内积等于它们的对应分量的乘积之和.27.欧氏空间V 的正交变换是V 到自身的同构映射.28.对称变换在标准正交基下的矩阵一定是实对称矩阵.29.实对称矩阵A 的正、负惯性指数分别为正、负特征值的个数.30.任意n 元实二次型都可经过正交线性替换化为标准形.二、选择题1、设21,V V 是欧氏空间V 的两个子空间,则下列推断正确的是.A 、11)(V V =⊥⊥;B 、⊥⊥⊥=)(2121V V V V ;C 、121)(V V V =+⊥⊥⊥+2V ;D 、若21V V ⊂,则⊥⊥⊂21V V .2、设A 是一个n 级实对称矩阵,则下列结论正确的有.A 、A 的特征根都大于零;B 、A 的特征向量都正交;C 、A 一定有n 个不同的特征值;D 、一定存在正交矩阵T ,使AT T '为对角矩阵.3、设A 是n 级实对称矩阵,则下列结论正确是.A 、A 的特征值都是实数;B 、A 的特征向量都正交;C 、A 必有n 个不同的特征值;D 、A 的特征值必不为0.4、设{}R b a b a V ∈=,),(,V b b a a ∈==),(),,(2121βα,则下列定义的内积中使V 为欧氏空间.A 、1221),(b a b a +=βα;B 、1),(2211++=b a b a βα;C 、2211),(b a b a -=βα;D 、221153),(b a b a +=βα.5、设是n 维欧氏空间V 的一个线性变换,则是正交变换的充分必要条件是.A 、在任一组基下的矩阵是正交矩阵;B 、保持V 中元素的正交关系,即⇒⊥∈∀βαβα,,V ⊥αβ;C 、保持V 中的非零元素的夹角不变,即>=<<∈∀βαβα,,,V ,α>β;D 、如果n εεε,,,21 是标准正交基,那么,1ε,,2 εn ε也是标准正交基.6、)1(≥n n 维欧氏空间的标准正交基.A 、不存在;B 、存在不唯一;C 、存在且唯一;D 、不一定存在.7.设V 是n 维欧氏空间,则对V 的同一内积而言,不同基的度量矩阵之间的关系是.A 、等价;B 、相似;C 、合同;D 、以上说法都不对.8.以下关于正交变换说法错误的是.A 、正交变换保持n 维欧氏空间中的标准正交基不变;B 、正交变换保持向量间的距离不变;C 、正交变换在标准正交基下的矩阵为正交矩阵;D 、正交变换的逆变换不一定是正交变换.9.下列关于欧氏空间同构的说法正确的是.A 、设V ,V′都是n 维欧氏空间,则V 与V′同构;B 、数乘变换是欧氏空间V 到自身的同构映射;C 、若是线性空间V 到V′的同构映射,则也是欧氏空间V 到V′的同构映射;D 、若是欧氏空间V 到V′的一个映射,且保持线性运算,则是V 到V′的同构映射.10.设V 是n 维欧氏空间,则下列关于V 的标准正交基的说法错误的是.A 、标准正交基的度量矩阵是单位矩阵;B 、任意两组标准正交基之间的过渡矩阵是单位矩阵;C 、若ε1,ε2,…,εn 是V 的一组标准正交基,A 是正交矩阵,若(η1,η2,…,ηn)=(ε1,ε2,…εn)A ,则η1,η2,…,ηn 也是V 的一组标准正交基;D 、V 的标准正交基与它的任意一组基等价.11.设V 是n 维欧氏空间,α1,α2,…,αm 是V 中的正交向量组,则m 和n 满足.A 、m<n ;B 、m=n ;C 、m ≥n ;D 、m ≤n.12.若A,B 是正交矩阵,下列说法中错误的是.A.T A A =-1; B.11或-=A ;C.AB 不是正交阵; D.A 的列向量都是单位向量,且两两正交.13.设A 是n 阶正交阵,①1-A 也是正交阵;②1-=A ;③A 的列向量都是单位向量且两两正交;④A 的行向量组都是单位向量且两两正交.则以上说法正确的有.A .1个;B .2个;C .3个;D .4个.三、综合题1.在R 4中求一单位向量与()()()3,1,1,2,1,1,1,1,1,1,1,1---正交。

第九章 欧氏空间习题

第九章 欧氏空间习题

第九章欧氏空间习题一、填空题1.设V 是一个欧氏空间,V ξ∈,若对任意V η∈,都有(,)0ξη=,则______ξ=。

2.在n 维欧氏空间V 中,向量ξ在标准正交基12,,,n ηηη下的坐标是12(,,,)n x x x ,那么(,)____i ξη=,||____ξ=。

3.若33()ij A a ⨯=是一个正交矩阵,则方程组111122133121122223323113223333a x a x a xb a x a x a x b a x a x a x b ++=⎧⎪++=⎨⎪++=⎩的解为 。

4.已知三维欧式空间V 中有一组基123(,,)a a a ,其度量矩阵为110120003A -⎛⎫ ⎪=- ⎪ ⎪⎝⎭,则向量12323βααα=+-的长度为 。

5.设2中的内积为(,)'A αβαβ=,2112A ⎛⎫= ⎪⎝⎭则在此内积之下的度量矩阵为 。

6.设1(0,1,1)α=-,2(2,1,2)α=-,12k βαα=+,若β与2α正交,则k = 。

7.若欧氏空间V 在某组基下的度量矩阵为200031011⎛⎫ ⎪ ⎪ ⎪⎝⎭,某向量在此组基下的坐标为(1,1,1),则它的长度为 ,在此基下向量(1,1,1)与向量(1,1,1)-的夹角为 。

8.在欧氏空间中,若,αβ线性相关,且2,3αβ==,则(,)αβ 。

9.11010002A k k ⎛⎫ ⎪= ⎪ ⎪-⎝⎭是度量阵,则k 必须满足条件______________。

10.线性空间在不同基下的过渡阵、线性变换在某组基下的矩阵、欧氏空间的度量阵这三类矩阵中,可以为退化阵的是 。

11. 在欧氏空间3R 中,向量(1,0,1)α=-,(0,1,0)β=,那么(,)αβ=___________, α=___________。

12. 两个有限维欧氏空间同构的充要条件是__________________。

13. 已知A 是一个正交矩阵,那么1A -=__________,2A =__________。

欧几里得空间习题解答

欧几里得空间习题解答

第九章欧几里得空间习题解答P394.1.1(,)'0(""0)'(')'''(,)A A A αααααβαβαβααβαβ∴=≥=⇔====正定非负性证得由矩阵失去,线性性成立,再由(,)=A A 对称性成立,是一个内积()1111161P394.1.2,(06);19,,P394.1.2|(,)|||||(,)|i ijiji j n nnij i ji j n n ij i j i j A a x y c s B a x y εεαεεεαβαβαβ====⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪⎝⎭∴≤=∴--≤∑∑∑∑的度量矩阵即为A不等式为|()393.2P ①, α=(2,1,3,2), β=(1,2,-2,1)|||,)0,,2αβαβαβπαβ∴====∴⊥∴=〈〉393.2P ②, α=(1,2,2,3), β=(3,1,5,1)|||6,(,)18(,)(,)arc cos ||||4arc arc αβαβαβπαβαβ=====∴====393.2P ③, α=(1,1,1,2), β=(3,1,-1,0)||||(,)3,arc 700'30''38αβαβαβ===∴==︒〈〉P393. 3||||||αβαβ+≤+(,)|||()()||||(,)(,)d d d αγαγαββγαββγαββγ∴=-=-+-≤-+-+ =P393.4在4R 中求一单位向量与(1,1,-1),(1,-1,1-,1),(2,1,1,3)正交解设所求212341234123412344123(,,,)1,00230111111111111111020001003,2113013100314,0,14i x x x x x x x x x x x x x x x x x x x x x x αα==+-+=⎧⎫⎪⎪--+=⎨⎬⎪⎪+++=⎭⎩⎛⎫-⎛⎫⎛⎫--⎪⎪ ⎪ ⎪ ⎪ ⎪--→-→=⎪⎪ ⎪ ⎪ ⎪ ⎪+ ⎪⎝⎭⎝⎭⎝⎭===-=-∑则且与各向量的内积为0得令得,0,1,3),()-单位化393.5P ①证:因为12(,)0, 1.2,,i n i n γαααα==而是一个基11(,)(,)(,)0.0.nni i i i i i k k γγγαγαγ==∴====∑∑因此,必有393.5P ②证,12(,)(,), 1.2,i i i n γαγα==12(,)0, 1.2i i n γγα∴-==由第①小题:12120,γγγγ-==故P393.61231232211(,,)(,,)2123122αααεεε⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭而1232211212,,3122ααα⎛⎫⎪-- ⎪ ⎪--⎝⎭是正交矩阵,所以是标准正交基11212431231212121124512451131212351152124531235393.7,/2(,)1111(22)(,)222221210)22)1()2s P αεεαεεεεεεεβααββαβαβεεεεεεεεβββαββεεεεηεεηεεεεηεεεε==-+=++==-=-=-+-=-+-=--=++-=+=-+-=++-123解:再正交化称:P394.8,解:123452111310014001110101115X X X X X X ⎛⎫ ⎪ ⎪---⎛⎫⎛⎫ ⎪=→= ⎪ ⎪--- ⎪⎝⎭⎝⎭⎪ ⎪⎝⎭解出:123014115100010001ηηη-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭Schmidt:1221331022711161151311116222105022130005ββηββηβ--⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪==-=-=++-= ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭单位化便得到解空间的标准正交基:123766135εεε⎛⎛⎫⎛⎫⎪⎪-⎪⎪⎪⎪====⎪⎪⎪⎪⎪ ⎪ ⎪⎝⎭⎪ ⎪⎝⎭ ⎪⎝⎭P394.9 11(,)()()f g f x g x d x-=⎰已知2312341,,,x x xαααα====解:111βα==21122111223132321211223434142441234112233111222(,)(,)*2(,)(,)1310(,)(,)232(,)(,)(,)352(,)(,)(,)532(,)2||(,)||3(xdxx xx xx x x αββαβββαβαββαββββββαβαβαββαβββαββββββββββββ--=-=-=--=---=-=---=--=-====⎰又142333116424441218,)()||3945698(,)()||525175x x dxx x x dxββββββ+--=-+===-+==⎰⎰单位化标准正交基312324,1),3)396.17.4133333333133333343313333333313333x x x xPA A Eγγγγ===-=-------⎛⎫⎛⎫⎪ ⎪-----⎪ ⎪==⎪ ⎪-----⎪ ⎪⎪ ⎪-----⎝⎭⎝⎭1123443() 4.840Acy Tr A x x λλλλχχ∴===-⇒==-+-=221-秩(A+4E)=1至少为重根,而-(4+4+4)+解(A+4E)x=o,即1111210311111110212003⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-- ⎪⎪⎪ ⎪⎪⎪-- ⎪⎪⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭得正交基础体系1100单位化为28λ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭解(A-8E)x=0.得解取自A+4E的一列3-33-31111121124124'1402812T T AT T AT -⎛⎫ ⎪- ⎪ ⎪ ⎪ ⎪-⎝⎭-⎛⎫- ⎪- ⎪=== ⎪- ⎪ ⎪⎝⎭-单位化为令则112121211111111395.10.10(,,)(,)(,)0,.(,)(,)0P V V V V V k k k V ββαβαβαβββββαβαβ∈≠∅=+=⇒+∈⎫∀∈∴≤⎬==⇒∈⎭11123123111P395.10.2 0dim 1.,,,(2)(,)dim 1.dim 1.n n V V n V i V i L V V n V n αααααααααααα≠∴∉≤-=∈≥∴≤⇒≥-∴≥-故将扩充为的一个正交基那么.P394,11①设两个基:12,12,,,n n εεεηηη及,它们的度量矩阵分别为A 和B,并设121211122111221212'''221122(,,,)(,,,),,(,,)(,,,)(,,)(,,,),(,)(')'()n n n n n n CV X X Y Y X CX Y CY X BY X AY X C AC Y C AC B ηηηεεεαβαεεηηηβεεηηηαβ=∈=========∴=任设所以合同P394.11②, 取V 的一个基12,,,,n A ααα其度量矩阵为因为A 正交,故存在矩阵C,使12121212',,,,,,',,,n n n n C AC E ηηηαααηηηηηη=C AC=E做基(,)=()C,那么,的度量矩阵为因此,为标准正交基.1212121212121212211111P394.12,,,,(,)(,,)()(,,),,|(,,)|,,,,(,,|0()0|()|||0,m ij i j m ij m mm m m m m m V G G G G G ααααααααααααααααααααααααααααααααα⨯∈==⇔≠⇔>⇔=≠记:,称,为,的Gram 矩阵称,为,的Gram 行列式证明,线性无关,)证:若m=1,线性无关,成立121211,|(,,)|0(,,)(,)(,,)0,0,1,2,.n m mj k k ij k ik k i k k k jk jk ji j k k k jm G A c c a c c i m αααβββββααααααγ=≠≠≠≠>==⇔=⇔==⇔-=∴⇔==∑∑∑∑若而,不妨设,1212(,,,),,,,j k k m k jj k m k jc L ck γαααααααααα≠≠=-∈⇔=⇔∑∑线性相关211212112121222122122222212122123|()|||||||||cos (,),(,)|(,)|(,),(,)||||cos ||||||(1cos )(||||cos )|(,,)|()G G G αααααθααααααααααααθαααθααθααα====-==类似地:平行六面体积P394,13,设:1222000n n n n nn A αααααα⎛⎫⎪ ⎪= ⎪⎪⎝⎭因为A 正交,故A'A=E ,令A=12(,,)n βββ由第1行列,211111,1αα==±由β1与其余各列正交,β1⊥βj (j>1),(β1,βj )=111100(1)j j a a j α=⇒=>1100A A ±⎛⎫∴= ⎪⎝⎭其中A 1仍为上三角正交矩阵,但阶数少1,故可用归纳法给出证明,且n=1时显然为真,由归纳法原理,证毕。

欧式空间习题

欧式空间习题

第九章 欧式空间习题1.(填空)设n εεε,,,21 为n 维欧氏空间V 中的基,在此基下向量βα,坐标分别为),,,(21n a a a 与 ),,,(21n b b b ,则内积∑==ni i i b a 1),(βα的充分必要条件是 。

(n εεε,,,21 是V 的标准正交基)2.(填空)21,V V 是有限维欧氏空间的子空间,存在0,2≠∈ααV ,使得1V ⊥α的充分条件是子空间的维数之间满足 。

()维()维(21V V <3.对角矩阵为正交矩阵的充分必要条件是 (对角线上的元素为±1)。

4.(证明)设A 与B 是欧氏空间V 的两个线性变换,并且对任意V ∈α有))(),(())(),((ααααB B A A =,证明A V 与BV 作为欧氏空间是同构的。

证明:A V 与BV 均是欧氏空间V 的子空间,因而对于V 的内积来说作成欧氏空间。

令V B A f ∈∀→ααα),()(:,则f 是一个映射;因为任取V ∈βα,, 若),()(βαA A = 得 ,0)(=-βαA ))(),((0))(),((βαβαβαβα--==--∴B B A A ,从而有,0)(=-βαB 即),()(βαB B =可证f 是单射,又是满射,现证f 是线性的; R k V A A A ∈∀∈∀),()(),(βα,有)()(())()((βαβαβα+=+=+B A f A A f ))(())(()()(βαβαA f A f B B +=+=)()()()(())((αααααkf kB k B k A f kA f ====,再证f 保持内积不变;V ∈∀βα,,有))(),(())(),((2))(),(())(),(βββαααβαβαA A a A A A A A ++=++ ))(),(())(),((2))(),(())(),(βββαααβαβαB B B B B B B B ++=++= 所以))(),(())(),((βαβαB B A A =即))(),(())((),(((βαβαB B A f A f =))(),((βαA A =,从而f 是同构映射,A V 与BV 作为欧氏空间是同构的。

第九章欧氏空间综合练习题解答

第九章欧氏空间综合练习题解答

第九章 欧氏空间(综合练习)一、选择题1. 设σ是欧氏空间V 的线性变换,那么σ不是正交变换的充分必要条件是( A ) A. σ保持非零向量的夹角; B. σ保持内积;C. σ保持向量的长度;D. σ把标准正交基映射为标准正交基. 2.下列命题正确的是( C ) .A. 线性变换保持向量长度不变;B. 对称变换保持向量的内积不变;C.正交变换保持向量夹角不变;D.线性变换保持向量的线性无关性. 3.欧氏空间3R 中的标准正交基是( A ).A. ();;0,1,0; B. ()1111,,0;,;0,0,12222⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭;C. ();;0,0,0; D. ()()()1,1,1;1,1,1;1,1,1---.4.欧氏空间中不同基下的度量矩阵是( A ).A .合同的;B .相似的;C .相等的;D .正交的. 5. n 维欧氏空间V 中,下列命题不成立的是( C ). A . V ∈βα,,若α⊥,则222βαβα+=+;B .V ∈βα,,若βα与线性相关,则)(,2ββααβα,),()(=; C .若()()γβγαβα=⇒=,,; D .若V ∈∀β,都有()0,=βα,则0=α. 6. A 是n 级正交矩阵,则下列结论错误的是( D ).A. 11-=或A ;B. A A '=-1;C.A 的列向量组是n R 的一个标准正交组;D.A 的特征值必为实数. 7.在3R 中,与向量()()1,2,1,1,1,121==a a 都正交的单位向量为( C ).A . ()1,0,1;B .()2,0,2- ;C .⎪⎭⎫ ⎝⎛-21,0,21 ;D .⎪⎭⎫ ⎝⎛21,0,21;β8.V 是欧氏空间,γβα,,是V 中的向量,则下列结论正确的是( C ).A .若),(),(γαβα=,则γβ=;B .若βα=, 则 ;C .若1),(=αα,则1=α;D .若0),(>βα,则 βα=. 9.V 是欧氏空间,V ∈γβα,,,则下列结论不成立的是( D ). A .βαβα≤),(; B . βαβα+≤+; C .βγγαβα-+-≤-; D .222βαβα+=+.10.对于n 阶实对称矩阵A ,以下结论正确的是( B )。

习题解答 第九章 欧氏空间(定稿)

习题解答  第九章 欧氏空间(定稿)
定理 1 (柯西—布涅柯夫斯基不等式)设 V 是欧氏空间,则 , V , 有 (,)
当且仅当 与 线性相关时,等号成立. 2. 标准正交基
定义 6 称欧氏空间 V 中一组两两正交的非零向量组1,2 , ,m 为一个正交向量组. 定义 7 设1,2,L ,n 是 n 维欧氏空间 V 中的一组基,若它们两两正交,则称 1,2,L ,n 为 V 的一组正交基;若正交基中的向量1,2,L ,n 都为单位向量,则称为标
n
( A, A) 0 ai2j 0 A 0 i, j1
此即证V是欧式空间。
(1)证:Eij是(i, j)元为1,其余一元皆为0的n阶方阵,那么可证 B11 E11, B12 E12 E21,L , B1n E1n En1 B22 E22 , B2n E2n En2 ,L , Bnn Enn 为V的一组基,于是
故○1 成立,且
V =S (S )
故S和(S)是同一子空间S的正交补,由正交补的唯一性,即证 ○2 .
4.设 是欧式空间V的线性变换,设 是V的一个变换,且, V ,都有(( ), )=(,( )). 证明:
(1) 是V的线性变换 (2)的值域 Im 等于的核ker的正交补。
四、典型题解析
例1.设A, B是n阶实对称阵,定义
(A, B) trAB
○1
证明:所有n阶实对称阵V 关于( A, B)成一欧式空间。 (1)求V的维数。 (2)求使trA=0的空间S的维数。 (3)求S的维数。
证 首先可证V {A Rnn | A A}是R上的一个线性空间。 再证○1 是V 的内积,从而得证V 是关于内积○1 的欧式空间. 事实上A,B,CV ,k R,有

欧氏空间练习题与测试题

欧氏空间练习题与测试题

欧⽒空间练习题与测试题第九章欧⽒空间练习题与测试题⼀、填空题1.设V 是⼀个欧⽒空间, V ξ∈,若对任意V η∈都有(,)0ξη=,则ξ=_________.2.在欧⽒空间3R 中,向量(1,0,1)α=-,(0,1,0)β=,那么(,)αβ=____ _____,α=_________.3.在n 维欧⽒空间V 中,向量ξ在标准正交基12,,,n ηηη下的坐标是12(,,,)n x x x ,那么(,)i ξη=_________,ξ=_________.4.两个有限维欧⽒空间同构的充要条件是__________________.5.已知A 是⼀个正交矩阵,那么1A -=_________,2A =_________.⼆、判断题1.在实线性空间2R 中,对于向量1212(,),(,)x x y y αβ==,定义1122(,)(1)x y x y αβ=++,那么2R 构成欧⽒空间。

( )2.在n 维实线性空间n R 中,对于向量1212(,,,),(,,,)n n a a a b b b αβ==,定义11(,)a b αβ=,则n R 构成欧⽒空间。

( ) 3.12,,,n εεε是n 维欧⽒空间V 的⼀组基,1212(,,,),(,,,)n n x x x y y y 与分别是V 中的向量,αβ在这组基下的坐标,则1122(,)n n x y x y x y αβ=+++。

( ) 4.对于欧⽒空间V 中任意向量η,1η是V 中⼀个单位向量。

( )5.12,,,n εεε是n 维欧⽒空间的⼀组基,矩阵()ij n n A a ?=,其中(,)ij i j a εε=,则A 是正定矩阵。

( )6.设V 是⼀个欧⽒空间,,V αβ∈,并且αβ=,则αβ+与αβ-正交。

( )7.设V 是⼀个欧⽒空间,,V αβ∈,并且(,)0αβ=,则,αβ线性⽆关。

( )8.若,στ都是欧⽒空间V 的对称变换,则στ也是对称变换。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章欧氏空间习题
一、填空题
1.设就是一个欧氏空间,,若对任意,都有,则。

2.在维欧氏空间中,向量在标准正交基下得坐标就是,那么,。

3.若就是一个正交矩阵,则方程组得解为。

4、已知三维欧式空间中有一组基,其度量矩阵为,则向量得长度为。

5、设中得内积为,则在此内积之下得度量矩阵为。

6.设,,,若与正交,则。

7.若欧氏空间在某组基下得度量矩阵为,某向量在此组基下得坐标为,则它得长度为,在此基下向量与向量得夹角为。

8.在欧氏空间中,若线性相关,且,则。

9.就是度量阵,则必须满足条件______________。

10.线性空间在不同基下得过渡阵、线性变换在某组基下得矩阵、欧氏空间得度量阵这三类矩阵中,可以为退化阵得就是。

11、在欧氏空间中,向量,,那么=___________,
=___________。

12、两个有限维欧氏空间同构得充要条件就是__________________。

13、已知就是一个正交矩阵,那么=__________,=__________。

14、已知为阶正交阵,且,则= 。

15、实对称矩阵得属于不同特征根得特征向量就是彼此得。

16、设,则与得夹角。

17、在维欧氏空间中,级矩阵就是某个基得度量矩阵得充要条件就是。

二、判断题
1.在实线性空间中,对向量,,定义,那么构成欧氏空间( )
2.在实线性空间中,对于向量,,定义,则构成欧氏空间。

( )
3.就是欧氏空间得一组基,对于中任意向量,均有,(,分别就是在此基下得坐标)),则此基必为标准正交基。

( )
4.欧氏空间中得线性变换可以将椭圆映射成圆。

( )
5.V与W均欧氏空间且同构,则它们作为线性空间也必同构。

( )
6.设就是一个欧氏空间,,,则与正交。

()
7.设就是一个欧氏空间,,并且,则线性无关。

( )
8.若都就是欧氏空间得对称变换,则也就是对称变换。

( )
9.欧氏空间中,为对称变换。

( )
10.就是欧氏空间得线性变换,中向量得夹角为,而得夹角为,则不就是得正交变换。

( )
11、就是维欧氏空间得一组基,矩阵,其中,则A就是正定矩阵。

( )
12、欧氏空间中任意一个正交向量组都能扩充成一组正交基( )
13、若就是正交变换,则保持向量得内积不变( )
14、正交矩阵得行列式等于1 ( )
15、欧氏空间上得线性变换就是对称变换得充要条件为关于标准正交基得矩阵为实对称矩阵。

( )
16、设与都就是阶正交矩阵,则也就是正交矩阵。

( )
17、在欧氏空间中,若向量与自身正交,则。

( )
18、设就是维欧氏空间得正交变换,则在任意基下得矩阵就是正交矩阵。

( )
19、设就是维欧氏空间得两个正交子空间且,则。

( )
20、实对称矩阵得任意两个特征向量都正交。

( )
三.选择题
1.关于欧几里得空间,下列说法正确得就是( )
(A)任一线性空间都能适当定义内积成为欧几里得空间;
(B)欧几里得空间未必就是线性空间;
(C)欧几里得空间必为实数域上得线性空间;
(D)欧几里得空间可以为有理数域上得线性空间。

2. 设就是相互正交得维实向量,则下列各式中错误得就是( )
(A) (B)
(C) (D)
3. 对于阶实对称矩阵,以下结论正确得就是( )
(A)一定有个不同得特征根;(B)存在正交矩阵,使成对角形;
(C)它得特征根一定就是整数;(D)属于不同特征根得特征向量必线性无关,但不一定正交
4.设就是维欧氏空间得对称变换,则( )
(A)只有一组个两两正交得特征向量; (B)得特征向量彼此正交;
(C)有个两两正交得特征向量;
(D)有个两两正交得特征向量有个不同得特征根。

5.,,定义:,则满足下列何中情况可使作成欧氏空间( )
(A); (B)就是全不为零得实数;
(C)都就是大于零得实数; (D)全就是不小于零得实数
6.,,为三阶实方阵,定义,下列可使定义作为得内积得矩阵就是( )
(A); (B);
(C); (D)、
7.若欧氏空间得线性变换关于得一个标准正交基矩阵为,则下列正确得就是( )
(A)就是对称变换; (B)就是对称变换且就是正交变换;
(C)不就是对称变换; (D)就是正交变换。

8.若就是维欧氏空间得一个对称变换,则下列成立得选项就是( )
(A)关于得仅一个标准正交基得矩阵就是对称矩阵;
(B)关于得任意基得矩阵都就是对称矩阵;
(C)关于得任意标准正交基得矩阵都就是对称矩阵;
(D)关于得非标准正交基得矩阵一定不就是对称矩阵。

9.若就是维欧氏空间得对称变换,则有( )
(A)一定有个两两不等得特征根; (B)一定有个特征根(重根按重数算);
(C)得特征根得个数; (D)无特征根。

10.,如下定义实数中做成内积得就是()
(A); (B);
(C); (D)、
11、若线性变换与就是( ),则得象与核都就是得不变子空间。

互逆得可交换得不等得D、不可换得
12、设就是维欧氏空间,那么中得元素具有如下性质( )
若; 若;
若; D、若。

13、欧氏空间中得标准正交基就是( )
;;; ;;
;;; D、;;。

14、设就是欧氏空间得线性变换,那么就是正交变换得必要非充分条件就是( )
保持非零向量得夹角; 保持内积;
保持向量得长度; D、把标准正交基映射为标准正交基。

15、为阶正交方阵,则
为可逆矩阵B、秩C、D、
16、下列说法正确得就是( )
A、实对称矩阵得属于不同特征值得特征向量必正交;
B、实对称矩阵得属于相同特征值得特征向量必不正交;
C、实对称矩阵得所有特征向量都正交;
D、以上都不对。

17、维欧氏空间得标准正交基( )、
A、不存在
B、存在不唯一;
C、存在且唯一;
D、不一定存在。

18、若就是实正交阵,则下列说法不正确得就是( )。

(A) (B)
(C) (D)。

四、计算题
1.已知。

求正交矩阵,使成对角形。

2.已知二次型,问
(1)为何值时二次型就是正定得?
(2)取,用正交线性替换化二次型为标准形。

3.已知二次型,通过正交变换化为标准形f=y12+2y22+5y32,求及所用得正交变换得矩阵。

4.设A为三阶实对称矩阵,其特征值λ1= -1, λ2=λ3=1,已知属于λ1得特征向量α1=(0,1,1),求A。

5.在[0,2π]上所有连续函数得全体构成得欧氏空间中,判断:对任意正整数n,集合
就是否正交向量组。

6.欧氏空间中,定义内积,求其在基(1,0),(0,1)下得度量阵。

并求一组基,使得在此基下得矩
阵为对角阵,且在此基下所有向量得长度不变。

说明为什么对角阵不就是单位矩阵。

7.将二次曲面通过正交变换与平移变成标准形式。

8.设欧氏空间得线性变换为问:就是否为得对称变换?若就是,求出得一个标准正交基,使
在这个基下得矩阵为对角形矩阵。

9、把向量组,扩充成中得一组标准正交基。

10、设为得基,且线性变换在此基下得矩阵为
(1)求得特征值与特征向量;
(2)就是否可以对角化?如果可以,求正交矩阵使得为对角形.
五、证明题
1.设,为同级得正交矩阵,且,证明:.
2.设就是欧氏空间得线性变换,且
证明:就是得对称变换。

3.证明:维欧氏空间与同构得充要条件就是,存在双射,并且有.
4.设与为欧氏空间得两组向量。

证明:如果
,,
则子空间与同构。

5.证明:在一个欧氏空间里,对于任意向量,以下等式成立:
(1);(2)
在解析几何里,等式(1)得几何意义就是什么?
6、设为欧氏空间得两个对称变换。

证明: 也就是V得对称变换。

7.证明:实系数线性方程组,有解得充分且必要条件就是向量与齐次线性方程组,得解空间正交。

8.设为实对称矩阵,证明:当实数t充分大后,就是正定矩阵。

9.设与就是维欧氏空间得两组向量,证明:存在正交变换,使得,()成立得充分必要条件就是,。

相关文档
最新文档