(完整版)高中数学例题:秦九韶算法
(完整版)高中数学例题:秦九韶算法

高中数学例题:秦九韶算法例4.利用秦九韶算法求2345()10.50.166630.041680.00835f x x x x x x =+++++在x=0.2时的值.写出详细计算过程.【思路点拨】秦九韶算法是我国南宋的数学家秦九韶首先提出来的.(1)特点:它通过一次式的反复计算,逐步计算高次多项式的求值问题,即将一个n 次多项式的求值问题,归结为重复计算n 个一次式1()i i a x a -+.即1210()((()))n n n f x a x a x a x a x a --=++++L L .(2)具体方法如下:已知一个一元n 次多项式1110()n n n n f x a x a x a x a --=++++L 0.当x=x 0,我们可按顺序一项一项地计算,然后相加,求得0()f x .【答案】1.2214024【解析】v 0=0.00835,v 1=v 0x+0.04168=0.00835×0.2+0.04168=0.043 35,v 2=v 1x+0.16663=0.04335×0.2+0.16663=0.1753,v 3=v 2x+0.5=0.1753×0.2+0.5=0.53506,v 4=v 3x+1=0.53506×0.2+1=1.107012,v 5=v 4x+1=1.107012×0.2+1=1.2214024.【总结升华】秦九韶算法的原理是01(1,2,3,,)n k k n k v a v v x a k n --=⎧⎨=+=⎩L .在运用秦九韶算法进行计算时,应注意每一步的运算结果,像这种一环扣一环的运算,如果错一步,则下一步,一直到最后一步就会全部算错.同学们在计算这种题时应格外小心.举一反三:【变式1】用秦九韶算法求多项式764=++++当x=2时f x x x x x()85321的值.【答案】1397【解析】765432=++⋅++⋅+⋅++=+++++++ ()85030021((((((85)0)3)0)0)2)1 f x x x x x x x x x x x x x x x .v0=8,v1=8×2+5=21,v2=21×2 4-0=42,v3=42×2 4-3=87,v4=87×2+0=174,v5=174×2+0=348,v6=348×2+2=698,v7=698×2+1=1397,所以,当x=2时,多项式的值为1397.【变式2】用秦九韶算法计算多项式65432f x x x x x x x=++++++()654327在x=0.4时的值时,需做加法和乘法的次数和是()A.10 B.9 C.12 D.8【答案】C【解析】()(((((65)4)3)2)1)7=++++++.f x x x x x x x∴加法6次,乘法6次,∴6+6=12(次),故选C.。
1.3 案例2 秦九韶算法

((an x an1 ) x an 2 ) x a1 ) x a0
当知道了x的值后该如何求多项式的值?
f ( x ) ((an x an1 ) x an 2 ) x a1 ) x a0
要求多项式的值,应该先算最内层的一次多 项式的值,即
所以,当x = 2时,多项式的值等于-41.
高中数学备课组
练习: 已知多项式f(x)=x5+5x4+10x3+10x2+5x+1 用秦九韶算法求这个多项式当 x= -2 时的值.
f(-2)= -1.
高中数学备课组
秦九韶算法的程序框图:
开始 输入n, an, x的值 v=an
v 0 a n v k v k 1 x an k ( k 1,2, , n)
f (5)=55+54+53+52+5+1 =5×(54+53+52+5+1)+1
=5×(5×(53+52+5 +1)+1 )+1
=5×(5×( 5× (52+5 +1)+1 )+1 )+1
=5×(5×(5× (5 × (5 +1 ) +1 )+1 )+1 )+1
两种算法中各用了几次乘法运算? 几次加法运算?
f ( x ) an x n an1 x n1 a1 x a0 (an x n1 an1 x n 2 a1 ) x a0
(( an x n 2 an1 x n 3 a2 ) x a1 ) x a0
高中数学备课组
v1 an x an1
然后,由内到外逐层计算一次多项式的值,即
高中数学备课组
v 3 v 2 x an 3
v n v n 1 x a 0
高中数学必修3公开课课件 1.3.2算法案例--秦九韶算法

10
课后再做好复习巩固. 谢谢!
再见!
新疆 王新敞
奎屯
王新敞 特级教师 源头学子小屋 wxckt@ 新疆奎屯
再统计一下计算当时的值时需要的计算次数,可 以得出仅需4次乘法和5次加法运算即可得出结果。显 然少了6次乘法运算。
这种算法就叫秦九韶算法。
3
秦九韶算法
把一个多项式
f (x) an xn an1xn1 an2 xn2 a1x a0
改写为:
f (x) an xn an1xn1 an2 xn2 a1x a0 (an xn1 an1xn2 an2 xn3 a1)x a0 ((an xn2 an1xn3 a2 )x a1)x a0
·2007·
11
案例2 秦九韶算法
2019年5月6日星期一
1
问题提出
1.辗转相除法和更相减损术,是求两个正整数 的最大公约数的优秀算法,我们将算法转化为程序 后,就可以由计算机来执行运算,实现了古代数学 与现代信息技术的完美结合.
2.对于求n次多项式的值,在我国古代数学中 也有一个优秀算法,即秦九韶算法,本节对这个算 法作些了解和探究.
=……
( ((an x an1)x an2 )x a1) a0
4
秦九韶算法
对于f(x)=(…((anx+an-1)x+ an-2)x+…+a1)x+a0, 由内向外逐层计算一次多项式的值,其算法步骤:
第一步,计算v1=anx+an-1. 第二步,计算v2=v1x+an-2. 第三步,计算v3=v2x+an-3.
1.3 算法案例2-秦九韶算法

2. 利用秦九韶算法求n次多项式f(x)的值的步骤:
先把n次多项式f(x)改写成如下形式: f(x)=(…((anx+an-1)x+an-2)x+…+a1)x+a0. 再按照从内到外的顺序 , 依次计算一次多项 式的值, 即 v1=anx+an-1 ;
注意: 用秦九韶算法
计 算 n 次 多 项 式 f(x) 的 值时,一共需要n次乘法 运算和n次加法运算.
解: f(x)=((((0.83x+0.41)x+0.16)x+0.33)x+0.5)x+1
当x=5时, v1=0.83×5+0.41=4.56; v2=4.56×5+0.16=22.96; v3=22.96×5+0.33=115.13; v4=115.13×5+0.5=576.15; v5=576.15×5+1=2881.75. 所以, f(5)=2881.75.
作业: P48 A组 T2
思考2:阅读下列程序,说明它是解决什么的 问题算法?
INPUT “x=”;a n=0 y=0 WHLE n<5 y=y+(n+1)*a∧n n=n+1 WEND PRINT y END
求多项式f(x)=1+2x+3x2+4x3+5x5在x=a时的值.
当x=5时, v1=5×5+2=27; v2=27×5+3.5=138.5; v3=138.5×5-2.6=689.9; v4=689.9×5+1.7=3451.2; v5=3451.2×5-0.8=17255.2. 所以, f(5)=17255.2.
2
算法案例二--秦九韶算法

作业:
1、课本 P48 A 组第 2 题。 2、用秦九韶算法计算 5 次多项式 f ( x) 2 x5 x4 10 x3 10x2 3x 1 , 当 x 2 时的值。 3、用秦九韶算法计算多项式 f ( x) x6 12x5 60x4 160x3 240x2 192x 64 , 当 x 2 时的值.
第二步: 计算 (an x an1 ) x an2 的值, 可以改写为 v1 x an 2 , 将 v1 x an 2 的值赋给一个变量 v 2 ;
依次类推,即每一步的计算之后都赋予一个新值 vk ,即从最内层的括号到 最外层的括号的值依次赋予变量 v1 , v2 ,, vn .第 n 步所求值 vn vn1 x a0 即为所求多项式的值。
对该多项式按下面的方式进行改写:
f ( x) an x n an1 x n1 a1 x a0 (an x n1 an1 x n2 a1 ) x a0 (( an x n2 an1 x n3 a2 ) x a1 ) x a0
n(n 1) 次乘法运算和 n 次加法运算,减少为 n 次 2
乘法运算和 n 次加法运算,大大提高了运算效率.
三、秦九韶算法应用:
例一、 已知一个 5 次多项式 f ( x) 5x 5 2x 4 3.5x 3 2.6x 2 1.7 x 0.8 , 用秦九韶算法求这个多项式当 x 5 时的值。
10
变形后 x 的“系数” 2 5
25
21
105
108
540
534
2670
2677
思考:如何描述上述计算过程?
结论: 将变形前 x 的第 1 个系数乘以 x 的值, 加上变形前第 2 个系数,得到一个新的系数;将此系数继续乘以 x 的值,再 加上变形前第 3 个系数,又得到一个新的系数;继续对新系 数做上面的变换,直到与变形前最后一个系数相加,得到一 个新系数为止,这个系数即为所求的多项式的值。
2020学年高中数学第一章算法初步1.3.2秦九韶算法练习(含解析)新人教A版必修3(最新整理)

第9课时秦九韶算法知识点一秦九韶算法的原理1.用秦九韶算法计算f(x)=6x5-4x4+x3-2x2-9x当x=x0时的值,需要加法(或减法)与乘法运算的次数分别为( )A.5,4 B.5,5 C.4,4 D.4,5答案D解析n次多项式需进行n次乘法;若各项均不为零,则需进行n次加法,缺一项就减少一次加法运算.f(x)中无常数项,故加法次数要减少一次,为5-1=4.故选D.2.用秦九韶算法求多项式f(x)=1+2x+x2-3x3+2x4在x=-1时的值,v2的结果是( )A.-4 B.-1 C.5 D.6答案D解析n=4,a4=2,a3=-3,a2=1,a1=2,a0=1,由秦九韶算法的递推关系式得v0=2,v1=v0x+a3=-5,v2=v1x+a2=6.3.用秦九韶算法求多项式f(x)=7x6+6x5+3x2+2当x=4时的值时,先算的是( )A.4×4=16 B.7×4=28C.4×4×4=64 D.7×4+6=34答案D解析因为f(x)=a n x n+a n-1x n-1+…+a1x+a0=(…((a n x+a n-1)x+a n-2)x+…+a1)x +a0,所以用秦九韶算法求多项式f(x)=7x6+6x5+3x2+2当x=4时的值时,先算的是7×4+6=34.4.用秦九韶算法求多项式f(x)=x4-2x3+3x2-7x-5,当x=4时的值,给出如下数据.①0 ②2 ③11 ④37 ⑤143其中运算过程中(包括最终结果)会出现的数有________.(只填序号)答案②③④⑤解析将多项式改写成f(x)=(((x-2)x+3)x-7)x-5.v=1;v=1×4-2=2;1v=2×4+3=11;2v=11×4-7=37;3v=37×4-5=143.4知识点二利用秦九韶算法计算多项式的值5.用秦九韶算法求多项式f(x)=7x7+6x6+5x5+4x4+3x3+2x2+x当x=3时的值.解f(x)=((((((7x+6)x+5)x+4)x+3)x+2)x+1)x,所以有v=7;v=7×3+6=27;1v=27×3+5=86;2v=86×3+4=262;3v=262×3+3=789;4v=789×3+2=2369;5v=2369×3+1=7108;6v=7108×3=21324.7故当x=3时,多项式f(x)=7x7+6x6+5x5+4x4+3x3+2x2+x的值为21324.易错点利用秦九韶算法求含空项的n次多项式的值时易出现错误6.已知f(x)=3x4+2x2+4x+2,利用秦九韶算法求f(-2)的值.易错分析由于没有抓住秦九韶算法原理的关键,没有正确改写多项式并使每一次计算只含有x的一次项而致误.正解f(x)=3x4+0·x3+2x2+4x+2=(((3x+0)x+2)x+4)x+2,v=3×(-2)+0=-6;1v=-6×(-2)+2=14;2v=14×(-2)+4=-24;3v=-24×(-2)+2=50.4故f(-2)=50.一、选择题1.用秦九韶算法计算多项式f(x)=3x6+9x5+5x4+6x3+12x2+8x-7在x=2时的值,需要做乘法和加法的次数分别是( )A.5,5 B.5,6 C.6,6 D.6,5答案C解析因为f(x)的最高次数是6,所以需要做乘法和加法的次数都是6.2.用秦九韶算法求多项式f(x)=12+35x-8x2+79x3+6x4+5x5+3x6在x=-4时,v4的值为()A.-57 B.220 C.-845 D.3392答案B解析v0=3,v1=3×(-4)+5=-7,v=-7×(-4)+6=34,2v=34×(-4)+79=-57,3v=-57×(-4)-8=220.43.已知多项式f(x)=4x5+3x4+2x3-x2-x-错误!,用秦九韶算法求f(-2)等于()A.-错误! B.错误! C.错误! D.-错误!答案A解析∵f(x)=((((4x+3)x+2)x-1)x-1)x-错误!,∴f(-2)=((((4×(-2)+3)×(-2)+2)×(-2)-1)×(-2)-1)×(-2)-错误!=-错误!.4.秦九韶算法的先进性主要体现在减少运算次数,下列说法正确的是( )A.可以减少加法运算次数B.可以减少乘法运算次数C.同时减少加法和乘法的运算次数D.加法次数和乘法次数都有可能减少答案B解析秦九韶算法可以把至多n n+12次乘法运算减少为至多n次乘法运算.加法运算次数不变.5.用秦九韶算法计算函数y=2x3-3x2+2x-1在x=2时的函数值,则下列各式正确的是()A.v0=2 B.v0=1 C.v1=4 D.v2=7答案A解析根据秦九韶算法,把多项式改写成y=((2x-3)x+2)x-1,从内到外依次计算:v0=2,v1=2×2-3=1,v2=1×2+2=4,v3=4×2-1=7.二、填空题6.已知f(x)=x5+2x3+3x2+x+1,用秦九韶算法计算x=3时的值,v3的值为________.答案36解析v0=1,v1=1×3+0=3,v2=3×3+2=11,v3=11×3+3=36,….7.用秦九韶算法求多项式f(x)=5x5+3x3+2x2+10,当x=3时f(x)的值为________.答案1324解析f(x)=5x5+0x4+3x3+2x2+0x+10=((((5x+0)x+3)x+2)x+0)x+10=((((5x)x+3)x+2)x)x+10,当x=3时,有v0=5,v1=5×3=15,v2=15×3+3=48,v3=48×3+2=146,v4=146×3=438,v5=438×3+10=1324,∴f(3)=1324.8.用秦九韶算法求多项式f(x)=1-5x-8x2+10x3+6x4+12x5+3x6当x=-4时的值时,v0,v1,v2,v3,v4中最大值与最小值的差是________.答案62解析多项式变形为f(x)=3x6+12x5+6x4+10x3-8x2-5x+1=(((((3x+12)x+6)x+10)x-8)x-5)x+1,v=3,v=3×(-4)+12=0,1v=0×(-4)+6=6,2v=6×(-4)+10=-14,3v=-14×(-4)-8=48,4∴v4最大,v3最小.∴v4-v3=48-(-14)=62.三、解答题9.利用秦九韶算法求多项式f(x)=3x6+12x5+8x4-3.5x3+7.2x2+5x-13,当x=6时的值,写出详细步骤.解f(x)=(((((3x+12)x+8)x-3.5)x+7.2)x+5)x-13,v=3,v=v0×6+12=30,1v=v1×6+8=188,2v=v2×6-3.5=1124.5,3v=v3×6+7.2=6754.2,4v=v4×6+5=40530.2,5v=v5×6-13=243168.2.6f(6)=243168.2.10.用秦九韶算法计算多项式f(x)=5x7+x6-x3+x+3当x=-1时的值,并判断f(x)在区间[-1,0]内有没有零点.解∵f(x)=5x7+x6-x3+x+3=((((((5x+1)x+0)x+0)x-1)x+0)x+1)x+3,∴当x=-1时,v0=5,v=5×(-1)+1=-4,1v=-4×(-1)+0=4,2v=4×(-1)+0=-4,3v=-4×(-1)-1=3,4v=3×(-1)+0=-3,5v=-3×(-1)+1=4,6v=4×(-1)+3=-1,7∴f(-1)=-1.又f(0)=3,∴f(0)·f(-1)<0,由零点存在定理,知f(x)在区间[-1,0]内有零点.尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文档在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
高中数学_算法案例

算法案例知识图谱算法案例知识精讲一.更相减损术应用:求两个整数的最大公约数的算法更相减损术的步骤:1.任意给定两个正整数;判断它们是否都是偶数.若是,则用2约简;若不是则执行第二步.2.以两个数中较大的数减去较小的数,以差数和较小的数构成一对新的数,对这一对数再用大数减小数,以同样的操作一直做下去,直到产生一对相等的数为止,则第一步中约掉的若干个2与第二步中等数的乘积就是所求的最大公约数.等值算法:用“更相减损术”设计出来的算法求最大公约数的算法称为“等值算法”,用等值算法可以求任意两个正整数的最大公约数.说明:《九章算法》是中国古代的数学专著,其中的“更相减损术”可以用来求两个数的最大公约数.以具体的例子来说明更相减损术求最大公约数的原理:以求117和182的最大公约数为例:,,,,,,,,(117182)(11765)(6552)(5213)(1339)(1326)(1313)→→→→→→每次操作后得到的两个数与前两个数的最大公约数相同,而且逐渐减少,故总能得到相等的两个数,即为所求的最大公约数.二.辗转相除法又称欧几里得算法,是由欧几里得在公元前300年左右首先提出来的求两个数的最大公约数的算法.辗转相除法的步骤:对于给定的两个数,以其中较大的数除以较小的数得到一个余数,将较小的数与余数看成一对新的数,重复上面的步骤,直到余数为零为止,此时上一步中较小的数即为所求的最大公约数.以求117和182的最大公约数为例:,,,,,,故13即为所求.→→→→(117182)(11765)(6552)(5213)(130)三.秦九韶算法—求多项式的值的算法应用:快速的求解对于任意一个n次的多项式在某点所取到的值.秦九韶算法:已知一个多项式函数,计算多项式在某点处的函数值的一种算法,是我国古代数学家秦九韶提出的,具体如下.对任意一个n 元多项式1110()n n n n f x a x a x a x a --=++++ ,改写成如下形式:12110()()n n n n f x a x a x a x a ---=++++ 231210(())n n n n a x a x a x a x a ---=+++++ = 1210((()))n n n a x a x a x a x a --=+++++ ,求多项式的值时,先计算最内层括号内的一次多项式的值,即11n n v a x a -=+,然后由内向外逐层计算一次多项式的值,即212n v v x a -=+,323n v v x a -=+, ,10n n v v x a -=+.这样,求一个n 次多项式的值,就转化为求n 个一次多项式的值.令1(1)(())k n n n k n k v a x a x a x a ----=++++ ,则递推公式为01n kk n k v a v v x a --=⎧⎨=+⎩,其中12k n = ,,,.到目前为止,此算法仍然是世界上多项式求值的最先进的算法.秦九韶算法与其它算法在计算量上面的比较:1110()n n n n f x a x a x a x a --=++++ ,1.直接求和法:先计算各个单项式的值,再把它们相加,乘法次数为(1)(1)212n n n n ++-+++= ,加法次数n ;2.逐项求和法:先计算x 的各项幂的值,再分别相乘,计算幂值需要乘法1n -次,将幂值与多项式系数k a 相乘需要乘法n 次,故共需要乘法21n -次,加法n 次.此方法对直接求和法有所改进,但仍然比秦九韶算法计算量大很多.3.秦九韶算法:计算量仅为乘法n 次,加法n 次.<备注>秦九韶算法是多项式求值的优秀算法,秦九韶算法的特点:(1)化高次多项式求值为一次多项式求值;(2)减少了运算次数,提高了效率;(3)步骤重复执行,容易用计算机实现.利用秦九韶算法计算多项式的值关键是能正确地将所给多项式改写,然后由内向外逐次计算,由于后项计算用到前项的结果,故应认真、细心,确保中间结果的准确性.若在多项式中有几项不存在时,可将这些项的系数看成0,即把这些项看做0·x n .三点剖析一.注意事项1.辗转相除法与更相减损术联系(1)都是求最大公约数的方法,计算上,辗转相除法以除法为主,更相减损术以减法为主,计算次数上,辗转相除法计算次数相对较少,特别当两个数大小差距较大时,计算次数的区别比较明显;(2)从结果的体现形式来看,辗转相除法体现结果是以相除余数为零而得到,而更相减损术则是以减数与差相等而得到;(3)辗转相除法与更相减损术是统一的,因为做一次除法与做若干次减法的效果相同.二.方法点拨1.两个整数的最大公约数是两个整数的公约数中最大的数,与此类似,两个整数的最小公倍数是两个整数的公倍数中最小的数.2.穷举法是将集合中的元素进行一一列举,逐个条件进行验证,知道找出满足条件的元素为止,穷举法可以解决所有问题看,但是一般来说常常可以用来解决一些无规律可循的问题,例如求不定方程的解或者不定方程组的解,运用穷举法思想设计算法时,常常采用循环结构,将验证条件为循环结构的判断条件,将每一个元素作为循环体.求两个正整数的最大公约数例题1、8251与6105的最大公约数是____.例题2、用更相减损来求80和36的最大公约数?例题3、用更相减损术求294与84的最大公约数.随练1、两个数153和119的最大公约数是______________.随练2、用更相减损术求294与84的最大公约数.随练3、有甲、乙、丙三种溶液分别重147g、343g、133g,现要将它们分别全部装入小瓶中,每个小瓶装入液体的质量相同,问每瓶最多装多少?秦九韶算法例题1、用秦九韶算法求多项式f(x)=x4+2x3+x2-3x-1,当x=2时的值,则v3=______例题2、使用秦九韶算法计算x=2时f(x)=6x6+4x5-2x4+5x3-7x2-2x+5的值,所要进行的乘法和加法的次数分别为________随练1、用秦九韶算法求多项式f(x)=1+2x+x2-3x3+2x4在x=-1时的值,v2的结果是______随练2、用秦九韶算法计算多项式f(x)=5x5+4x4+3x3-2x2-x-1在x=-4时的值时,需要进行的乘法、加法的次数分别是_______拓展1、用更相减损术求78和36的最大公约数_________.2、三个数208,351,429的最大公约数是()A.65B.91C.26D.133、用“辗转相除法”求得459和357的最大公约数是()A.3B.9C.17D.514、用秦九韶算法求多项式f(x)=12+35x-8x2+79x3+6x4+5x5+3x6在x=-4的值时,其中V1的值=_______5、用秦九韶算法计算多项式f(x)=3x6+4x5+5x4+6x3+7x2+8x+1当x=0.4时的值时,需要做乘法和加法的次数分别是。
秦九韶算法

秦九韶算法学习目标:理解秦九韶算法与进位制的含义和运算.知识梳理:1.秦九韶计算多项式的方法f (x )=a n x n +a n -1x n -1+a n -2x n -2+…+a 1x +a 0=(a n x n -1+a n -1x n -2+a n -2x n -3+…+a 1)x +a 0=((a n xn -2+a n -1x n -3+…+a 2)x +a 1)x +a 0=… =(…((a n x +a n -1)x +a n -2)x +…+a 1)x +a 0.求多项式的值时,首先计算最内层括号内一次多项式的值,即11-+=n n a x v v然后由内向外逐层计算一次多项式的值.01a x v v n n +=-例1.已知一个3次多项式为1)(23-+-=x x x x f ,用秦九韶算法求这个多项式当x =2时的值.练习:用秦九韶算法计算多项式641922401606012)(23456+-+-+-=x x x x x x x f 当2=x 时的值.变式:上题中若去掉)(x f 表达式中的2240x 这一项,会有哪些变化?课堂练习:1.用秦九韶算法计算多项式1876543)(23456++++++=x x x x x x x f 当4.0=x 时的值时,需要做乘法和加法的次数分别是 ( )A.6,6B.5,6C.5,5D.6,52.用秦九韶算法计算x x x x x x x x f ++++++=234567234567)(当2=x 时的值.3.用秦九韶算法求1432)(2367+-+-=x x x x x f 当2=x 时的函数值.小结:秦九韶算法的优点是能大量减少计算量,对相应的程序框图不作具体要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学例题:秦九韶算法
例4.利用秦九韶算法求2345()10.50.166630.041680.00835f x x x x x x =+++++在x=0.2时的值.写出详细计算过程.
【思路点拨】秦九韶算法是我国南宋的数学家秦九韶首先提出来的.
(1)特点:它通过一次式的反复计算,逐步计算高次多项式的求值问题,即将一个n 次多项式的求值问题,归结为重复计算n 个一次式1()i i a x a -+.即1210()((()))n n n f x a x a x a x a x a --=++++.
(2)具体方法如下:已知一个一元n 次多项式1110()n n n n f x a x a x a x a --=++++0.当x=x 0,我们可按顺序一项一项地计算,然后相加,求得0()f x .
【答案】1.2214024
【解析】
v 0=0.00835,
v 1=v 0x+0.04168=0.00835×0.2+0.04168=0.043 35,
v 2=v 1x+0.16663=0.04335×0.2+0.16663=0.1753,
v 3=v 2x+0.5=0.1753×0.2+0.5=0.53506,
v 4=v 3x+1=0.53506×0.2+1=1.107012,
v 5=v 4x+1=1.107012×0.2+1=1.2214024.
【总结升华】秦九韶算法的原理是
01(1,2,3,,)n
k k n k v a v v x a k n --=⎧⎨=+=⎩.
在运用秦九韶算法进行计算时,应注意每一步的运算结果,像这
种一环扣一环的运算,如果错一步,则下一步,一直到最后一步就会
全部算错.同学们在计算这种题时应格外小心.
举一反三:
【变式1】用秦九韶算法求多项式764
=++++当x=2时
f x x x x x
()85321
的值.
【答案】1397
【解析】
765432
=++⋅++⋅+⋅++=+++++++ ()85030021((((((85)0)3)0)0)2)1 f x x x x x x x x x x x x x x x .
v0=8,
v1=8×2+5=21,
v2=21×2 4-0=42,
v3=42×2 4-3=87,
v4=87×2+0=174,
v5=174×2+0=348,
v6=348×2+2=698,
v7=698×2+1=1397,
所以,当x=2时,多项式的值为1397.
【变式2】用秦九韶算法计算多项式65432
f x x x x x x x
=++++++
()654327
在x=0.4时的值时,需做加法和乘法的次数和是()
A.10 B.9 C.12 D.8
【答案】C
【解析】()(((((65)4)3)2)1)7
=++++++.
f x x x x x x x
∴加法6次,乘法6次,
∴6+6=12(次),故选C.。