秦九韶简介

合集下载

南宋数学家秦九韶传

南宋数学家秦九韶传

南宋数学家秦九韶传经历和为人秦九韶(1202—约1261),字道古,普州安岳(今属四川)人,祖籍鲁郡。

父秦季槱,字宏父,绍熙四年(1193)进士。

嘉定十二年(1219),秦季槱任巴州(今四川巴中)守。

是年三月,兴元(今陕西汉中)军士张福、莫简等发动兵变,入川后夺取利州(今广元)、阆州(今阆中)、果州(今南充)、遂宁(今遂宁)和普州(今安岳),并进犯巴州。

秦季槱弃城而走。

朝廷命沔州都统张威引兵镇压。

年仅18 岁的秦九韶“在乡里为义兵首”,参加张威军的平乱之战。

不久,秦季槱携全家辗转抵达当时的京师临安(今杭州)。

嘉定十五年(1222),秦季槱任工部郎中,十七年,除秘书少监。

宝庆元年(1225)正月,兼任国史院编修官、实录院检讨官。

工部掌管营建,而秘书省则掌管图书,其下属机构设有太史局。

因此,天资聪颖、求知若渴的秦九韶有机会阅读大量典籍,熟悉建筑、修造、治河等方面的土木工程知识,并向他父亲的属官中负责测验天文、考定历法的学者们学习天文历法知识。

他后来在《数书九章》序中说“早岁侍亲中都,因得访习于太史”,即指这段时间的事。

秦九韶又曾向“隐君子”学习数学。

他还向著名词人李刘学习骈骊诗词。

通过这一时期的学习,秦九韶的学识日趋渊博。

周密在《癸辛杂识续集》中称他“性极机巧,星象、音律、算术,以至营造等事,无不精究”,“游戏、毬、马、弓、剑,莫不能知”。

宝庆元年(1225)六月,秦季槱被任命为潼川(今四川三台)知府,七月赴任。

秦九韶于是随父回到四川。

次年正月十二日,秦氏父子来到涪州(今重庆涪陵),与涪州守李踽及其两个儿子同游,观赏长江石鱼,并刻石题名,后为姚觐光收入《涪州石鱼文字所见录》,成为一则重要史料。

在潼川,秦九韶曾当过县尉。

这期间,李刘曾邀请他到国史院校勘书籍文献,但未成行。

端平三年(1236),元兵攻入四川,嘉陵江流域兵祸不断,秦九韶不得不经常参与军事活动,饱受战争之苦。

他后来在《数书九章》序中回忆道:“际时狄患,历岁遥塞,不自意全于矢石间,尝险罹忧,荏苒十祀,心槁气落。

数书九章中华之光——宋代数学家秦九韶小记

数书九章中华之光——宋代数学家秦九韶小记

秦九韶,字道古。

宋宁宗嘉定元年(1208)三月,出生于普州(今四川省资阳市安岳县)天庆观街“秦苑斋”的一个书香门第、仕宦之家。

秦九韶之祖父秦臻舜,宋高宗绍兴三十年(1160)进士及第,官至通议大夫(正四品)。

父亲秦季槱,宋光宗绍熙四年(1193)进士及第,累仕显谟阁直学士(从三品)。

秦臻舜父子,同治春秋,政声亦佳。

秦九韶之祖母和母亲,均出于书香门第。

秦九韶出生于如此书香之家,受到长辈之熏陶,接受良好家庭教育。

加之,秦九韶生活在父亲结交的忠臣良相、儒雅之士挚友圈中,师长之关爱教诲,为秦九韶之健康成长培植了优良环境。

嘉定九年(1216)秋,秦九韶随祖母、母亲离开普州,与知巴州军州事之父亲团聚。

嘉定十二年(1219),兴元军士权兴等兵变犯巴州,守臣秦季槱失巴州。

第二年,秦季槱出任工部郎中。

秦九韶随父至临安,开始了“早岁侍亲中都,因得访习于太史”之励志年华。

宋理宗宝庆元年(1225)六月,秦季槱知潼川府军州事,秦九韶随之。

秦九韶后擢升郪县县尉,24岁蟾宫折桂。

宋理宗端平元年(1234)冬,秦九韶赴临安任国史院校正。

端平三年(1236)正月,秦九韶任蕲州通判。

第二年,擢升和州军州事。

后相继任职淮南西路、两浙路和广南东路、广南西路。

宋理宗景定二年(1261)七月,秦九韶知梅州军州事,宋度宗咸淳四年(1268)三月卒于梅州。

终年59岁。

数书九章 中华之光——宋代数学家秦九韶小记 文/李青春(四川省安岳县地方志办公室主任)秦九韶身处宋金、宋蒙战争乱世,仕途坎坷。

他酷爱数学,虽置身政治,但对数学研究从未放弃。

在政务之余,广泛收集历学、数学、星象、音律、营造等资料,进行分类研究。

宋理宗淳祐四至七年(1244—1247),秦九韶利用为母守孝的宝贵时光,把长期积累之数学知识及研究所得予以整理编辑,写出中外闻名巨著《数书九章》。

早在汉、魏之间,《孙子算经》就提出了一个有名的数论科学算题,即某数除以8余7、除以5余3、除以7余2,求某数。

秦九韶 从三角形三边求面积的公式

秦九韶 从三角形三边求面积的公式

秦九韶从三角形三边求面积的公式秦九韶是中国古代著名的数学家,他对数学的贡献被广泛认可。

在中国传统数学中,秦九韶尤为突出的成就是他提出了一种用三角形三边长度计算面积的公式,这一公式至今仍在数学教育中发挥着重要作用。

在本文中,我将对秦九韶的这一重要成就进行全面评估,以及分享自己的观点和理解。

一、秦九韶的贡献1. 秦九韶的生平和学术背景秦九韶(1202-1261)是中国南宋时期的数学家、天文学家和翰林学士。

他在数学、天文学和历法方面都有杰出的成就,被誉为“中国古代数学宗师”。

2. 三角形三边求面积的公式秦九韶最著名的贡献之一就是他提出了一种用三角形三边长度计算面积的公式。

这一公式至今仍被广泛应用于数学教学和实际问题的解决中。

其公式为:设三角形的三条边长分别为a、b、c,半周长为s,则三角形的面积S可以用以下公式计算:S = √[s(s-a)(s-b)(s-c)]二、深度和广度的探讨在探讨秦九韶提出的三角形三边求面积的公式时,我们可以从浅入深,由简到繁地进行探讨。

我们可以从三角形的基本概念出发,介绍三角形的定义和性质,然后引入秦九韶的公式,说明其原理和推导过程。

可以通过实例和应用展示这一公式的实际价值,最后深入讨论公式的数学意义和推广等方面。

通过这样的探讨方式,可以帮助读者更深入地理解秦九韶的贡献和这一数学公式的重要性。

三、个人观点和理解我个人认为,秦九韶提出的三角形三边求面积的公式是一项具有里程碑意义的数学成就。

这一公式不仅简洁、优美,而且在数学教学和实际问题的求解中具有广泛应用价值。

通过学习和理解这一公式,我们可以更好地掌握三角形的性质和面积计算方法,提高数学运算能力和动手能力。

总结和回顾通过本文的全面评估,我们对秦九韶提出的三角形三边求面积的公式有了深刻的理解。

我们不仅了解了公式的基本原理和推导过程,还通过实例和应用认识到了这一公式在数学和实际问题中的重要作用。

我们也分享了个人对这一公式的观点和理解,以及对秦九韶的敬佩之情。

秦九韶数学家故事

秦九韶数学家故事

秦九韶数学家故事秦九韶(1208—1261?),字道古,自称鲁郡(今山东)人,生于普州安岳(今四川)。

他于1247年完成《数书九章》,提出大衍总数术,系统解决了一次同余方程组解法,直到近代,数学大师欧拉、高斯才达到或超过其水平;他提出正负开方术,把求高次方程正根的方法发展到十分完备的程度,而欧洲在19世纪才创造出这种方法。

他是宋元数学高潮的主要代表人物之一。

对于秦九韶的人品,历来褒贬不一。

同代人刘克庄说他“暴如虎狼,毒如蛇蝎”,稍后周密的记载也是负面的。

清代学者焦循等为秦九韶辩诬,认为他是“瑰奇有用之才”。

1946年余嘉锡发表《南宋算学家秦九韶事迹考》,以刘克庄的奏状与周密的《癸辛杂识》互相印证,说秦九韶的罪状“固非横肆诬蔑”。

此后,钱宝琮则说秦九韶“为人阴险,为官贪暴”。

20世纪下半叶这种观点在学术界一直占据主导地位。

然而,如果认真研究一下秦九韶的《数书九章·序》,尤其是其中的九段“系”,那么一位正直的秦九韶的形象便会展现在我们面前。

秦九韶将数学的作用概括为“通神明,顺性命”和“经世务,类万物”大、小两个方面。

然而,他通过自己的数学研究坦承对其“大者”“肤末于见”,而专注于“小者”。

这反映了他具有实事求是,不慕虚荣的科学精神。

秦九韶非常关心国计民生,把数学作为解决生产、生活中实际问题的有力工具,涉及数学方法在国计民生各方面的应用问题,充分表现了他对国家、民众有强烈的责任心。

更重要的是,秦九韶强烈反对政府的横征暴敛,豪强的强取豪夺,大商贾的囤积居奇,主张施仁政的思想贯穿于整个《数书九章》之中。

他的九段“系”文明确谈到“仁”或“施仁政”的有四次:“苍姬井之,仁政攸在”;“惟仁隐民,犹己溺饥”;”彼昧弗察,惨急烦刑。

去理益远,吁嗟不仁”;“师中之吉,惟智仁勇”。

还有,秦九韶主张抗金、抗蒙,在《数书九章》中特设“军旅”类,有十一个军旅问题,要用到勾股、重差、开方等比较高深的方法,这在中国古代是罕见的。

秦九昭

秦九昭
秦九韶简介
• 秦九韶(约公元1202年-1261年),字道古,南宋末年 人,出生于鲁郡(今山东曲阜一带人)。早年曾从隐君子 学数术,后因其父往四川做官,即随父迁徙,后也认为是 普州安岳(今四川安岳县)人。秦九韶与李冶、杨辉、朱 世杰并称宋元数学四大家。(安岳县于1998年9月正式开 工建设秦九韶纪念馆,2000年12月竣工落成。) • 秦九韶聪敏勤学,宋绍定四年(公元1231),秦九韶 考中进士,先后担任县尉、通判、参议官、州守等职。先 后在湖北、安徽、江苏、浙江等地做官。南宋理宗景定元 年(公元1260年)出任梅州(今广东梅县)守,翌年卒于 梅州。据史书记载,他“性及机巧,星象、音律、算术以 至营造无不精究”,还尝从李梅亭学诗词。他在政务之余, 以数学为主线进行潜心钻研,且应用范围至为广泛:天文 历法、水利水文、建筑、测绘、农耕、军事、商业金融等 方面。
用秦九韶算法求n次多项式 f(x)=2x^n+3x^(n-1)+…+(n+1)x,当 x=2时,求f(2)需用乘法、加法运算 的次数分别为:( ) A、n,n B、2n,n C、2n,2n D、n,n-1
意义 该算法看似简单,其最大的 意义在于将求n次多项式的值转 化为求n个一次多项式的值。在 人工计算时,利用秦九韶算法和 其中的系数表可以大幅简化运算; 对于计算机程序算法而言,加法 比乘法的计算效率要高很多,因 此该算法仍有极大的意义,对于 计算机来说,做一次乘法运算所 用的时间比作一次加法运算要长 得多,所以此算法极大地缩短了 运算时间。
• 秦九韶算法是中国南宋时期的数学家秦九 韶提出的一种多项式简化算法。在西方被 称作霍纳算法
秦九韶算法是一种将一元n次多项式的求值问题转化为n个一次式的 算法。其大大简化了计算过程,即使在现代,利用计算机解决多项 式的求值问题时,秦九韶算法依然是最优的算法。

名人简介

名人简介

杨辉,中国南宋时期杰出的数学家和数学教育家。

在13世纪中叶活动于苏杭一带,其著作甚多。

他著名的数学书共五种二十一卷。

著有《详解九章算法》十二卷(1261年)、《日用算法》二卷(1262年)、《乘除通变本末》三卷(1274年)、《田亩比类乘除算法》二卷(1275年)、《续古摘奇算法》二卷(1275年)。

杨辉的数学研究与教育工作的重点是在计算技术方面,他对筹算乘除捷算法进行总结和发展,有的还编成了歌决,如九归口决。

他在《续古摘奇算法》中介绍了各种形式的"纵横图"及有关的构造方法,同时"垛积术"是杨辉继沈括"隙积术"后,关于高阶等差级数的研究。

杨辉在"纂类"中,将《九章算术》246个题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分、叠积、盈不足、方程、勾股等九类。

他非常重视数学教育的普及和发展,在《算法通变本末》中,杨辉为初学者制订的"习算纲目"是中国数学教育史上的重要文献。

刘徽刘徽(生于公元250年左右),他的生活年代主要是在三国时期。

其出生地大约为今山东淄博市淄川人。

刘徽是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产.《九章算术》约成书于东汉之初,共有246个问题的解法.在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列,但因解法比较原始,缺乏必要的证明,而刘徽则对此均作了补充证明.在这些证明中,显示了他在多方面的创造性的贡献.他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根.在代数方面,他正确地提出了正负数的概念及其加减运算的法则;改进了线性方程组的解法.在几何方面,提出了“割圆术”,即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法.他利用割圆术科学地求出了圆周率π=3.14的结果.刘徽在割圆术中提出的“割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣”,这可视为中国古代极限观念的佳作.《海岛算经》一书中,刘徽精心选编了九个测量问题,这些题目的创造性、复杂性和富有代表性,都在当时为西方所瞩目.刘徽思想敏捷,方法灵活,既提倡推理又主张直观.他是我国最早明确主张用逻辑推理的方式来论证数学命题的人.刘徽的一生是为数学刻苦探求的一生.他虽然地位低下,但人格高尚.他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富.张邱建张邱建,北魏数学家,贝州清河人。

数学家秦九韶简介_秦九韶算法简介

数学家秦九韶简介_秦九韶算法简介

数学家秦九韶简介_秦九韶算法简介秦九韶(1208年-1261年),字道古,汉族,生于普州安岳(今四川省安岳县)。

南宋官员、数学家,与李冶、杨辉、朱世杰并称宋元数学四大家。

秦九韶提出的秦九韶算法是中世纪的数学泰斗。

下面是店铺为你搜集数学家秦九韶简介的相关内容,希望对你有帮助!数学家秦九韶简介作为著名数学家秦九韶来说,他并不是一出生就是数学家,而是凭借着自己对数学方面的喜好和勤奋好学。

在他小时候就很是聪敏勤学,宋绍定四年的时期,秦九韶考中进士,他每每在政务之余,就会对数学进行潜心钻研。

除此之外,他还喜欢广泛的搜集历学、数学、星象、音律、营造等资料,进行分析和研究。

他曾在为母亲守孝时,把长期积累的数学知识和研究所得加以编辑,写成了闻名的巨著《数学九章》,并创造了“大衍求一术”。

被称为“中国剩余定理”。

而其中他所论的“正负开方术”,还被称之为“秦九韶程序”。

他之所以能够成为著名的数学家,跟他的父亲是有密切联系的。

当时他的父亲担任工部郎中和秘书少监的期间,正好是他努力学习和积累知识的时候。

而他的父亲正好掌管营建,以及图书,在他的下属机构还设有太史局,因此,他便有机会阅读大量典籍,同时还可以拜访天文历法和建筑等方面的专家,请教天文历法和土木工程问题。

此外,他又曾向“隐君子”学习数学,向著名词人李刘学习骈俪诗词,并达到较高水平。

秦九韶算法秦九韶算法是中国南宋时期的数学家秦九韶提出的一种多项式简化算法。

在西方则被称作霍纳算法。

它也是中国古代著名和伟大的数学家、中世纪的数学泰斗---秦九韶的算法理论之一。

秦九韶算法具体是将一种将一元n次多项式的求值问题转化为n 个一次式的算法。

它的解答方法大大简化了整个的计算过程,即便是在现代,利用计算机解决多项式的求值问题时,秦九韶算法依然是最优的算法。

而“秦九韶算法”的主人公则是著名人物秦九韶。

他是南宋末年人,出生帝是在鲁郡。

早年曾从隐君子学数术,后因其父往四川做官,便跟随父迁徙。

奇人秦氏九韶 奇书《数书九章》 首创“大衍求一” 媲美《九章算术》 “正负开方”两术 誉称两部九章

奇人秦氏九韶 奇书《数书九章》 首创“大衍求一” 媲美《九章算术》 “正负开方”两术 誉称两部九章

78 \China Science & Technology Education Column专 栏[中国科技教育史话]奇人秦氏九韶奇书《数书九章》首创“大衍求一”媲美《九章算术》“正负开方”两术誉称两部九章 王渝生,中国科学院理学博士,教授,博士生导师,国家教育咨询委员会委员,中国科普产学研创新联盟副理事长,中国科学院自然科学史研究所原副所长,中国科学技术馆原馆长,北京市科学技术协会原副主席。

2020年6月5日,经实施四川历史名人文化传承创新工程领导小组会议审议通过,确定文翁、司马相如、陈寿、常璩、陈子昂、薛涛、格萨尔王、张栻、秦九韶、李调元(按年代排序)10位为第2批四川历史名人。

其中,南宋数学家秦九韶(1208—1268)因其数学名著《数书九章》(1247)而入选。

2天后,6月7日,我约当年《秦九韶籍贯考》考证秦氏为四川安岳人的内江市原副市长邵启昌同赴安岳秦九韶纪念馆考察,受到安岳县人大常委会副主任谢贻奎等领导热情接待。

回想1987年在北京师范大学举行的“纪念秦九韶《数书九章》成书740周年国际学术研讨会”(国内又称“全国第一次秦九韶学术研讨会”)上,当时尚为四川省内江市数学教师的邵启昌的论文《秦九韶籍贯考》,力排“鲁郡”山东、河南范县或陕西“秦凤间”的误传,一锤定音,确定了秦九韶是四川普州即今安岳县人。

2000年,我们参与组织了“秦九韶纪念馆落成典礼暨全国第二次秦九韶学术研讨会”。

当时我请中国科学院院长路甬祥题写的馆名“秦九韶纪念馆”还悬挂在纪念馆大门上,我撰文的碑刻《秦九韶其人其书》和邵启昌撰文的碑刻《数书九章 中华之光》仍在纪念馆大厅内秦九韶塑像两侧,迄今已整整20年了。

现在秦九韶纪念馆已被命名为四川省爱国主义教育基地、四川省科普教育基地和四川师范大学数学史教育研究基地,每年前来参观的青少年学生和外地游客络绎不绝。

秦九韶从小生活在家乡安岳,进士出身的父亲秦季槱是一位学识渊博、办事极为认真的知识分子,他对孩子因材施教,特色教导,助推秦九韶稳步成长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

秦九韶
南宋,数学家秦九韶(公元1202~1261年)在1247年(淳佑七年)着成『数书九章』十八卷.全书共81道题,分为九大类:大衍类、天时类、田域类、测望类、赋役类、钱谷类、营建类、军旅类、市易类。

这是一部划时代的巨着,它总结了前人在开方中所使用的列筹方法,将其整齐而有系统地应用到高次方程的有理或无理根的求解上去,其中对「大衍求一术」﹝一次同余组解法)和「正负开方术」﹝高次方程的数值解法)等有十分深入的研究。

其中的“大衍求一术”﹝一次同余组解法),在世界数学史上占有崇高的地位。

在古代《孙子算经》中载有“物不知数”这个问题,举例说明:有一数,三三数之余二,五五数之余二,七七数之余二,问此数为何?这一类问题的解法可以推广成解一次同余式组的一般方法.奏九韶给出了理论上的证明,并将它定名为“大衍求一术”。

1/ 1。

相关文档
最新文档