信号与系统 第1章
合集下载
《信号与系统》第一章知识要点+典型例题

y() 表示系统的输出。
1、线性系统与非线性系统 若系统满足下列线性性质: (1)可分解性 全响应 y () 可分解为零输入响应 y zi () 与零状态响应 y zs () 之和,即
y() y zi () y zs ()
(2)齐次性 零输入响应 y zi () 满足齐次性,零状态响应 y zs () 满足齐次性,即
( t ) 、 ( t ) 的重要性质
1
( t )dt 1 ,
t
( t )dt 0 , ( t )dt ( t ) ( k ) (k )
f ( k ) ( k ) f (0) ( k ) f ( k ) ( k k 0 ) f ( k 0 ) ( k k 0 )
f ( t ) ( t a )dt f (a )
k
f ( k ) ( k ) f (0)
(at )
5
1 (t ) a
1 b (at b) ( t ) a a f ( t ) ( t ) f (0) ( t ) f (0) ( t ) f ( t ) ( t ) f (0) ( t ) f (0) ( t )
2
。
而对离散的正弦(或余弦)序列 sin( k ) [或 cos( k ) ]( 称为数字角频率,单位为 rad ), 只有当
2
为有理数时才是周期序列,其周期 N M
2
, M 取使 N 为整数的最小整数。
如对信号 cos(6 k ) ,由于
2
2 1 为有理数,因此它是周期序列,其周期 N 1 。 6 3
信号与系统绪论第一章

= −
1 a
δ(t)dt
证毕。
1 1 1 ∴ 2δ ( t + ) = 2δ [ ( t + 1 )] = 4δ ( t + 1 ) 2 2 2
作业 2t+ 的波形。 1、信号f(t)的波形如图所示。画出信号f(-2t+4)的波形。 信号f(t)的波形如图所示。画出信号f f(t)的波形如图所示
f (t )
意义:在同样起始条件 下,系统的响应与激励 输入的时刻无关。
t0
t0 +T
t
0
t0
t
波形不变,仅延时 t0
1.3 系统的描述与分类
例3:判断以下系统是否为非时变系统。
(1) r (t ) = T [e(t )] = ate(t ). (2) r (t ) = T [e(tቤተ መጻሕፍቲ ባይዱ)] = ae(t )
f (t + t 0 )
左移 1
− t0 − 2 − t0 − t0 + 1
0
f (−t + t 0 )
反转
1
0
f (t )
1
t0 − 1 t0
t0 + 2 t
-2
0 1
t
f (t − t 0 )
1 右移 t0 − 2 t0 t 0 + 1 t
− t0 − 1 − t0 − t0 + 2
f (−t − t 0 )
= k1 [ ae1 ( t ) + b ] + k 2 [ ae2 ( t ) + b ] = a [ k1e1 ( t ) + k 2 e2 ( t )] + bk1 + bk 2
显然 T [ k1e1 ( t ) + k 2 e2 ( t )] ≠ k1r1 ( t ) + k 2 r2 ( t ) 故系统为非线性系统。
第1章 信号与系统(二版)于慧敏9

将要介绍几种在信号与系统分析中用得较 多的基本信号,它们不仅经常会出现,更重要 的是用这些基本信号可以构成许多其他的信号。
§1.2.1 连续时间复指数信号与正弦 信号 连续时间复指数信号具有下列形式 :
x(t ) Ce st
式中C和s一般为复数:
s j
根据这些参数值的不同,复指数信号可分为以下几种: 1. 实指数信号 2. 周期复指数信号和正弦信号 3. 一般复指数信号
图1.5 周期信号
§1.1.1 信号的描述与信号的分类
连续周期信号可表示为:
x(t ) x(t mT), m 0,1,2,...
T
我们把能使上式成立的最小正值 称为 x(t ) 2T ,3T ,4T ... 都是 的周期。
x(t )
的基波周期。
§1.1.1 信号的描述与信号的分类
一、连续时间单位阶跃信号与冲激信号
1. 单位阶跃信号
2. 冲激信号
二、冲激偶信号
§1.2.2 奇异信号
1. 单位阶跃信号
u(t ) 单位阶跃信号的记作 , 其定义为: 0 t 0 u (t ) t0 1
t0 在跳变点 处无定义 。
图1.17 单位阶跃信号
§1.2.2 奇异信号
n n2
2
1 P x[n] n n 1 n 2 1 n
1
2
在无穷大区间内,离散时间信号总能量E和平均功率P分别定义为
E lim
N n N
N
x ( n)
2
n
x n
2
N 2 1 p lim x n N 2 N 1 n N
信号与系统——第一章 信号与系统概论(1)

图1-1 各类信号:
二、周期信号与非周期信号
如图1-1(c)所示,周期信号是按某一固定周期重 复出现的信号,它可表示为
f (t ) f (t nT )
其中,T为周期,任何周期信号都可表示为仅在 基本周期内取非零值的有限长信号的周期延拓, 即
f (t ) t 0, T f1 (t ) f (t ) f1 (t nT ) t 0, T 0 n
第一章 信号与系统概论
学习要点: 1. 信号与系统课程的重要性; 2. 信号的概念、分类与运算; 3. 系统的概念、分类与联接形式; 4. 系统的线性性、时不变性、因果性和稳定性的定 义与判断。
§ 1-1 引
言
信号与系统是在电工原理的基础上发展起 来的,并随着电子工程、通信工程、计算 机和信息技术的飞速发展而不断地发展与 完善。 在信号与系统学科的发展中,微分方程、 差分方程理论,傅里叶(Fourier)变换、 拉普拉斯(Laplace)变换、离散傅里叶 变换和Z变换等正交变换理论起着十分重 要的作用。 二十世纪四十年代创立的系统论、信息论 与控制论极大地推动了信号与系统学科的 发展。
能量信号和功率信号的判断方法
判断能量信号和功率信号的方法: 先计算信号能量,若为有限值则为能量信号, 同时也必是功率信号;否则,计算信号功率,若 为有限值则为功率信号;若上述两者均不符合, 则信号既不是能量信号,也不是功率信号。
连续时间信号能量:E
f (t ) dt
2
1 连续时间信号功率:P lim T 2T
+ -
T
T
f (t ) dt
2
《信号与系统》第一章 北京理工大学

t ' at b
t 1 ' (t b) a
7移位
t ' t b (a 1) t t' b
若b>0,信号波形左移;b<0,信号波形右移
8 反转
t ' t (a 1, b 0)
P8 图1-11
反转的结果就是使原信号波形绕纵轴反折180度。
9 尺度变换
声音发射接收系统
1.2 信号的定义与描述 1.2.1 信号的定义
信号:载有一定信息的一种变化着的物理量。
1 信号不是信息; 2 信号是物理量,可以是力信号、电信号、声音信号、 图象信号
1.2.2 信号的描述
1 数学公式: 信号可以表示为一个或多个独立变量的函数。 •物理量值为一个独立变量的函数时,称为一维函数 x(t ) •物理量值是两个独立变量的函数,称为二维函数 f ( x, y) •物理量值是三个独立变量的函数,称为三维函数 f ( x, y, t ) 2 波形图形:
1.3 信号的分类
按照x(t)是否按照一定时间间隔重复 周期信号 周期信号和非
周期信号 :按一定的时间间隔重复变化
周期信号的重复周期由其最小重复间隔确定,连续时 间信号以T表示,序列以整数N表示。
f (t)
f (t)
A … … -4 -2 0 2 4 6 k
-T
T 2
o
T 2 -A
T
u (t )
1, t 0
延迟冲激函数的积分等于延迟阶跃函数,即
(t t 0 ) dt
1, t t 0 0, t t 0
2) 函数等于单位阶跃函数的导数,即 (t ) du(t )
信号与系统基础-第1章

单位阶跃信号是从实际应用中抽象出来的。比如,图1-14中S 的在开t关 0 时刻闭合, 则理想情况下电阻R 上的电压uR (t) (t)
(t) 1
0
t
图1-12 单位阶跃信号
K
E 1V uR (t) (t) R
图1-13 单位阶跃信号实例
(t)
def
0, 1,
(t 0) (t 0)
确知信号虽然不用于通信,但可以作为基本信号对系统的特性进行分析研究, 其研究方法和结果可以直接推广或借鉴到随机信号的分析中去,这就是研究确知信号 的意义所在。
23
1.3 基本连续信号
现实生活中,信号的种类繁多,要想逐个研究是不可能的。因此,人们从各 种信号中挑选出一些基本信号加以研究。主要原因是
(1)基本信号可以通过数学手段去精确或近似表征其他信号,比如傅里叶级数 的基本形式是正弦和余弦信号,但它们可以表示绝大多数不同形式的周期信号( 详见第4章)。
11
1.2 信号的分类
S
f (t)
yS (t)
p(t)
0
t
0 Ts
t
0
t
(a)抽样概念示意图
F ( / f ) 低通型信号频谱
F ( / f ) 带通型信号频谱
0
fL
fH
/ f 0
fL fH
/ f
(b)低通、带通信号示意图
图1-4 抽样及低通、带通信号概念示意图
12
1.2 信号的分类
离散信号有以下主要特点: (1)虽然自变量取离散值,但因变量(幅值) 的取值可以是连续的(即有无穷个可能的取值), 也可以是离散的。 (2)其图形是出现在离散自变量点上的一系列 垂直线段。
1 2
(t) 1
0
t
图1-12 单位阶跃信号
K
E 1V uR (t) (t) R
图1-13 单位阶跃信号实例
(t)
def
0, 1,
(t 0) (t 0)
确知信号虽然不用于通信,但可以作为基本信号对系统的特性进行分析研究, 其研究方法和结果可以直接推广或借鉴到随机信号的分析中去,这就是研究确知信号 的意义所在。
23
1.3 基本连续信号
现实生活中,信号的种类繁多,要想逐个研究是不可能的。因此,人们从各 种信号中挑选出一些基本信号加以研究。主要原因是
(1)基本信号可以通过数学手段去精确或近似表征其他信号,比如傅里叶级数 的基本形式是正弦和余弦信号,但它们可以表示绝大多数不同形式的周期信号( 详见第4章)。
11
1.2 信号的分类
S
f (t)
yS (t)
p(t)
0
t
0 Ts
t
0
t
(a)抽样概念示意图
F ( / f ) 低通型信号频谱
F ( / f ) 带通型信号频谱
0
fL
fH
/ f 0
fL fH
/ f
(b)低通、带通信号示意图
图1-4 抽样及低通、带通信号概念示意图
12
1.2 信号的分类
离散信号有以下主要特点: (1)虽然自变量取离散值,但因变量(幅值) 的取值可以是连续的(即有无穷个可能的取值), 也可以是离散的。 (2)其图形是出现在离散自变量点上的一系列 垂直线段。
1 2
第1章-信号与系统(陈生潭)

1 2 3 4 5
k
图 1 3 2 离 散 信 号 的 相 加 和 相 乘
. -
1 2 3 4 5
k
第 1 章 信号与系统的基本概念
1.3.2 翻转、平移和展缩
将信号 f(t)( 或 f(k)) 的自变量 t( 或 k) 换成 -t( 或 -k) ,得到另一 个信号f(-t)(或f(-k)), 称这种变换为信号的翻转。它的几何意 义是将自变量轴“倒置”, 取其原信号自变量轴的负方向作 为变换后信号自变量轴的正方向。或者按照习惯, 自变量轴 不“倒置”时,可将f(t)或f(k)的波形绕纵坐标轴翻转180°, 即为f(-t)或f(-k)的波形, 如图1.3-3所示。
能量E=∞),则称此信号为功率有限信号,简称功率信号
离散信号f(k)的能量定义为
E f (k )
k
2
第 1 章 信号与系统的基本概念
1.2 信号的基本特性
信号的基本特性包括时间特性、 频率特性、 能量特性和
信息特性。
在一定条件下,一个复杂信号可以分解成众多不同频率的
正弦分量的线性组合,其中每个分量都具有各自的振幅和相位。
2
4 k
t) 第 1 章f ( 信号与系统的基本概念
f (k )
-2
0
2
t
-3
0
3
k
f (t -2)
f (k -2)
0
2
4
t
-2 0
2
4
6 k
f (t +2)
f (k +2)
-4
-2
0 (a )
t
-6 -4 -2 0 (b )
2
ቤተ መጻሕፍቲ ባይዱ
信号与系统第一章信号 (1)

01
信号与系统
02
信号的描述分类与典型示例
03
信号的运算
04
阶跃信号与冲激信号
05
信号的分解
不连续点(跳变点) • [定义1]:函数本身有不连续点(跳变点)或其导数与积分有不连 奇异信号 续点的情况,这类函数统称为奇异函数或奇异信号。 • (一)单位斜变:Unit Ramp Function
0 t 0 f (t ) t t 0
f (t)
画出 f (2 – t)。
o
1 1 t
注意:是对t 的变换!
法一:①先平移f (t) → f (t +2) ②再反转 f (t +2) → f (– t +2)
左移
f (t +2) 1 -2 -1 o t
法二:①先反转 f (t) → f (– t)
f (t) 1 o 1 t
1 -1
f (- t )
连续时间信号→离散时间信号
在离散时间信号携带了连续时间所有的信息量时,两者就等价了—— 采样定理
Page 13
时 幅 度 间 连续 离散
连 续
Analog
t
t
Digital
离 散
t t
第14页
(一)指数信号 – 表现形式 f t Ke st
t
都是实数
s j
f (t) 1 o 1 t
右移t → t – 1
f (t-1) 1 o 1 2 t
左移t → t + 1
-1
f (t+1) 1 o t
Page 19
(一)移位、反褶与尺度(自变量变换) ② 反褶
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
描述信号的常用方法(1)表示为时间的函数 (2)信号的图形表示--波形
“信号”与“函数”两词常相互通用。
二、信号的分类
1. 确定信号和随机信号
可以用确定时间函数表示的信号,称为确定信 号或规则信号。如正弦信号。
若信号不能用确切的函数描述,它在任意时刻 的取值都具有不确定性,只可能知道它的统计特性, 如在某时刻取某一数值的概率,这类信号称为随机 信号或不确定信号。电子系统中的起伏热噪声、雷 电干扰信号就是两种典型的随机信号。
系统的基本作用是对输 输入信号 入信号进行加工和处理,将 其转换为所需要的输出信号。 激励
输出信号
系统
响应
1.2 信号的描述 和分类
一、信号的描述
信号是信息的一种物理体现。它一般是随时间 或位置变化的物理量。
信号按物理属性分:电信号和非电信号。它们 可以相互转换。电信号容易产生,便于控制,易于 处理。本课程讨论电信号---简称“信号”。 电信号的基本形式:随时间变化的电压或电流。
上启下的作用 。
1、课程特点
• 与《电路分析》比较,更抽象,更一般化; • 应用数学知识较多,用数学工具分析物理概念;
(信号与系统课程的核心,是教会我们如何利用数学工
具,解决实际工程问题) • 主要工具:
微分、积分、线性代数、复变函数、微分方程 、 差分方程;
2、主要内容
信号与系统课程的知识结构,可以概括为一个 任务,两种系统,两类方法,三大变换
性质 4、熟练掌握系统框图和微分方程,差分方程的关系 5、熟悉LTI系统的特性,了解LTI系统的分析方法 重点和难点: 对各类信号的区分及其运算,及其物理意义 根据框图写出微分或者差分方程
1.1 绪 论
什么是信号?什么是系统?为什么把这两个概念 连在一起?
一、信号的概念
1. 消息(message):
人们常常把来自外界的各种报道统称为消息。
2. 信息(information): 它是信息论中的一个术语。
通常把消息中有意义的内容称为信息。 本课程中对“信息”和“消息”两词不加严格 区分。
3. 信号(signal):
信号是信息的载体。通过信号传递信息。
为了有效地传播和利用信息,常常需要将 信息转换成便于传输和处理的信号。
信号与系统
课程性质
电子信息类专业重要的专业基础课; 教学对象的扩大(电子信息、自动控制、
电子技术、电气工程、计算机技术、生物医学
工程等);
先修课
后续课程
《高等数学》 《通信原理》
《线性代数》 《数字信号处理》
《复变函数》 《自动控制原理》
《电路分析基础》 ……
该课程是将学生从电路分析的知识领域引入信号 处理与传输领域的关键性课程,在教学环节中起着承
要做到:理解概念、掌握方法、多 做多练、融会贯通。
4、教材
“十五”国家级规划教材
信号与线性系统分析(第四版)
吴大正 主编
高等教育出版社,2005.8
5、参考书目
(1) 信号与系统(第二版) 上、下册 郑君里、应启珩 、 杨为理 北京. 高等教育出版社. 2000年5月
(2)《信号与线性系统分析习题全解》 宋琪编 配套信 号与线性系统分析 第4版 吴大正主编 (3) 信号与系统___郑君里_习题全解
tk(k = 0,±1,±2,…)才有定义,
f(t)
其余时间无定义。
2
相邻离散点的间隔Tk=tk+1-tk可 1
2 1
以相等也可不等。通常取等间隔T, 离散信号可表示为f(kT),简写为 t-1
o
t1 t2 t3 t4
t
f(k),这种等间隔的离散信号也常
-1.5
称为序列。其中k称为序号。
值域连 续
f1(t) = sin(π t)
1
o1 -1
2t
f2(t) 1
o1 2 t -1
值域不 连续
离散时间信号:ຫໍສະໝຸດ 仅在一些离散的瞬间才有定义的信号称为离散时间
信号,简称离散信号。实际中也常称为数字信号。
这里的“离散”指信号的定义域—时间是离散的,
它只在某些规定的离散瞬间给出函数值,其余时间无定
义如。右图的f(t)仅在一些离散时刻
系统的分析方法: 状态变量法(内部法)(chp.8)
时域分析(chp.2,chp.3)
外部法
连续系统—频域法(4)和复频域法(5)
变换域法 离散系统—z域法(chp6)
系统特性:系统函数(chp.7)
系统
本章主要内容: 1、掌握信号、系统的基本概念,信号的分类及其区别 2、熟练掌握信号的基本运算(加减乘、反转、平移) 3、熟练掌握阶跃函数和冲激函数的物理意义、运算及其
十字路口的红绿灯—光信号,指挥交通; 电视机天线接受的电视信息—电信号; 广告牌上的文字、图象信号等等。
二、系统的概念
信号的产生、传输和处理需要一定的物理装置, 这样的物理装置常称为系统。
一般而言,系统(system)是指若干相互关联的 事物组合而成具有特定功能的整体。
如手机、电视机、通信网、计算机网等都可以 看成系统。它们所传送的语音、音乐、图象、文字 等都可以看成信号。信号的概念与系统的概念常常 紧密地联系在一起。
6、其他问题
• 作业要求---每章一次;不能只有答案; • 成绩构成---平时成绩(30%) • 考试方式---闭卷笔试(70%) • 纪律
LTI系统分析概述
系统分析研究的主要问题:对给定的具体系统,求
出它对给定激励的响应。
具体地说:系统分析就是建立表征系统的数学方程
并求出解答。 输入输出法(外部法)
研究确定信号是研究随机信号的基础。本课程 只讨论确定信号。
2. 连续信号和离散信号
根据信号定义域的特点可分为连续时间信号和离 散时间信号。
(1)连续时间信号:
在连续的时间范围内(-∞<t<∞)有定义的信号 称为连续时间信号,简称连续信号。实际中也常称 为模拟信号。
这里的“连续”指函数的定义域—时间是连续 的,但可含间断点,至于值域可连续也可不连续。
一个任务:分析系统对信号的响应 两种系统:连续时间系统,离散时间系统 两类方法:时域法,变换域法 三大变换:傅里叶变换,拉斯变换,z变换
3、学习方法
• 注重物理概念与数学分析之间的对照,注意 分析结果的物理解释; •在学习中要淡化数学背景,不要在繁琐的数 学中过多纠缠,打破对课程的恐惧感; • 同一问题可有多种解法,应寻找最简单、最 合理的解法,比较各方法之优劣; • 不要当成数学课程来学习;
“信号”与“函数”两词常相互通用。
二、信号的分类
1. 确定信号和随机信号
可以用确定时间函数表示的信号,称为确定信 号或规则信号。如正弦信号。
若信号不能用确切的函数描述,它在任意时刻 的取值都具有不确定性,只可能知道它的统计特性, 如在某时刻取某一数值的概率,这类信号称为随机 信号或不确定信号。电子系统中的起伏热噪声、雷 电干扰信号就是两种典型的随机信号。
系统的基本作用是对输 输入信号 入信号进行加工和处理,将 其转换为所需要的输出信号。 激励
输出信号
系统
响应
1.2 信号的描述 和分类
一、信号的描述
信号是信息的一种物理体现。它一般是随时间 或位置变化的物理量。
信号按物理属性分:电信号和非电信号。它们 可以相互转换。电信号容易产生,便于控制,易于 处理。本课程讨论电信号---简称“信号”。 电信号的基本形式:随时间变化的电压或电流。
上启下的作用 。
1、课程特点
• 与《电路分析》比较,更抽象,更一般化; • 应用数学知识较多,用数学工具分析物理概念;
(信号与系统课程的核心,是教会我们如何利用数学工
具,解决实际工程问题) • 主要工具:
微分、积分、线性代数、复变函数、微分方程 、 差分方程;
2、主要内容
信号与系统课程的知识结构,可以概括为一个 任务,两种系统,两类方法,三大变换
性质 4、熟练掌握系统框图和微分方程,差分方程的关系 5、熟悉LTI系统的特性,了解LTI系统的分析方法 重点和难点: 对各类信号的区分及其运算,及其物理意义 根据框图写出微分或者差分方程
1.1 绪 论
什么是信号?什么是系统?为什么把这两个概念 连在一起?
一、信号的概念
1. 消息(message):
人们常常把来自外界的各种报道统称为消息。
2. 信息(information): 它是信息论中的一个术语。
通常把消息中有意义的内容称为信息。 本课程中对“信息”和“消息”两词不加严格 区分。
3. 信号(signal):
信号是信息的载体。通过信号传递信息。
为了有效地传播和利用信息,常常需要将 信息转换成便于传输和处理的信号。
信号与系统
课程性质
电子信息类专业重要的专业基础课; 教学对象的扩大(电子信息、自动控制、
电子技术、电气工程、计算机技术、生物医学
工程等);
先修课
后续课程
《高等数学》 《通信原理》
《线性代数》 《数字信号处理》
《复变函数》 《自动控制原理》
《电路分析基础》 ……
该课程是将学生从电路分析的知识领域引入信号 处理与传输领域的关键性课程,在教学环节中起着承
要做到:理解概念、掌握方法、多 做多练、融会贯通。
4、教材
“十五”国家级规划教材
信号与线性系统分析(第四版)
吴大正 主编
高等教育出版社,2005.8
5、参考书目
(1) 信号与系统(第二版) 上、下册 郑君里、应启珩 、 杨为理 北京. 高等教育出版社. 2000年5月
(2)《信号与线性系统分析习题全解》 宋琪编 配套信 号与线性系统分析 第4版 吴大正主编 (3) 信号与系统___郑君里_习题全解
tk(k = 0,±1,±2,…)才有定义,
f(t)
其余时间无定义。
2
相邻离散点的间隔Tk=tk+1-tk可 1
2 1
以相等也可不等。通常取等间隔T, 离散信号可表示为f(kT),简写为 t-1
o
t1 t2 t3 t4
t
f(k),这种等间隔的离散信号也常
-1.5
称为序列。其中k称为序号。
值域连 续
f1(t) = sin(π t)
1
o1 -1
2t
f2(t) 1
o1 2 t -1
值域不 连续
离散时间信号:ຫໍສະໝຸດ 仅在一些离散的瞬间才有定义的信号称为离散时间
信号,简称离散信号。实际中也常称为数字信号。
这里的“离散”指信号的定义域—时间是离散的,
它只在某些规定的离散瞬间给出函数值,其余时间无定
义如。右图的f(t)仅在一些离散时刻
系统的分析方法: 状态变量法(内部法)(chp.8)
时域分析(chp.2,chp.3)
外部法
连续系统—频域法(4)和复频域法(5)
变换域法 离散系统—z域法(chp6)
系统特性:系统函数(chp.7)
系统
本章主要内容: 1、掌握信号、系统的基本概念,信号的分类及其区别 2、熟练掌握信号的基本运算(加减乘、反转、平移) 3、熟练掌握阶跃函数和冲激函数的物理意义、运算及其
十字路口的红绿灯—光信号,指挥交通; 电视机天线接受的电视信息—电信号; 广告牌上的文字、图象信号等等。
二、系统的概念
信号的产生、传输和处理需要一定的物理装置, 这样的物理装置常称为系统。
一般而言,系统(system)是指若干相互关联的 事物组合而成具有特定功能的整体。
如手机、电视机、通信网、计算机网等都可以 看成系统。它们所传送的语音、音乐、图象、文字 等都可以看成信号。信号的概念与系统的概念常常 紧密地联系在一起。
6、其他问题
• 作业要求---每章一次;不能只有答案; • 成绩构成---平时成绩(30%) • 考试方式---闭卷笔试(70%) • 纪律
LTI系统分析概述
系统分析研究的主要问题:对给定的具体系统,求
出它对给定激励的响应。
具体地说:系统分析就是建立表征系统的数学方程
并求出解答。 输入输出法(外部法)
研究确定信号是研究随机信号的基础。本课程 只讨论确定信号。
2. 连续信号和离散信号
根据信号定义域的特点可分为连续时间信号和离 散时间信号。
(1)连续时间信号:
在连续的时间范围内(-∞<t<∞)有定义的信号 称为连续时间信号,简称连续信号。实际中也常称 为模拟信号。
这里的“连续”指函数的定义域—时间是连续 的,但可含间断点,至于值域可连续也可不连续。
一个任务:分析系统对信号的响应 两种系统:连续时间系统,离散时间系统 两类方法:时域法,变换域法 三大变换:傅里叶变换,拉斯变换,z变换
3、学习方法
• 注重物理概念与数学分析之间的对照,注意 分析结果的物理解释; •在学习中要淡化数学背景,不要在繁琐的数 学中过多纠缠,打破对课程的恐惧感; • 同一问题可有多种解法,应寻找最简单、最 合理的解法,比较各方法之优劣; • 不要当成数学课程来学习;