钢筋抗拉实验报告,混凝土抗压,坍落度
钢筋实验报告

钢筋实验报告一、实验目的。
本实验旨在通过对钢筋的拉伸实验,了解钢筋的力学性能,验证钢筋的强度和延展性,为工程设计和施工提供可靠的依据。
二、实验原理。
钢筋是一种常用的建筑材料,具有良好的韧性和抗拉强度。
在建筑结构中,钢筋承担着重要的承载作用。
钢筋的力学性能主要包括屈服强度、抗拉强度、断裂伸长率等指标。
拉伸实验是通过对钢筋施加拉力,观察其受力性能和断裂特点,来评价钢筋的力学性能。
三、实验过程。
1. 准备工作,选取标准的钢筋试样,并进行表面清洁处理,确保试样表面光滑无损。
2. 实验设备,使用拉力试验机,根据实验要求设置相应的拉伸速度和加载方式。
3. 实验操作,将试样固定在拉力试验机上,施加逐渐增大的拉力,记录拉力和伸长量的变化。
4. 数据处理,根据实验数据,计算钢筋的屈服强度、抗拉强度和断裂伸长率等指标。
四、实验结果。
通过实验得到的数据如下:1. 钢筋的屈服强度为XXXMPa,抗拉强度为XXXMPa,断裂伸长率为XX%。
2. 实验中观察到钢筋在受力过程中呈现出一定的塑性变形,具有良好的延展性。
3. 钢筋在达到抗拉强度后出现断裂,断裂面呈现出典型的拉伸断裂特征。
五、实验分析。
根据实验结果,可以得出以下结论:1. 钢筋具有较高的屈服强度和抗拉强度,能够满足工程结构的承载要求。
2. 钢筋具有一定的延展性,能够在一定范围内发生塑性变形,有利于结构的抗震和变形能力。
3. 钢筋的断裂伸长率较高,表明其具有良好的韧性和抗拉性能。
六、实验结论。
通过本次实验,验证了钢筋的力学性能,为工程设计和施工提供了可靠的依据。
钢筋具有较高的屈服强度、抗拉强度和良好的延展性,能够满足工程结构的设计要求。
七、实验注意事项。
1. 实验过程中需注意安全,严格按照操作规程进行操作。
2. 实验数据的准确性和可靠性对于结论的正确性至关重要,应严格控制实验条件和操作过程。
3. 实验结束后,及时清理实验设备,做好实验记录和数据整理工作。
八、参考文献。
建筑材料试验记录

建筑材料试验记录试验概述本次试验旨在测试和评估不同建筑材料的性能表现。
试验包括以下材料:1. 钢筋:采用直径为12mm的钢筋2. 混凝土:采用标准配制比例的混凝土3. 砖块:采用标准尺寸的砖块试验装置试验装置主要包括以下设备:1. 试验机:用于测试钢筋的拉伸和压缩性能2. 承重平台:用于测试混凝土的抗压性能3. 破碎试验机:用于测试砖块的抗压强度试验步骤1. 钢筋试验- 将钢筋样品放入试验机中- 逐渐施加拉伸力或压缩力,并记录相应的变形和载荷数据- 持续增加载荷直至钢筋发生断裂- 记录并分析断裂点的数据2. 混凝土试验- 制备混凝土试样,并保持标准养护条件- 将混凝土试样放置于承重平台上- 逐渐增加载荷,并记录载荷和相应的变形数据- 持续增加载荷直至混凝土试样发生破坏- 记录并分析破坏点的数据3. 砖块试验- 选取标准尺寸的砖块样本- 将砖块样本放入破碎试验机中- 施加逐渐增加的压力直至砖块破碎- 记录并分析破碎时的压力数据试验结果和分析针对不同建筑材料的试验数据,进行结果和分析如下:钢筋试验结果根据试验数据分析,钢筋的拉伸强度为X MPa,压缩强度为Y MPa。
混凝土试验结果根据试验数据分析,混凝土的抗压强度为Z MPa。
砖块试验结果根据试验数据分析,砖块的抗压强度为W MPa。
结论根据上述试验结果和数据分析,我们可以得出以下结论:- 钢筋具有较高的拉伸和压缩强度,适用于承受大的荷载和应力的结构部件。
- 混凝土具有一定的抗压能力,适用于建筑物的基础和支撑结构。
- 砖块具有一定的抗压强度,适用于建筑物的墙体和隔墙结构。
参考资料- 相关建筑和材料标准及规范- 材料供应商提供的技术资料- 建筑结构设计手册及相关研究论文以上为建筑材料试验记录的详细内容。
如有疑问或需要进一步信息,请随时与我们联系。
最新混凝土坍落度实验报告

最新混凝土坍落度实验报告
混凝土坍落度实验是评估混凝土流动性和工作性的重要方法。
本报告基于最新的实验数据,对混凝土的坍落度进行了详细分析。
实验目的:
确定混凝土混合物的最佳坍落度值,以便在施工过程中实现最佳的易操作性和结构稳定性。
实验材料:
- 不同等级的水泥
- 细骨料(河砂)
- 粗骨料(碎石)
- 外加剂(减水剂、缓凝剂等)
- 水
实验方法:
1. 按照预定的配合比,准确称量各种材料。
2. 将粗骨料、细骨料和水泥混合均匀。
3. 逐渐加入外加剂和水,继续搅拌至混合物均匀。
4. 将混凝土样本倒入坍落度筒中,平整表面。
5. 拔起筒体,让混凝土自由坍塌,测量坍塌后的混凝土高度。
6. 记录数据,并进行三次重复实验以确保结果的准确性和可重复性。
实验结果:
实验数据显示,不同配合比和外加剂的类型对混凝土的坍落度有显著影响。
通过对比分析,我们发现最优的配合比能够使得混凝土达到理想的坍落度,即在保证混凝土流动性的同时,还能维持良好的塑性。
结论:
本实验报告提供了关于混凝土坍落度的详细数据和分析,为施工团队
在选择混凝土配合比时提供了科学依据。
通过优化配合比和合理使用
外加剂,可以有效提高混凝土的工作性,确保施工质量和结构安全。
未来的研究将进一步探讨环境因素和长期性能对混凝土坍落度的影响。
坍落度试验报告

坍落度试验报告1. 背景介绍坍落度试验是一种用于测量混凝土流动性的常用方法。
通过测量混凝土在自由状态下从坍落锥中流出的高度,可以评估混凝土的流动性和可塑性,从而确定混凝土的工作性能。
本报告将介绍坍落度试验的目的、试验方法、结果分析和结论,以帮助读者了解该试验的意义和应用。
2. 试验目的本次坍落度试验的主要目的是评估混凝土的流动性和可塑性,并根据结果判断混凝土的工作性能。
具体目标如下:1.测量混凝土在自由状态下从坍落锥中流出的高度,得到坍落度数值。
2.根据坍落度数值,评估混凝土的流动性和可塑性。
3.利用评估结果,判断混凝土的工作性能,以便于在工程中选择合适的混凝土。
3. 试验方法3.1 试验设备与材料本次试验所需的设备与材料如下:•坍落锥:用于测量混凝土的坍落度,具有特定的几何尺寸和形状。
•流动性模具:用于固定坍落锥,保持试验过程的稳定性。
•注液器:用于将混凝土样品注入坍落锥。
•混凝土样品:使用标准混凝土配合比制备的混凝土样品。
3.2 试验步骤本次试验的具体步骤如下:1.将流动性模具放置在水平台面上,并将坍落锥固定在流动性模具的中央位置。
2.搅拌混凝土样品,并将其转移到注液器中。
3.将注液器的喷嘴对准坍落锥的中心孔,缓慢注入混凝土样品,直到坍落度试验完成。
4.缓慢且连续地将注液器抬离坍落锥,避免对混凝土样品造成干扰。
5.观察混凝土从坍落锥中流出的高度,并以毫米为单位记录坍落度数值。
3.3 数据记录与计算在试验过程中,应及时记录混凝土从坍落锥中流出的高度。
将记录的数据整理成表格,并计算出平均坍落度数值。
4. 试验结果与讨论根据进行的坍落度试验,得到了如下的试验结果:试验次数坍落度数值(mm)1 1502 1553 152平均值152.33根据上述结果,可以得出结论:本次试验所制备的混凝土样品具有良好的流动性和可塑性。
平均坍落度数值为152.33mm,说明混凝土在自由状态下具有较高的流动性,并且可以满足工程需要。
钢筋拉拔试验报告

钢筋拉拔试验报告1. 引言钢筋拉拔试验是工程结构设计和施工中常用的一种试验方法,用于评估钢筋与混凝土的粘结性能,为工程结构的安全性提供依据。
本文将介绍钢筋拉拔试验的目的、试验方法、实验过程以及结果分析。
2. 试验目的钢筋拉拔试验的主要目的是评估钢筋与混凝土的粘结强度,并确定钢筋破坏的方式。
通过试验结果,可以判断钢筋与混凝土的粘结性能是否满足设计要求,为结构工程的安全性提供依据。
3. 试验方法3.1 试验样品的准备根据设计要求,选择适当规格的钢筋和混凝土,制作试验样品。
确保样品的尺寸和配筋满足试验要求,并进行标记以便后续分析。
3.2 试验设备的准备准备拉拔试验机、计时器、力传感器等试验设备,并进行校准。
确保试验设备的准确性和可靠性,以保证试验结果的准确性。
3.3 试验步骤 - 将试验样品放置在拉拔试验机上,确保样品的位置正确。
- 施加初始荷载,使荷载均匀施加在试验样品上。
- 开始施加拉力,逐渐增加荷载直至试验样品破坏。
- 记录试验过程中的荷载和位移数据。
3.4 试验参数的测定通过试验过程中记录的荷载和位移数据,可以计算出钢筋与混凝土之间的粘结强度、极限抗拉力等参数。
根据试验结果,可以进行进一步的分析和评估。
4. 实验过程本次试验选取了10根不同规格的钢筋作为试验样品,并按照3.3中的试验步骤进行拉拔试验。
试验过程中,记录了每根试样的荷载和位移数据,并进行了数据处理。
5. 结果分析经过数据处理和分析,得到了每根试样的粘结强度和极限抗拉力等参数。
通过对比试验结果和设计要求,可以评估钢筋与混凝土的粘结性能是否符合要求。
6. 结论根据试验结果分析,可以得出如下结论: - 钢筋与混凝土之间的粘结强度满足设计要求。
- 极限抗拉力符合工程结构的安全性要求。
7. 建议根据试验过程中的实际情况和结果分析,提出以下建议: - 在实际工程中,应合理选择钢筋和混凝土的规格和配筋方式,以提高结构的安全性和可靠性。
- 针对本次试验中发现的问题和不足,可以进一步改进试验方法和设备,提高试验的准确性和可靠性。
常规建筑材料检测标准及取样方法

常规建筑材料检测标准及取样方法在建筑工程中,使用的材料质量直接关系到建筑物的安全性、耐久性和使用功能。
因此,对常规建筑材料进行严格的检测,并遵循正确的取样方法,是确保工程质量的关键环节。
一、水泥水泥是建筑工程中最常用的胶凝材料之一。
检测标准主要包括强度、凝结时间、安定性等指标。
强度检测:根据水泥的品种和强度等级,按照相应的标准制作试件,进行抗压和抗折强度测试。
凝结时间检测:分为初凝时间和终凝时间。
初凝时间是指从水泥加水搅拌开始到水泥浆开始失去可塑性所需的时间;终凝时间则是从加水搅拌到水泥浆完全失去可塑性并开始产生强度所需的时间。
安定性检测:通常采用沸煮法,检测水泥硬化后体积变化的均匀性。
取样方法:同一水泥厂、同一品种、同一强度等级、同一编号的水泥,袋装水泥不超过 200 吨为一批,散装水泥不超过 500 吨为一批。
从 20 个以上不同部位取等量样品,总量不少于 12 千克。
二、钢筋钢筋是建筑结构中的重要受力材料。
检测标准主要有抗拉强度、屈服强度、伸长率、弯曲性能等。
抗拉强度和屈服强度:通过拉伸试验测定,反映钢筋承受拉力的能力。
伸长率:衡量钢筋在拉断前的塑性变形能力。
弯曲性能:检验钢筋在弯曲加工时的性能。
取样方法:同一牌号、同一炉罐号、同一规格的钢筋,每 60 吨为一批。
在每批中任选两根钢筋,各截取两根试件,分别进行拉伸和弯曲试验。
试件长度根据试验设备和标准要求确定。
三、砂砂是混凝土和砂浆的重要组成材料。
检测标准包括颗粒级配、含泥量、泥块含量、坚固性等。
颗粒级配:确定砂的粗细程度和颗粒分布情况,影响混凝土和砂浆的和易性。
含泥量和泥块含量:过多的泥会降低混凝土和砂浆的强度和耐久性。
坚固性:反映砂在气候、环境变化或物理作用下的稳定性。
取样方法:在料堆上取样时,取样部位应均匀分布,先将表层铲除,然后从不同部位抽取大致等量的砂 8 份,组成一组样品。
以 400 立方米或 600 吨为一批。
四、石子石子在混凝土中起到骨架作用。
建筑工程实验检测方案

建筑工程实验检测方案建筑工程实验检测方案一、实验目的建筑工程实验检测旨在通过实验手段,对建筑材料的性能进行评估和检测,以确保其达到设计要求和使用安全标准。
二、实验内容1. 水泥检测:包括水泥初凝时间、终凝时间、标准稠度和抗压强度等指标的测定。
2. 混凝土检测:主要包括配合比试验、坍落度试验和抗压强度试验等。
3. 钢筋检测:主要包括钢筋直径、抗拉强度、屈服强度、延伸率和断面形状等指标的测定。
4. 沥青检测:主要包括黏度试验、延展性试验和软化点试验等。
5. 砖检测:主要包括吸水率、抗压强度、抗冻融性、吸水压力和吸水性能等的测定。
三、实验工具和设备1. 水泥试验箱、混凝土坍落度测试装置、压力机等。
2. 钢筋直径测量仪、万能试验机等。
3. 沥青试验仪、铁片、导热仪等。
4. 砖试验机、天平、水槽等。
四、实验步骤1. 水泥检测:将适量的水泥加入试验箱中,用钢杯和搅拌棒混合,准确控制水泥的含水量和搅拌时间,进行初凝时间和终凝时间的测定,最后进行抗压强度的试验。
2. 混凝土检测:按照设计要求制作混凝土试件,并进行配合比试验,测定不同比例下的坍落度、初凝时间和抗压强度,最后根据试验结果判断是否满足设计要求。
3. 钢筋检测:测量钢筋直径,使用万能试验机进行抗拉强度和屈服强度的测试,最后通过延伸率和断面形状的测定,评估钢筋的质量和性能。
4. 沥青检测:通过黏度试验、延展性试验和软化点试验等,评价沥青的粘度、延展性和抗融性能,以确保其能够满足路面使用的要求。
5. 砖检测:测量砖的吸水率、抗压强度、抗冻融性、吸水压力和吸水性能等指标,判断砖的质量和性能是否符合规定要求。
五、实验安全措施1. 所有实验人员必须佩戴安全帽、口罩、耳塞等个人防护装备。
2. 在使用压力机和试验机等设备时,必须按照操作规程进行操作,严禁超负荷使用。
3. 在进行水泥和混凝土试验时,要注意避免皮肤接触水泥和混凝土,以免引起过敏反应。
4. 在进行沥青试验时,要注意防止沥青的溅出和滴落,以免引起烫伤。
土木工程实验报告

土木工程实验报告一、实验目的。
本次实验旨在通过对土木工程材料的性能进行测试和分析,以验证其在实际工程中的可行性和适用性。
具体目的包括,1. 测定混凝土的抗压强度和抗折强度;2. 测定钢筋的抗拉强度和屈服强度;3. 测定砂浆的抗压强度和抗折强度。
二、实验原理。
1. 混凝土抗压强度测试,采用标准试件进行压力加载,通过压力载荷和试件变形的关系,计算出混凝土的抗压强度。
2. 混凝土抗折强度测试,采用标准试件进行弯曲加载,通过加载曲线和试件变形的关系,计算出混凝土的抗折强度。
3. 钢筋抗拉强度测试,采用标准试件进行拉伸加载,通过加载曲线和试件变形的关系,计算出钢筋的抗拉强度。
4. 钢筋屈服强度测试,采用标准试件进行拉伸加载,通过加载曲线和试件变形的关系,计算出钢筋的屈服强度。
5. 砂浆抗压强度测试,采用标准试件进行压力加载,通过压力载荷和试件变形的关系,计算出砂浆的抗压强度。
6. 砂浆抗折强度测试,采用标准试件进行弯曲加载,通过加载曲线和试件变形的关系,计算出砂浆的抗折强度。
三、实验步骤。
1. 准备混凝土、钢筋和砂浆试件,并标记好编号。
2. 进行混凝土抗压强度测试,将试件放入压力机中进行加载,记录载荷和试件变形。
3. 进行混凝土抗折强度测试,将试件放入弯曲试验机中进行加载,记录载荷和试件变形。
4. 进行钢筋抗拉强度测试,将试件放入拉伸试验机中进行加载,记录载荷和试件变形。
5. 进行钢筋屈服强度测试,将试件放入拉伸试验机中进行加载,记录载荷和试件变形。
6. 进行砂浆抗压强度测试,将试件放入压力机中进行加载,记录载荷和试件变形。
7. 进行砂浆抗折强度测试,将试件放入弯曲试验机中进行加载,记录载荷和试件变形。
四、实验结果与分析。
通过实验测试,得出混凝土的抗压强度为XXMPa,抗折强度为XXMPa;钢筋的抗拉强度为XXMPa,屈服强度为XXMPa;砂浆的抗压强度为XXMPa,抗折强度为XXMPa。
根据实验结果分析,所得数据符合设计要求,表明所测试的土木工程材料具有良好的性能和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3 砂的筛分析实验(1)实验目的测定砂的颗粒级配情况,计算细度模数,评定砂的粗细程度和级配情况。
(2)主要仪器设备摇筛机、标准筛(孔径为150m μ、300m μ、600m μ、1.18mm 、2.36mm 、4.75mm 、9.50mm 的方孔筛)、天平或电子称、烘箱、浅盘、毛刷和容器等。
(3)试样制备取1000g 试样,置于105℃±5℃的烘箱中烘至恒重,冷却至室温后先筛除大于9.50mm 的颗粒(并记录其含量),再分为相等的两份备用。
(4)实验方法及步骤1) 准确称取试样500g (精确至1g )。
2) 将标准筛按孔径由大到小顺序叠放,加底盘后,将试样倒入最上层4.75mm 筛内,加盖后,置于摇筛机上,摇筛10min (也可用手筛)。
3) 将整套筛自摇筛机上取下,按孔径大小,逐个用手工在洁净的盘上进行筛分,筛至每分钟通过量不超过试样总量的0.1%为止,通过的颗粒并入下一号筛内并和下一号筛中的试样一起过筛。
直至各号筛全部筛完为止。
4)称量各号筛的筛余量(精确至1g )。
分计筛余量和底盘中剩余重量的总和与筛分前的试样重量之比,其差值不得超过1%。
(5)实验结果计算1) 分计筛余百分率——各筛的筛余量除以试样总量的百分率,精确至0.1%。
2) 累计筛余百分率——该筛的分计筛余百分率与筛孔大于该筛的各筛的分计筛余百分率之和,精确到1%。
具体见表1。
表1 累计筛余与分计筛余计算关系(6)实验结果鉴定1)级配的鉴定:按国家规范规定的级配区范围(表2),判定属于哪个级配区,是否合格。
2)粗细程度鉴定:砂的粗细程度用细度模数x M 的大小来判定。
具体见下式。
()11654321005A A A A A A A M x --++++=式中,A 1、A 2、A 3、A 4、A 5、A 6分别为4.75mm 、2.36mm 、1.18mm 、600m μ、300m μ、150m μ孔径筛上的累计筛余百分率。
根据细度模数的大小来确定砂的粗细程度。
当x M =3.7~3.1时为粗砂;当x M =3.0~2.3时为中砂;当x M =2.2~1.6时为细砂; 3)筛分实验应采用两组试样进行,取两次结果的算术平均值作为测定结果,精确至0.1,若两次所得的细度模数之差大于0.2,应重新进行实验。
表2 颗粒级配2.3 砂的筛分实验砂的细度模数:x M =11654321005)(A A A A A A A --++++=结论:该砂属于 砂 ; 区砂 ;级配是否合格:4.混凝土性能实验4.1混凝土的拌和(1)实验目的掌握普通混凝土拌合物的拌制,为测定和调整混凝土的性能、进行混凝土配合比设计做好准备。
(2)主要仪器设备磅秤、天平、拌和钢板、钢抹子、量筒、拌铲等。
(2)拌和步骤(人工拌和法)1)按所定的配合比备料,以干燥状态为基准,根据所设计的初步配合比,称取15L混凝土拌合物所需各材料用量。
2)将拌板和拌铲用湿巾润湿后,将砂倒在拌板上,然后加入水泥,用拌铲自拌板一端翻拌至另一端,如此反复,直至充分混合,颜色均匀,再放入称好的粗骨料与之拌合,继续翻拌,直至混合均匀为止。
3)将干混合物堆成锥形,在中间作一凹槽,将已称量好的水,倒入一半左右(勿使水流出),然后仔细翻拌并徐徐加入剩余的水,继续翻拌,每翻拌一次,用铲在混合料上铲切一次。
4)测试过程力求动作敏捷,拌合时间从加水时算起,应符合标准规定:拌合物体积为30L以下时4~5min。
拌合物体积为30~50L时5~9min。
拌合物体积为51~75L时9~12min。
5)拌好后,应立即做和易性实验或试件成型,从开始加水时算起,全部操作须在30min 内完成。
混凝土配合比设计资料(1)混凝土强度等级: C(2)混凝土所用原材料:(3)混凝土的坍落度要求:mm;(4)根据耐久性要求允许的最大水灰比及最小水泥用量:(5)混凝土初步配合比:1立方米混凝土各种材料用量:m Co:kg m So:kg m Go:kg m Wo:kg试拌15L混凝土各种材料用量:m C15:kg m S15:kg m G15:kg m W15:kg4.2混凝土拌合物和易性实验(坍落度法)本方法适用于测定骨料最大粒径不大于40mm、坍落度不小于10mm的混凝土拌合物稠度测定。
(1)实验目的通过测定拌合物流动性,观察其粘聚性和保水性,综合评定混凝土的和易性,作为调整配合比和控制混凝土质量的依据。
(2)主要仪器设备台秤:称量50㎏,感量50g;天平:称量5㎏,感量1g;拌板(1.5m×2.0m左右)、量筒(200mL左右1个、2000ml左右2个)、拌铲等;标准坍落度筒:金属制圆锥体形,底部内径200mm,顶部内径100mm,高300mm,壁厚大于或等于1.5mm;弹头形捣棒:ф16×600mm;装料漏斗;直尺、抹刀、小铲等。
(3)测定步骤1)将润湿后的坍落度筒放在不吸水的刚性水平底板上,然后用脚踩住两边的脚踏板,使坍落度筒在装料时保持位置固定。
2)将已拌匀的混凝土试样用小铲分层装入筒内,数量控制在经插捣后层厚为筒高的1/3左右。
每层用捣棒插捣25次,插捣应沿螺旋方向由外向中心进行,各次插捣点在截面上均匀分布。
插捣筒边混凝土时,捣棒可以稍稍倾斜;插捣底层时,捣棒应贯穿整个深度;插捣第二层和顶层时,捣棒应插透本层至下一层的表面以下。
插捣顶层前,应将混凝土灌满高出坍落度筒,如果插捣使拌合物沉落到低于筒口,应随时添加使之高于坍落度筒顶,插捣完毕,用捣棒将筒顶搓平,刮去多余的混凝土。
清理筒周围的散落物,小心地垂直提起坍落度筒,特别注意平稳,不让混凝土试件受到碰撞或震动,筒体的提离过程应在5~10s内完成。
从开始装料到提起坍落度筒的操作不得间断,并应在150s内完成。
3)流动性测定:将筒放在拌合物试件一侧(注意整个操作基面要保持同一水平面),立即测量筒顶与坍落后拌合物试样最高点之间的高度差,以mm表示,即为该混凝土拌合物的坍落度值。
4)保水性目测:坍落度筒提起后,如有较多稀浆从底部析出,试样则因失浆使骨料外露,表示该混凝土拌合物保水性能不好。
若无此现象,或仅只少量稀浆自底部析出,而锥体部分混凝土试件含浆饱满,则表示保水性良好,并作记录。
5)粘聚性目测:用捣棒在已坍落的混凝土锥体一侧轻轻敲打,椎体渐渐下沉表示粘聚性良好;反之,椎体突然倒坍,部分崩裂或发生石子离析,表示粘聚性不好,并作记录。
若测得的坍落度小于施工要求的坍落度值,可在保持水灰比W/C不变的同时,增加5%或10%(或更多,按经验确定)的水泥、水的用量。
若测得的坍落度大于施工要求的坍落度值,可在保持砂率ßs不变得同时,增加5%或10%(或更多,按经验确定)的砂、石用量。
若粘聚性或保水性不好,则需适当调整砂率,并尽快拌和均匀,重新测定,直到和易性符合要求为止。
当坍落度筒提起后,若发现拌合物崩坍或一边剪切破坏,应立即重新拌和并重新实验,第二次实验又出现上述现象,则表示该混凝土拌合物和易性不好,应予以记录备查。
(4)结果评定1)混凝土拌合物坍落度值以毫米为单位,测量精确至1mm。
2)混凝土拌合物和易性评定,应按实验测定值和实验目测情况综合评定。
其中坍落度至少要测定两次,并以两次测定值之差不大于20mm的测定值为依据,求算术平均值作为本次实验的测定结果。
3)记录下调整前后拌合物的坍落度、保水性、粘聚性以及各材料实际用量,并以和易性符合要求后的各材料用量为依据,对混凝土配合比进行调整,求基准配合比。
4.2混凝土拌合物的和易性测定实验日期:室温:℃相对湿度:%4.3混凝土立方体抗压强度实验(1)实验目的测定混凝土立方体抗压强度,作为确定混凝土强度等级和调整配合比的依据。
(2)主要仪器设备压力实验机或万能实验机;钢垫板;标准养护室:温度(20±2)℃,相对湿度大于95%。
振动台;捣棒、小铁铲、金属直尺、镘刀等。
(3)试件制备1)选择同规格的试模三个组成一组。
将试模拧紧螺栓并清刷干净,内壁涂薄层矿物油,编号待用。
2)试模内装的混凝土应是同一次拌和的拌合物。
坍落度不大于70mm的混凝土,试件成型宜采用振动台振实;坍落度大于70mm的混凝土,试件成型宜采用捣棒人工捣实。
①振动台成型试件:将拌合物一次装入试模并稍高出模口,用镘刀沿试模内壁略加插捣后,移至振动台上,开动振动台,振动至表面呈现水泥浆为止,刮去多余拌合物并用镘刀沿模口抹平。
②人工捣棒捣实成型试件:将拌合物分两层装入试模,每层厚度大致相等。
沿螺旋方向从边缘向中心均匀进行插捣。
插捣底层时,捣棒应贯穿整个深度;插捣上层时,捣棒应插入下层深度20~30mm。
插捣时捣棒应保持垂直不得倾斜,并用抹刀沿试模内壁插入数次,以防止试件产生麻面。
每层插捣次数在1000mm2截面积内不得少于12次,然后刮去多余拌合物,并用镘刀抹平。
混凝土拌合物拌制后宜在15min内成型。
③成型后的试件应覆盖,防止水分蒸发,并在室温(20±5)℃环境中净置1~2昼夜(不得超过两昼夜),拆模编号(标记教学班、组号)。
④拆模后的试件立即放在标准养护室内养护。
试件在养护室内置于架子上,试件间距离应保持在10 ~20mm,并避免用水直接冲刷。
(4) 测定步骤试件从养护地点取出后,应尽快进行实验,以免试件内部的温湿度发生显著变化。
1) 将试件擦拭干净,测量尺寸,并检查外观。
试件尺寸测量精确至1mm ,据此计算试件的承压面积。
如实测尺寸与公称尺寸之差不超过1mm ,可按公称尺寸进行计算。
2) 将试件放在实验机的下压板上,试件的承压面应与成型时的顶面垂直。
试件的中心应与实验机下压板中心对准。
3) 在强度等级不小于C60的抗压强度实验时,试件周围应设防裂网罩。
如压力实验机上下压板不符合钢垫板要求,必须使用钢垫板。
4) 开动实验机,当上压板与试件接近时,调整球座,使接触均衡。
5) 应连续而均匀地加荷,预计混凝土强度等级<C30时,加荷速度每秒0.3~0.5MPa ;混凝土强度等级≥C60时,加荷速度每秒0.8~1.0MPa 。
当试件接近破坏而开始迅速变形时,停止调整实验机油门,直至试件破坏,然后记录破坏荷载。
(5)测定结果 试件的抗压强度cu f (MPa )按下式计算,即AP f cu式中 P ——破坏载荷,N ;A ——试件承压面积,mm 2。
取3个试件测定值的算术平均值作为该组试件的立方体抗压强度代表值(精确至0.1 MPa )。
如果3个测定值中的最大值或最小值中有一个与中间值的差超过中间值的15%,则把最大值和最小值一并舍去,取中间值作为该组试件的抗压强度代表值;如果最大值和最小值与中间值的差均超过15%,则该组实验结果无效。
4.3混凝土的立方体抗压强度测定实验日期: 室内相对湿度: % 室内温度: ℃(5)实验数据处理:(6)实验结论:5.钢筋实验5.1钢筋拉伸实验(1)实验目的:掌握钢筋拉伸实验的实验方法。