中考常考点解析与突破

合集下载

中考数学频考点突破--锐角三角函数

中考数学频考点突破--锐角三角函数

中考数学频考点突破--锐角三角函数1.教育部颁布的《基础教育课程改革纲要》要求每位学生每学年都要参加社会实践活动,某学校组织了一次测量探究活动,如图,某大楼的顶部竖有一块广告牌CD,小明与同学们在山坡的坡脚A处测得广告牌底部D的仰角为53°,沿坡面AB向上走到B 处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:√3,AB=10米,AE=21米(测角器的高度忽略不计,结果精确到0.1米,参考数据:√2≈1.41,√3≈1.73,sin53°≈45,cos53°≈35,tan53°≈43)(1)求点B距水平地面AE的高度;(2)若市政规定广告牌的高度不得大于7米,请问该公司的广告牌是否符合要求,并说明理由.2.如图,AD是△ABC的中线,tanB= 13,cosC= √22,AC= √2.求:(1)BC的长;(2)sin△ADC的值.3.如图,在一条笔直的东西向海岸线l上有一长为1.5km的码头MN和灯塔C,灯塔C距码头的东端N有20km.以轮船以36km/h的速度航行,上午10:00在A处测得灯塔C位于轮船的北偏西30°方向,上午10:40在B处测得灯塔C位于轮船的北偏东60°方向,且与灯塔C相距12km.(1)若轮船照此速度与航向航向,何时到达海岸线?(2)若轮船不改变航向,该轮船能否停靠在码头?请说明理由.(参考数据:√2≈1.4,√3≈1.7)4.如图,AB是△O的直径,PA切△O于点A,PO交△O于点C,连接BC,△P=△B.(1)求△P的度数;(2)连接PB,若△O的半径为a,写出求△PBC面积的思路.5.如图,是住宅区内的两幢楼,它们的高AB=CD=30m,两楼间的距离AC= 30m,现需了解甲楼对乙楼的采光的影响情况.(1)当太阳光与水平线的夹角为30°角时,求甲楼的影子在乙楼上有多高(答案可用根号表示);(2)若要甲楼的影子刚好不落在乙楼的墙上,此时太阳与水平线的夹角为多少度?6.化简:(1)√9 ﹣( 12 )0+2sin30°(2)x+1x−1﹣ xx+1 .7.如图,我市某中学在创建“特色校园”的活动中,将奉校的办学理念做成宣传牌(CD ),放置在教学楼的顶部(如图所示)该中学数学活动小组在山坡的坡脚A 处测得宣传牌底部D 的仰角为60°,沿坡面AB 向上走到B 处测得宣传牌顶部C 的仰角为45°.已知山坡AB 的坡度为i=1: √3 ,AB=10米,AE=15米.(i=1: √3 是指坡面的铅直高度BH 与水平宽度AH 的比)(1)求点B 距水平而AE 的高度BH ; (2)求宣传牌CD 的高度.(结果精确到0.1米.参考数据: √2 ≈1.414, √3 ≈1.732)8.如图, AB 为 ⊙O 直径,D 为 ⊙O 上一点, BC ⊥CD 于点C ,交 ⊙O 于点E , CD 与 BA 的延长线交于点F , BD 平分 ∠ABC .(1)求证: CD 是 ⊙O 的切线;(2)若 AB =10,CE =1 ,求 CD 和 DF 的长.9.如图,已知△O 是以AB 为直径的△ABC 的外接圆,过点A 作△O 的切线交OC 的延长线于点D ,交BC 的延长线于点E.(1)求证:△DAC=△DCE;(2)若AB=2,sin△D= 13,求AE的长.10.校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D的同侧取点A、B,使△CAD=30 °,△CBD=60 °.(1)求AB的长(精确到0.1米,参考数据:√3≈1.73,√2≈1.41);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.11.如图,PA,PB是△O的两条切线,切点分别为A,B,OP交AB于点C,OP=13,sin△APC= 513.(1)求△O的半径;(2)求弦AB的长.12.根据题意解答(1)计算:|﹣√2|+(π﹣3)0+(12)﹣1﹣2cos45°(2)若关于x的一元二次方程x2+(k+3)x+k=0的一个根是﹣2,求方程的另一个根.13.如图,四边形ABCD内接于△O,点O在AB上,BC=CD,过点C作△O的切线,分别交AB,AD的延长线于点E,F.(1)求证:AF△EF;(2)若cos△DAB=34,BE=1,则线段AD的长是.14.如图,在Rt△ABC中,△C=90°,AC=8,sin A= 3 5(1)求AB的长;(2)若点E在Rt△ABC的直角边上,点F在斜边AB上,当△CFE△△ABC时,求CE的长.15.如图海中有一灯塔P,它的周围8海里内有暗礁,海轮以18海里/时的速度由西向东航行,在A处测得灯塔P在北偏东58°方向上,航行40分钟到达B处,测得灯塔P 在北偏东26°方向上.(1)求灯塔P到点B的距离;(2)如果海轮不改变航线由B继续向东航行,通过计算估计海轮有没有触礁的危险?16.“低碳环保,你我同行”.近两年,南京市区的公共自行车给市民出行带来了极大的方便.图①是公共自行车的实物图,图②是公共自行车的车架示意图,点A、D、C、E在同一条直线上,CD=30cm,DF=20cm,AF=25cm,FD△AE于点D,座杆CE=15cm,且△EAB=75°.(1)求AD的长;(2)求点E到AB的距离.(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)答案解析部分1.【答案】(1)解:过B作BG⊥DE于G,BH⊥AE于H,Rt△ABH中,i=tan∠BAH=√3,∴∠BAH=30°,∴BH=12AB=5米∴点B距水平地面AE的距离为5米.(2)解:由(1)得:BH=5,AH=5√3,∵BG⊥DE于G,BH⊥AE于H,△AED=90°,∴四边形BHEG是矩形,∴BG=HE即BG=AH+AE=5√3+21,在Rt△BGC中,∠CBG=45°,∴CG=BG=5√3+21.在Rt△ADE中,∠DAE=53°,AE=21,∴DE=AEtan53°=43AE=43×21=28.∴CD=CG+GE−DE=26+5√3−28≈6.7m<7m.答:广告牌CD高符合要求.【知识点】解直角三角形的应用【解析】【分析】(1)过B作BG△DE于G,BH△AE于H,根据坡度可得△BAH=30°,然后根据含30°角的直角三角形的性质就可得到BH;(2)由(1)得BH=5,AH=5√3,易得四边形BHEG是矩形,则BG=HE,求出BG,进而得到CG,在Rt△ADE中,应用三角函数的概念可得DE,进而可求得CD. 2.【答案】(1)解:过点A作AE△BC于点E,∵cosC= √22,在Rt△ACE中,CE=AC•cosC=1,∴AE=CE=1,在Rt△ABE中,tanB= 13,即AEBE=13,∴BE=3AE=3,∴BC=BE+CE=4(2)解:∵AD是△ABC的中线,∴CD= 12BC=2,∴DE=CD﹣CE=1,∵AE△BC,DE=AE,∴△ADC=45°,∴sin△ADC= √22.【知识点】解直角三角形【解析】【分析】(1)过点A作AE△BC于点E,根据cosC= √22,求出△C=45°,求出AE=CE=1,根据tanB= 13,求出BE的长即可;(2)根据AD是△ABC的中线,求出BD的长,得到DE的长,得到答案.3.【答案】(1)解:延长AB交海岸线l于点D,过点B作BE△海岸线l于点E,过点A作AF△l于F,如图所示.∵△BEC=△AFC=90°,△EBC=60°,△CAF=30°,∴△ECB=30°,△ACF=60°,∴△BCA=90°,∵BC=12,AB=36× 4060=24,∴AB=2BC,∴△BAC=30°,△ABC=60°,∵△ABC=△BDC+△BCD=60°,∴△BDC=△BCD=30°,∴BD=BC=12,∴时间t= 1236=13小时=20分钟,∴轮船照此速度与航向航向,上午11:00到达海岸线(2)∵BD=BC,BE△CD,在Rt△BEC中,∵BC=12,△BCE=30°,∴BE=6,EC=6 √3≈10.2,∴CD=20.4,∵20<20.4<21.5,∴轮船不改变航向,轮船可以停靠在码头.【知识点】解直角三角形的应用﹣方向角问题【解析】【分析】(1)延长AB交海岸线l于点D,过点B作BE△海岸线l于点E,过点A作AF△l于F,首先证明△ABC是直角三角形,再证明△BAC=30°,再求出BD的长即可角问题.(2)求出CD的长度,和CN、CM比较即可解决问题.本题考查方向角、解直角三角形等知识,解题的关键是添加辅助线构造直角三角形,由数量关系推出△BAC=30°,属于中考常考题型.4.【答案】(1)解:∵PA切△O于点A,∴PA△AB,∴△P+△POA=90°.∵△POA=△B+△OCB,∴△P+△B+△OCB=90°,∵OB=OC,∴△B=△OCB.又∵△P=△B,∴△P=△B=△OCB.∴△P=30°;(2)解:∵在Rt△PAO中,△APO=30°,OA=a,∴PA= √3AO=√3a,∴△PBC面积是12PA×AB= 12× √3a×(a+a)= √3a2【知识点】切线的性质;解直角三角形【解析】【分析】(1)根据切线的性质求出△PAB=90°,求出△P=△B=△OCB,即可得出答案;(2)解直角三角形求出AP,根据三角形面积公式求出即可.5.【答案】(1)解:如图,延长OB交DC于E,作EF⊥AB,交AB于F,在 RtΔBEF 中,∵EF =AC =30m , ∠FEB =30∘ , ∴BE =2BF设 BF =x ,则 BE =2x ,根据勾股定理知, BE 2=BF 2+EF 2 , ∴(2x)2=x 2+302 ,∴x =±10√3 ,(负值舍去), x =10√3 因此, EC =30−10√3(m)(2)解:当甲幢楼的影子刚好落在点 C 处时, ΔABC 为等腰三角形, 因此,当太阳光与水平线夹角为 45∘ 时,甲楼的影子刚才不落在乙楼的墙上【知识点】解直角三角形的应用【解析】【分析】(1)如图所示作出辅助线,在 RtΔBEF 中运用勾股定理列出方程解答即可;(2)当甲幢楼的影子刚好落在点 C 处时,可得 ΔABC 为等腰三角形,从而得出太阳光与水平线夹角.6.【答案】(1)解:原式=3﹣1+2× 12=3﹣1+1 =3(2)解:原式= (x+1)2(x+1)(x−1) ﹣ x(x−1)(x+1)(x−1) = x 2+2x+1−x 2+x (x+1)(x−1)= 3x+1(x+1)(x−1)【知识点】实数的运算;分式的加减法;0指数幂的运算性质;特殊角的三角函数值 【解析】【分析】(1)由二次根式的化简、零指数幂的性质以及特殊角的三角函数值,即可将原式化简,继而求得答案;(2)首先通分,然后利用同分母的分式相加减的运算法则求解即可,注意运算结果需化为最简.7.【答案】(1)解:在Rt△ABH 中, ∵tan△BAH= BH AH =i= 1√3 = √33. ∴△BAH=30°,∴BH=AB .sin△BAH=10.sin30°=10× 12=5.答:点B 距水平面AE 的高度BH 是5米;(2)解:在Rt△ABH中,AH=AB.cos△BAH=10.cos30°=5 √3,在Rt△ADE中,tan△DAE= DE AE,即tan60°= DE15,∴DE=15 √3,如图,过点B作BF△CE,垂足为F,∴BF=AH+AE=5 √3+15,DF=DE﹣EF=DE﹣BH=15 √3﹣5,在Rt△BCF中,△C=90°﹣△CBF=90°﹣45°=45°,∴△C=△CBF=45°,∴CF=BF=5 √3+15,∴CD=CF﹣DF=5 √3+15﹣(15 √3﹣5)=20﹣10 √3≈20﹣10×1.732≈2.7(米),答:广告牌CD的高度约为2.7米.【知识点】解直角三角形的应用﹣仰角俯角问题【解析】【分析】(1)在Rt△ABH中,由tan△BAH= BHAH=i=1√3= √33.得到△BAH=30°,于是得到结果BH=AB.sin△BAH=10.sin30°=10× 12=5;(2)在Rt△ABH中,AH=AB.cos△BAH=10.cos30°=5 √3,在Rt△ADE中,tan△DAE=DEAE,即tan60°= DE15,得到DE=15 √3,如图,过点B作BF△CE,垂足为F,求出BF=AH+AE=5 √3+15,于是得到DF=DE﹣EF=DE﹣BH=15 √3﹣5,在Rt△BCF 中,△C=90°﹣△CBF=90°﹣45°=45°,求得△C=△CBF=45°,得出CF=BF=5 √3+15,即可求得结果.8.【答案】(1)证明:如图,连接OD,则OB=OD,∴∠OBD=∠ODB,∵BD平分∠ABC,∴∠OBD=∠CBD,∴∠ODB=∠CBD,∴OD//BC,∵BC⊥CD,∴OD⊥CD,又∵OD是⊙O的半径,∴CD是⊙O的切线;(2)解:如图,连接OD,OE,DE,过点D作DG⊥OE于点G,∵AB=10,∴OD=OE=12AB=5,∴∠ODE=∠OED,∵OD//BC,∴∠ODE=∠CED,∴∠OED=∠CED,∵DG⊥OE,BC⊥CD,∴CD=GD(角平分线的性质),在Rt△DEG和Rt△DEC中,{GD=CDDE=DE,∴Rt△DEG≅Rt△DEC(HL),∴GE=CE=1,∴OG=OE−GE=4,在Rt△ODG中,GD=√OD2−OG2=√52−42=3,∴CD=GD=3,由圆周角定理得:∠FOE=2∠ABC,即∠FOD+∠DOE=2∠ABC,∵OD//BC,∴∠FOD=∠ABC,∴∠FOD+∠DOE=2∠FOD,解得∠FOD=∠DOE,在Rt△ODG中,tan∠DOE=GDOG=34,∴tan∠FOD=tan∠DOE=34,在Rt△DOF中,DF=OD⋅tan∠FOD=5×34=154.【知识点】直角三角形全等的判定(HL);角平分线的性质;圆周角定理;切线的判定;解直角三角形【解析】【分析】(1)连接OD,根据等腰三角形的性质及角平分线的定义可得∠ODB=∠CBD,可证OD//BC,利用平行线的性质可得OD⊥CD,根据切线的判定定理即证;(2)连接OD,OE,DE,过点D作DG⊥OE于点G,先求出OD=OE=12AB=5,证明Rt△DEG≅Rt△DEC(HL),可得GE=CE=1,从而求出OG=OE−GE=4,在Rt△ODG中利用勾股定理求出GD=3,由角平分线的性质可得CD=GD=3,由圆周角定理及平行线的性质可求出∠FOD=∠DOE,从而可得tan∠FOD=tan∠DOE=GD OG=34,利用DF=OD⋅tan∠FOD求出结论即可.9.【答案】(1)解:∵AD是圆O的切线,∴△DAB=90°. ∵AB是圆O的直径,∴△ACB=90°.∵△DAC+△CAB=90°,△CAB+△ABC=90°,∴△DAC=△B.∵OC=OB,∴△B=△OCB.又∵△DCE=△OCB,∴△DAC=△DCE.(2)解:∵AB=2,∴AO=1.∵sin△D= 13,∴OD=3,DC=2.在Rt△DAO中,由勾股定理得AD= √OD2−OA2= 2√2.∵△DAC=△DCE,△D=△D,∴△DEC△△DCA,∴DCAD=DEDC,即2√2=ED2.解得:DE= √2,∴AE=AD﹣DE= √2.【知识点】圆周角定理;切线的性质;相似三角形的判定与性质;锐角三角函数的定义【解析】【分析】(1)由切线的性质可知△DAB=90°,由直角所对的圆周为90°可知△ACB=90°,根据同角的余角相等可知△DAC=△B,然后由等腰三角形的性质可知△B=△OCB,由对顶角的性质可知△DCE=△OCB,故此可知△DAC=△DCE;(2)题意可知AO=1,OD=3,DC=2,由勾股定理可知AD= 2√2,由△DAC=△DCE,△D=△D 可知△DEC△△DCA,故此可得到DC2=DE•AD,故此可求得DE= √2,于是可求得AE= √2.10.【答案】(1)解:由题意得,在Rt△ADC中,AD=CDtan30°=√33=21√3,在Rt△BDC中,BD=CDtan60°=√3=7√3,∴AB=AD-BD= 21√3−7√3=14√3≈14×1.73=24.22≈24.2(米).(2)解:∵汽车从A到B用时2秒,∴速度为24.2÷2=12.1(米/秒),∵12.1米/秒=43.56千米/小时,∴该车速度为43.56千米/小时.∵43.56千米/小时大于40千米/小时,∴此校车在AB路段超速.【知识点】解直角三角形的应用【解析】【分析】(1)分别再Rt△ADC和Rt△BDC中,利用正切函数,即可求出AD 与BD的长,从而求出AB的长;(2)由从A到B用时2秒,即可求得这辆车的速度,比较与40千米每小时的大小即可确定是否超速。

中考数学频考点突破--勾股定理的应用

中考数学频考点突破--勾股定理的应用

中考数学频考点突破--勾股定理的应用一、综合题1.已知Rt△ABC中,△C=90˚,AC=4,BC=8.动点P从点C出发,以每秒2个单位的速度沿射线..CB方向运动,连接AP.设运动时间为t s.(1)求斜边AB的长.(2)当t为何值时,△PAB的面积为6?(3)若t<4,请在所给的图中画出△PAB中AP边上的高BQ,问:当t为何值时,BQ长为4?并直接写出此时点Q到边BC的距离.2.如图,AB为△O的直径,弦CD△AB于E,点F在DC的延长线上,AF交△O于G.(1)求证:△FGC=△ACD;(2)若AE=CD=8,试求△O的半径.3.数学中,常对同一个量(图形的面积、点的个数等)用两种不同的方法计算,从而建立相等关系,我们把这种思想叫“算两次”.“算两次”也称作富比尼原理,是一种重要的数学思想,由它可以推导出很多重要的公式.(1)如图1,是一个长为2a,宽为2b的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图2的方式拼成一个正方形.①用“算两次”的方法计算图2中阴影部分的面积:第一次列式为▲ ,第二次列式为▲ ,因为两次所列算式表示的是同一个图形的面积,所以可以得出等式▲ ;②在①中,如果a+b=7,ab=10,请直接用①题中的等式,求阴影部分的面积;(2)如图3,两个边长分别为a,b,c的直角三角形和一个两条直角边都是c的直角三角形拼成一个梯形,用“算两次”的方法,探究a,b,c之间的数量关系.4.关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(2)如果△ABC是等边三角形,试求这个一元二次方程的根.5.如图,在等边△ABC的AC,BC上各取一点D,E,使AD=CE,AE,BD相交于点M,过点B作直线AE的垂线BH,垂足为H.(1)求证:△ACE△△BAD;(2)若BE=2EC=4.①求△ABC的面积;②求MH的长.6.如图1,有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形.(1)拼成的正方形的面积是,边长是.(2)把10个小正方形组成的图形纸(如图2),剪开并拼成正方形.①请在4×4方格图内画出这个正方形.②以小正方形的边长为单位长度画一条数轴,并在数轴上画出表示- √10的点.(3)这种研究和解决问题的方式,主要体现了的数学思想方法.A.数形结合B.代入C.换元D.归纳7.如图,已知AB为⊙O的直径,点C为⊙O外一点,AC=BC,连接OC,DF是AC的垂直平分线,交OC于点F,垂足为点E,连接AD、CD,且∠DCA=∠OCA.(1)求证:AD是⊙O的切线;(2)若CD=6,OF=4,求cos∠DAC的值.8.(1)如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°,若AP=2,PC=2DP,则BC=;(2)如图2,四边形ABCD中,∠A=∠B=90°,AB=8,AD=10,点E在线段BC上且BE=6,连接DE,作FE⊥ED,交AB于点F,则四边形ADEF的面积是多少?(3)如图3,四边形ABCD中,AB=8,点C到AB的距离为10,∠C=90°,且BC=2CD.当四边形ABCD的面积是61时,求CD的长度是多少?9.如图,AD是▱ABDE的对角线,∠ADE=90°,延长ED至点C,使DC= ED,连接AC交BD于点O,连接BC.(1)求证:四边形ABCD是矩形;(2)连接OE,若AD=4,AB=2,求OE的长.10.阅读与计算,请阅读以下材料,并完成相应的问题.角平分线分线段成比例定理,如图1,在△ABC中,AD平分△BAC,则AB AC=BDCD.下面是这个定理的部分证明过程.证明:如图2,过C作CE△DA.交BA的延长线于E.…任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)填空:如图3,已知Rt△ABC中,AB=3,BC=4,△ABC=90°,AD平分△BAC,则△ABD的周长是.11.如图,在等边三角形ABC中,点D,E分别在边BC、AC上,若CD=3,DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求证:△CDE为等边三角形;(2)求EF的长.12.如图,(1)作△ABC的外接△O(用尺规作图,保留作图痕迹,不写作法);(2)若AB=6cm,AC=BC=5cm,求△O的半径.13.如图,在四边形ABCD中,AB=CD=6,BC=10,AC=8,∠ABC=∠BCD.过点D作DE⊥BC,垂足为点E,延长DE至点F,使EF=DE,连接BF,CF.(1)求证:四边形ABFC是矩形;(2)求DE的长.14.(1)如图所示,Rt△ABC中,△BAC =90 °,AB=√3,AC=√6,点D是斜边BC的中点,连接AD,求AD的长.(2)如图,在平行四边形ABCD中,DE△AB,BF△CD,垂足分别是E、F.求证:△ADE△△CBF15.平面直角坐标系中,直线y=12x﹣1的图象如图所示,它与直线y=﹣2x+4的图象都经过A (2,0),且两直线与y轴分别交于B、C两点.(1)直接画出一次函数y=﹣2x+4的图象;(2)直接写出B、C两点的坐标;(3)判断△ABC的形状,并说明理由.16.如图,AB是⊙O的直径,C为⊙O上一点,作CE⊥AB于点E,AB= 6OE,延长AB至点D,使得BD=AB,P是弧AB(异于A,B)上一个动点,连接AC,BC,CD,PD,PE.(1)求证:CD是⊙O的切线;(2)若AO=3,求AC的长度.答案解析部分1.【答案】(1)解:在Rt△ABC 中,△C=90˚,AC=4,BC=8,AB =√AC 2+BC 2=√16+64=4√5.(2)解:AC=4,BC=8, ∵△PAB 的面积为6, ∴PB=3. ∵CP=2t ,∴当点P 在点B 的左侧时,PB=8−2t ;当点P 在点B 的右侧时,PB=2t ,∴t =52或 t =112.(3)解:作△PAB 中AP 边上的高BQ ,在△ACP 与△BQP 中,{∠ACP =∠BQP ∠APC =∠BPQ AC =BQ , ∴△ACP ≌△BQP(AAS),∴AP =BP. 在 Rt △ACP 中,∵CP 2+CA 2=AP 2 ,即 42+(2t)2=(8−2t)2, 解得 t =32,∴当 t =32时, PQ =3.BQ =4,BP =5,根据等面积法求出点Q 到边BC 的距离: PQ⋅BQ BP=125.【知识点】三角形的面积;勾股定理;一元一次方程的实际应用-几何问题;三角形全等的判定(AAS )【解析】【分析】(1)根据勾股定理即可求出.(2)分点 P 在 B 点左侧与右侧两种情况进行讨论即可;(3)作△PAB 中AP 边上的高BQ ,先根据 AAS 定理得出 △ACP ≌△BQP , 再由勾股定理得出 t 的值,进而可得出结论.2.【答案】(1)证明:∵AB 为△O 的直径,CD△AB ,∴AB垂直平分CD,∴AC=AD,∴△ACD=△D,∵四边形AGCD内接于△O,∴△AGC+△D=180°,∵△AGC+△FGC=180°,∴△D=△FGC,∴△ACD=△FGC;(2)解:连接OC,∵AB为△O的直径,CD△AB,AE=CD=8,∴CE=ED=4,设OA=OC=r,则OE=8-r,在Rt△COE中,OE2+CE2=OC2,即(8−r)2+42=r2,解得r=5,即△O的半径为5.【知识点】线段垂直平分线的性质;勾股定理;垂径定理;圆内接四边形的性质【解析】【分析】(1)利用垂径定理可证得AB垂直平分CD,利用垂直平分线的性质可得到AC=AD;利用等边对等角可知△ACD=△D;再利用圆内接四边形的性质及补角的性质可证得△D=△FGC,由此可证得结论.(2)连接OC,利用垂径定理求出CE的长;设OA=OC=r,可表示出OE的长;在Rt△COE,利用勾股定理可得到关于r的方程,解方程求出r的值.3.【答案】(1)解:①因为小正方形的边长为:a−b,所以第一次计算的面积为:(a−b)2,第二次计算的面积为:(a+b)2−4ab,所以:(a−b)2=(a+b)2−4ab;或(a+b)2−4ab,(a−b)2,(a+b)2−4ab=(a−b)2②∵a+b=7,ab=10∴(a−b)2=(a+b)2−4ab=72−4×10=9(2)解:第一次利用梯形的面积公式图形面积为:12(a+b)2,第二次利用图形的面积和计算为:2×12ab+12c2,∴12(a+b)2=2×12ab+12c2整理得:a2+2ab+b2=2ab+c2∴a2+b2=c2【知识点】列式表示数量关系;完全平方公式的几何背景;勾股定理的证明【解析】【分析】(1)①利用所给图形,再结合完全平方公式求解即可;②根据a+b=7,ab=10,计算求解即可;(2)先求出12(a+b)2=2×12ab+12c2,再整理计算求解即可。

[全]中考物理高频考点详解:电路安全问题

[全]中考物理高频考点详解:电路安全问题

中考物理高频考点详解:电路安全问题考点扫描☆名师点拨一、考点解析中学物理电学内容中还涉及到电路安全问题,如用电器的额定值问题、元件接入电路安全问题、安全用电问题。

中考中,电路安全问题占有一定比例,出现频率较高。

电路安全试题主要以选择题、填空题出现。

电路安全考题多以选择题形式出现,尤其是多选题,具有一定难度。

解答时需要照顾到电路中各个元件都要在额定值范围内工作。

在分析问题时常常会因为需要考虑的因素过多而出现选择题漏选的问题,导致答案不准确。

一、电路安全的含义1.测量仪表安全问题:电压表、电流表在使用中,被测值不能超过仪表的量程。

2.滑动变阻器:通过滑动变阻器的电流不能超过其允许通过的最大电流。

3.额定值:所有用电器工作时,其电压和通过的电流不能超过其额定值。

二、解题思路1.串联电路中,取单个元件的正常电流的电流最小值作为电路最大电流。

2.并联电路中,取单个元件的正常电压的电压最小值作为电路最大电压。

1.测量仪表的安全问题常用测量仪表有电流表、电压表和电能表。

电流表在使用时必须与被测电路或元件相串联,电压表使用时必须和被测元件并联,这是测量仪表安全的首要问题。

其次是测量仪表的量程问题,电路中的电流和电压不能超过仪表的量程,否则会烧坏仪表或者损坏仪表,使其不能正常工作,也无法进行测量。

2.额定值问题额定电压、额定电流和额定功率是电器设备常见的额定值,它表示用电器正常工作时所需的电压和通过的电流。

用电器如果实际电压比额定电压高,就会烧坏电器,如果低很多,用电器就不能正常工作,有时还会损坏用电器。

二、考点复习1.欧姆定律:导体中的电流与导体两端的电压成正比,与导体的电阻成反比。

2.公式:,其中:U为电源电压,I为通过导体的电流R为导体的电阻。

注意:应用欧姆定律的公式进行计算时,一定要统一到国际制单位后再进行计算。

欧姆定律公式中的各个物理量具有同一性,即I,U,R是对同一段导体、同一时刻而言的。

3.额定电压:用电器正常工作时所需的电压,叫做额定电压。

中考考点详细解析

中考考点详细解析

中考考点详细解析中考作为学生们迈向高中的第一道门槛,考查的内容涵盖了初中三年的学习内容。

针对中考的考点进行详细解析,能够帮助同学们更好地复习备考,提高他们的成绩。

一、语文考点1. 阅读理解:阅读理解是语文考试中的常见题型之一,要求考生从短文中获取信息,推理和归纳,进一步理解和分析所读内容。

在解答这类题目时,考生需要关注文章的主题,结构和段落,同时注意文章中的关键信息点。

2. 写作:写作是语文考试的必考题型之一。

考生需要熟悉不同类型的作文题目,如记叙文、议论文、说明文等。

在写作过程中,要注意结构的合理性,语言的准确性以及观点的表达清晰。

二、数学考点1. 空间与几何:几何图形的认识和运用是数学考试中的重要内容。

要熟悉不同几何图形的性质和计算方法,如线段、角度、平行线、三角形等。

此外,空间几何的应用也是考点之一,考生需要了解并掌握几何体的表面积和体积计算方法。

2. 数据与图形的处理:数据与图形的处理是数学考试中常见的题型之一。

考生需要能够正确地读懂和分析图表中的数据,并进行相关运算和推理。

此外,对于常用统计指标的计算,如平均数、中位数、众数等也需要掌握。

三、英语考点1. 词汇与语法:英语考试中,词汇和语法是基础知识点,也是考查的重点内容。

考生需要掌握不同词汇的拼写、词义、词性等,同时也要熟悉常用语法结构和句型。

2. 阅读理解:和语文考试中的阅读理解相似,英语考试也会出现相关题型。

考生需要从文章中获取信息,理解和推理,进一步回答相关问题。

四、科学考点1. 基础知识:科学考试涵盖了物理、化学、生物等多个学科的内容。

考生需要熟悉基础的科学知识,如力学、光学、化学反应、生物分类等。

同时,还应掌握实验基本操作和实验数据分析方法。

2. 科学探究:科学考试注重考查学生的实践能力和科学思维能力。

考生需要能够提出科学问题、设计实验方法、观察和记录实验数据,并进行合理的分析和解释。

五、其他学科考点除了语文、数学、英语和科学,中考还包括其他学科的内容。

中考化学重难点考点01—微观示意图及微观粒子专题突破(原卷解析版)

中考化学重难点考点01—微观示意图及微观粒子专题突破(原卷解析版)
A.反应前后共有4种分子 B.反应前后氧元素化合价发生了改变
C.反应前后原子、分子数目不变D.参加反应的两种物质分子个数比为。
17:(2019北京门头沟模拟试题)在“宏观——微观——符号”之间建立联系,是化学学科特有的思维方式。某反应的微观示意图如下,相关说法不正确的是( )
A、此反应是物质燃烧的反应 B、反应物①的化学式是CH2
A. 图中只有两种氧化物B. 该反应属于置换反应
C. 相对分子质量最大的是NOD. 生成丙和丁的质量比为7:22
(1)该反应的化学方程式是________。
(2)甲、乙、丙、丁四种物质中属于单质的是________(填化学式)。
(3)该研究成果不仅可以缓解碳排放引起的_____,还将成为理想的能源补充形式。
7:(2020盐山县竞赛试题)甲、乙两物质发生反应的微观示意图如下,则说法正确的是( )
A. 该反应属于化合反应 B. 该反应前后分子个数保持不变
A.该反应属于分解反应 B.生成的甲、乙分子个数比是1:4
C.该反应前后原子个数不变 D.该反应的生成物都是单质
例8:(2020年新疆中考)下列符号中的“2”与O2中的“2”所表示的含义相似的是()
A.H2OB.2ZnC.2COD.SO42-
例9:(2019北京中考试题)丙烷(C3H8)是液化石油气的主要成分之一,燃烧前后分子种类变化的微观示意图如下。下列说法正确的是( )
D.丙氨酸中碳、氢、氮、氧原子的质量比为36:7:14:32
9:(2020年黑龙江大庆中考)新型冠状病毒肺炎威胁着人们的身体健康,预防病毒除了戴口罩、勤洗手,还要做好消毒工作。请按要求填空:
(1)口罩成为每个人的生活必需品,医用口罩生产中采用环氧乙烷灭菌消毒。环氧乙烷的化学式为C2H4O,环氧乙烷由_____种元素组成,一个环氧乙烷分子中的电子总数为_____个,氧原子在化学反应中易_____(填“得到”或“失去”)电子,形成相对稳定结构。

中考数学核心考点强化突破函数的实际应用问题含解析

中考数学核心考点强化突破函数的实际应用问题含解析

中考数学核心考点强化突破:函数的实际应用问题类型1 方案与最值问题1.江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.解析:(1)设每台大型收割机1小时收割小麦x 公顷,每台小型收割机1小时收割小麦y 公顷,根据题意得:⎩⎪⎨⎪⎧x +3y =1.42x +5y =2.5,解得:⎩⎪⎨⎪⎧x =0.5y =0.3.答:略. (2)设大型收割机有m 台,总费用为w 元,则小型收割机有(10-m)台,根据题意得:w =300×2m+200×2(10-m)=200m +4000.∵2小时完成8公顷小麦的收割任务,且总费用不超过5400元,∴⎩⎪⎨⎪⎧2×0.5m+2×0.3(10-m )≥8200m +4000≤5400解得:5≤m≤7,∴有三种不同方案.∵w=200m +4000中,200>0,∴w 值随m 值的增大而增大,∴当m =5时,总费用取最小值,最小值为5000元.答:有三种方案,当大型收割机和小型收割机各5台时,总费用最低,最低费用为5000元.2.某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50 m .设饲养室长为x(m ),占地面积为y(m 2).(1)如图1,问饲养室长x 为多少时,占地面积y 最大?(2)如图2,现要求在图中所示位置留2 m 宽的门,且仍使饲养室的占地面积最大,小敏说:“只要饲养室长比(1)中的长多2 m 就行了.”请你通过计算,判断小敏的说法是否正确.解:(1)∵y =x ·50-x 2=-12(x -25)2+6252,∴当x =25时,占地面积最大,即饲养室长x 为25 m 时,占地面积y 最大;(2)∵y =x ·50-(x -2)2=-12(x -26)2+338,∴当x =26时,占地面积最大,即饲养室长x 为26 m 时,占地面积y 最大;∵26-25=1≠2,∴小敏的说法不正确.3.(2017·河南)学校“百变魔方”社团准备购买A,B 两种魔方,已知购买2个A 种魔方和6个B 种魔方共需130元,购买3个A 种魔方和4个B 种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B 两种魔方共100个(其中A 种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.解:(1)设A 种魔方的单价为x 元/个,B 种魔方的单价为y 元/个,根据题意得:⎩⎪⎨⎪⎧2x +6y =1303x =4y ,解得:⎩⎪⎨⎪⎧x =20y =15. 答:A 种魔方的单价为20元/个,B 种魔方的单价为15元/个.(2)设购进A 种魔方m 个(0≤m≤50),总价格为w 元,则购进B 种魔方(100-m)个,根据题意得:w 活动一=20m×0.8+15(100-m)×0.4=10m +600;w 活动二=20m +15(100-m -m)=-10m +1500.当w 活动一<w 活动二时,有10m +600<-10m +1500,解得:m <45;当w 活动一=w 活动二时,解得:m =45;当w 活动一>w 活动二时,解得:45<m≤50.综上所述:当45<m≤50时,选择活动一购买魔方更实惠;当m =45时,选择两种活动费用相同;当m >45时,选择活动二购买魔方更实惠.类型2 建立函数模型问题4.小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B 和落水点C 恰好在同一直线上,点A 至出水管BD 的距离为12 c m ,洗手盆及水龙头的相关数据如图2所示,现用高10.2 cm 的圆柱型水杯去接水,若水流所在抛物线经过点D 和杯子上底面中心E,则点E 到洗手盆内侧的距离EH 为__24-82__cm .解:建立如图的直角坐标系,过A作AG⊥OC于G,交BD于Q,过M作MP⊥AG于P,由题可得,AQ=12,PQ =MD=6,故AP=6,AG=36,∴Rt△APM中,MP=8,故DQ=8=OG,∴BQ=12-8=4,由BQ∥CG可得,△ABQ∽△ACG,∴BQCG=AQAG,即4CG=1236,∴CG=12,OC=12+8=20,∴C(20,0),又∵水流所在抛物线经过点D(0,24)和B(12,24),∴可设抛物线为y=ax2+bx+24,把C(20,0),B(12,24)代入抛物线,可得抛物线为y=-320x2+95x+24,又∵点E的纵坐标为10.2,∴令y=10.2,则10.2=-320x2+95x+24,解得x1=6+82,x2=6-82(舍去),∴点E的横坐标为6+82,又∵ON=30,∴EH=30-(6+82)=24-8 2.5.湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了20000 kg淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本=放养总费用+收购成本).(1)设每天的放养费用是a万元,收购成本为b万元,求a和b的值;(2)设这批淡水鱼放养t 天后的质量为m(kg ),销售单价为y 元/ kg .根据以往经验可知:m 与t 的函数关系为m =⎩⎪⎨⎪⎧20000(0≤t≤50)100t +15000(50<t≤100);y 与t 的函数关系如图所示. ①分别求出当0≤t≤50和50<t≤100时,y 与t 的函数关系式;②设将这批淡水鱼放养t 天后一次性出售所得利润为W 元,求当t 为何值时,W 最大?并求出最大值.(利润=销售总额-总成本)解:(1)由题意,得:⎩⎪⎨⎪⎧10a +b =30.420a +b =30.8,解得⎩⎪⎨⎪⎧a =0.04b =30. (2)①当0≤t≤50时,设y 与t 的函数解析式为y =k 1t +n 1,将(0,15)、(50,25)代入,可求得y 与t 的函数解析式为:y =15t +15;当50<t≤100时,设y 与t 的函数解析式为y =k 2t +n 2,将点(50,25)、(100,20)代入,可求得y 与t 的函数解析式为:y =-110t +30;②由题意,当0≤t≤50时,W =20000(15t +15)-(400t +300000)=3600t,∵3600>0,∴当t =50时,W 最大=180000(元);当50<t≤100时,W =(100t +15000)(-110t +30)-(400t +300000)=-10(t -55)2+180250,∵-10<0,∴当t =55时,W 最大=180250(元).综上所述,放养55天时,W 最大,最大值为180250元.。

中考数学核心考点强化突破作图问题含解析

中考数学核心考点强化突破作图问题含解析

中考数学核心考点强化突破:作图问题类型1 尺规作图1.在数学课本上,同学们已经探究过“经过已知直线外一点作这条直线的垂线”的尺规作图过程: 已知:直线l 和l 外一点P.求作:直线l 的垂线,使它经过点P.作法:如图:(1)在直线l 上任取两点A 、B ;(2)分别以点A 、B 为圆心,AP,BP 长为半径画弧,两弧相交于点Q ;(3)作直线PQ.参考以上材料作图的方法,解决以下问题:(1)以上材料作图的依据是:______________________________________________(2)已知:直线l 和l 外一点P.求作:⊙P ,使它与直线l 相切.(尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)解:(1)到线段两端点距离相等的点在这条线段的垂直平分线上(2)如图⊙P 即为所求.2.如图,MN 是⊙O 的直径,MN =4,点A 在⊙O 上,∠AMN=30°,B 为AN ︵的中点,P 是直径MN 上一动点.(1)利用尺规作图,确定当PA +PB 最小时P 点的位置(不写作法,但要保留作图痕迹).(2)求PA +PB 的最小值.解:(1)如图1所示,点P 即为所求;(2)由(1)可知,PA +PB 的最小值即为A′B 的长,连接OA′、OB 、OA,∵A′点为点A 关直线MN 的对称点,∠AMN=30°,∴∠AON=∠A′ON=2∠AMN=2×30°=60°,又∵B 为AN ︵的中点,∴AB ︵=BN ︵,∴∠BON=∠AOB=12∠AON=30°,∴∠A′OB=60°+30°=90°,又∵MN=4,∴OA′=OB =12MN =12×4=2.∴在Rt △A′OB 中,A′B=22,∴PA+PB 的最小值为2 2.3.如图,已知△ABC ,∠B=40°.(1)在图中,用尺规作出△ABC 的内切圆O,并标出⊙O 与边AB,BC,AC 的切点D,E,F(保留痕迹,不必写作法);(2)连接EF,DF,求∠EFD 的度数.解:(1)如图1,⊙O 即为所求.(2)如图2,连接OD,OE,∴OD⊥AB ,OE⊥BC ,∴∠ODB=∠OEB=90°,∵∠B=40°,∴∠DOE=140°,∴∠EFD=70°.4.小明在“课外新世界”中遇到这样一道题:如图1,已知∠AOB=30°与线段a,你能作出边长为a 的等边三角形△COD 吗?小明的做法是:如图2,以O 为圆心,线段a 为半径画弧,分别交OA,OB 于点M,N,在弧MN 上任取一点P,以点M 为圆心,MP 为半径画弧,交弧CD 于点C,同理以点N 为圆心,NP 为半径画弧,交弧CD 于点D,连结CD,即△COD 就是所求的等边三角形.(1)请写出小明这种做法的理由;(2)在此基础上请你作如下操作和探究(如图3):连结MN,MN 是否平行于CD ?为什么?(3)点P 在什么位置时,MN∥CD?请用小明的作图方法在图1中作出图形(不写作法,保留作图痕迹).解:(1)如图2,连结OP,由题意可得MC ︵=MP ︵,∴∠COM=∠POM ,PN ︵=DN ︵,∴∠PON=∠DON ,∴∠POM+∠PON=∠COM+∠DON=30°,∴∠COD=2∠MON=60°,∴△OCD 是等边三角形;(2)不一定,只有当∠COM=15°,CD∥MN ,理由:∵∠COM=15°,∠MON=30°,∴∠CON=45°,∵∠C=60°,∴∠OEC=75°,∵ON=OM,∴∠ONM=∠OMN=75°,∴∠OEC=∠ONM ,∴CD∥MN;(3)当P 是MN ︵的中点时,MN∥CD;如图3所示.类型2 网格作图和其他5.如图,在网格(每个小正方形的边长均为1)中选取9个格点(格线的交点称为格点),如果以A 为圆心,r 为半径画圆,选取的格点中除点A 外恰好有3个在圆内,则r 的取值范围为( B )A .22<r <17B .17<r <3 2C .17<r <5D .5<r <29解:给各点标上字母,如图所示.AB =22+22=22,AC =AD =42+12=17,AE =32+32=32,AF =52+22=29,AG =AM =AN =42+32=5,∴17<r <32时,除点A 外恰好有3个在圆内.6.我们约定,若一个三角形(记为△A 1)是由另一个三角形(记为△A)通过一次平移,或绕其任一边的中点旋转180°得到的,则称△A 1是由△A 复制的.以下的操作中每一个三角形只可以复制一次,复制过程可以一直进行下去.如图1,由△A 复制出△A 1,又由△A 1复制出△A 2,再由△A 2复制出△A 3,形成了一个大三角形,记作△B.以下各题中的复制均是由△A 开始的,通过复制形成的多边形中的任意相邻两个小三角形(指与△A 全等的三角形)之间既无缝隙也无重叠.(1)图1中标出的是一种可能的复制结果,小明发现△A∽△B ,其相似比为__1∶2__.在图1的基础上继续复制下去得到△C,若△C的一条边上恰有11个小三角形(指有一条边在该边上的小三角形),则△C中含有__121__个小三角形;(2)若△A是正三角形,你认为通过复制能形成的正多边形是__正三角形或正六边形__;(3)请你用两次旋转和一次平移复制形成一个四边形,在图2的方框内画出草图,并仿照图1作出标记.解析:(1)△A-△A1是经过旋转所得,△A1-△A2是经过旋转所得,△A2-△A3是经过平移所得.由于△B 是由4个△A组成,因此S△B=4S△A,因此相似比为2∶1.当△C的一条边上有11个小三角形时,那么它们的相似比为11∶1,面积比121∶1,即△C中有121个这样的小三角形;故答案为:1∶2,121.(2)正三角形或正六边形.(3)如图.7.阅读理解:如图①,在四边形ABCD的边AB上任取一点E(点E不与点A、点B重合),分别连接ED、EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把点E叫做四边形ABCD的边AB上的相似点;如果这三个三角形都相似,我们就把点E叫做四边形ABCD的边AB上的强相似点.解决问题:(1)如图①,∠A=∠B=∠DEC=55°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;(2)如图②,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图②中画出矩形ABCD的边AB上的一个强相似点E;拓展探究:(3)如图③,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处,若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB和BC的数量关系.解:(1)点E是四边形ABCD的边AB上的相似点.理由:∵∠A=55°,∴∠ADE+∠DEA=125°,∵∠DEC =55°,∴∠BEC+∠DEA=125°,∴∠ADE=∠BEC.∵∠A=∠B,∴△ADE∽△BEC.∴点E是四边形ABCD的AB 边上的相似点.(2)如图如下:(3)∵点E 是四边形ABCD 的边AB 上的一个强相似点,∴△AEM∽△BCE∽△ECM ,∴∠BCE=∠ECM=∠AEM ,由折叠可知:△ECM≌△DCM ,∴∠ECM=∠D CM,CE =CD,∴∠BCE=13∠BCD=30°,∴BE=12CE =12AB.在Rt △BCE 中,tan ∠BCE=BEBC =tan 30°,∴BE BC =33,∴AB BC =233.。

专项突破主谓一致-备战2023年中考英语高频考点专项突破考点详解+真题原卷版

专项突破主谓一致-备战2023年中考英语高频考点专项突破考点详解+真题原卷版

专项突破主谓一致-备战2023年中考英语高频考点专项突破考点详解+真题原卷版专项04 主谓一致备战2023年中考英语精选考点专项突破命题趋势:主谓一致是指谓语动词与主语在人称和数上保持一致,主谓一致必须遵循三原则:语法一致原则,意义一致原则,就近一致原则。

对于主谓一致的考查,主要集中在单项选择、完形填空、汉译英及其它类型的填空题中。

在学习过程中,要掌握主谓一致的基本用法及常见搭配。

中考考查重点:主谓一致的三个原则:语法一致原则,意义一致原则,就近一致原则。

主谓一致是指谓语动词与主语在人称和数上保持一致,主谓一致必须遵循三原则:语法一致原则,意义一致原则,就近一致原则。

考向一:主谓一致的三个原则1. 意义一致意义一致就是根据句子主语的意义来确定谓语动词的单复数。

如:Maths is difficult for us. 数学对我们来说很难。

The police are trying to search for the thief on the hill. 警察们正在山上尽力搜查小偷。

【典例】The woman behind the girls _____________ a famous actress.A. isB. areC. haveD. has【答案】A【解析】在本句中,句子主语为woman,所以谓语动词应用单数形式,排除B、C两项。

本句为系表结构,排除D项。

故选A。

2. 语法一致语法一致即单数主语要用单数谓语动词,复数主语要用复数谓语动词。

如:My bike is under the tree. 我的自行车在树下。

These books are old. 这些书是旧的。

【典例】The Greens _____________ dinner in the kitchen now.A. is havingB. havingC. are having【答案】C【解析】the Greens意为"格林一家;格林夫妇",表复数意义,故选C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档