一次函数与方案设计问题
《4.2一次函数》作业设计方案-初中数学湘教版12八年级下册

《一次函数》作业设计方案(第一课时)一、作业目标本作业设计旨在通过一次函数的初步学习,使学生掌握一次函数的基本概念、性质及图像特征,并能够根据实际情境设立和解决与一次函数相关的问题。
同时,通过实践操作加深对一次函数知识的理解和运用。
二、作业内容本作业内容包括以下几个方面:1. 理论知识:学习一次函数的基本定义,包括函数的概念、自变量和因变量的关系,以及一次函数的表达式形式。
2. 函数图像:掌握一次函数的图像特点,理解斜率和截距的几何意义,并能根据函数表达式绘制其图像。
3. 实际应用:结合生活实例,学会用一次函数描述和解决实际问题,如路程、时间与速度的关系等。
4. 练习题:设计一系列练习题,包括选择题、填空题和解答题,以巩固学生对一次函数知识的掌握。
三、作业要求学生需按照以下要求完成作业:1. 理论学习:认真阅读教材中关于一次函数的内容,理解并掌握一次函数的基本概念和性质。
2. 图像绘制:利用数学软件或手工绘制一次函数的图像,标明斜率和截距。
3. 实际应用:选取一个实际情境,用一次函数进行描述,并解决相关问题。
要求问题描述清晰,解答过程完整。
4. 练习题:独立完成练习题,注意审题,理解题目意图,运用所学知识进行解答。
5. 作业格式:作业需整洁、规范,答案要清晰明了,步骤要完整。
如有需要,可附上解题过程或思路说明。
四、作业评价教师将根据以下标准对学生的作业进行评价:1. 理论知识掌握程度:是否理解一次函数的基本概念和性质。
2. 图像绘制质量:图像是否准确反映了一次函数的特性,斜率和截距的标示是否正确。
3. 实际应用能力:问题描述是否清晰,解答过程是否完整,是否能运用所学知识解决实际问题。
4. 练习题完成情况:答案是否准确,步骤是否完整,解题思路是否清晰。
五、作业反馈教师将根据学生的作业情况给予相应的反馈和建议:1. 对掌握较好的部分给予肯定和鼓励,激励学生继续努力。
2. 对存在问题的部分进行指导和纠正,帮助学生找出问题所在并加以改进。
一次函数应用题(选择方案)(一)

一次函数应用题(选择方案)(一)1类型一: 利用函数值的大小选择方案例1 紧俏商品,经过市场调查发现,如果月初出售,可获得15%的利润,并可用本和利再投资其他商品,到月末又可获利10%;如果月末出售可获利30%,但要付存储费700元,请根据商场的资金情况,判断一下选择哪种销售方式获利较多,并说明商场投资25000元时,哪种销售方式获利较多。
2 类型二选择购买方案例2 甲乙两家体育器材商店出售同样地乒乓球拍和乒乓球,球拍每幅定价60元,乒乓求每盒定价10元。
今年世界乒乓球锦标赛期间,两家商店都搞促销活动:甲商店规定每买1副乒乓球拍赠2盒乒乓球;乙商店规定所有商品9折优惠。
某校乒乓球队需要2副乒乓球拍,乒乓球若干盒(不少于4盒)设该校要买乒乓求x盒,所需商品在甲商店购买需用y1元,在乙商店购买需要用y2元。
(1)请分别写出y1、y2与之间的函数解析式(不注明自变量x的取值范围);(2)对x的取值情况进行分析,试说明在哪一家商店购买所需商品比较便宜;(3)若该校要买2副乒乓球拍和20盒乒乓球,在不考虑其他因素的情况下,请你设计一个最省钱的购买方案。
例3、商店出售茶壶和茶杯,茶壶每只定价为20元,茶杯每只定价为5元,该店制定了两种优惠办法:(1)买一只茶壶送一只茶杯;(2)按总价的92%付款。
某顾客需购茶壶4只,茶杯若干只(不少于4只),若设购买茶杯数为x(只),付款数为y(元),试分别写出两种优惠办法中y(元)与x(只)之间的函数解析式,并讨论两种办法中哪种更省钱。
3类型三选择生产方案问题例4、某工厂生产某种产品,每件产品出厂价为1万元,其原材料成本价(含其他损耗)为0.55万元,同时在生产过程中平均每生产一件产品有1吨的废渣产出,为达到国家环保要求,需要对废渣进行处理,现有两种方案可供选择:方案一:由工厂对废渣直接处理,每处理1吨废渣所用的原料费为0.05万元,并且每月设备维护及损耗费为20万元。
方案二:工厂将废渣集中到废渣厂处理,每处理一吨需付0.1万元的处理费。
培优专题20一次函数与方案的设计与选择

数表达式为 y =- x +30.
(3)10:00时,甲容器中的水面高度为多少?当甲容器中的水面高度为20cm时
是
几点钟?
◉答案 解:(3)10:00时, x =60, y =-
器中的水面高度为27cm.当 y =20时,20=-
×60+30=27,∴10:00时,甲容
x +30,解得 x =200.∵9:00经过
(2)假设你是决策者,你认为应该选择哪种方案?请说明理由.
◉答案 解:(2) y2- y1=2.4 x +16 000-4 x =16 000-1.6 x .由 y1= y2得16
000-
1.6 x =0,解得 x =10 000,∴当 x <10 000时, y1< y2,选择方案一,从纸箱厂定
2.4元.
(1)若需要这种规格的纸箱 x 个,请分别写出从纸箱厂定制购买纸箱的费用 y1
(元)和蔬菜加工厂自己加工制作纸箱的费用 y2(元)关于 x (个)的函数关系式.
◉答案 解:(1)从纸箱厂定制购买纸箱费用 y1关于 x 的函数关系式为 y1=4 x .蔬菜
加工厂自己加工制作纸箱费用 y2关于 x 的函数关系式为 y2=2.4 x +16 000.
制购买纸箱所需的费用低;当 x >10 000时, y1> y2,选择方案二,蔬菜加工厂自己
加工制作纸箱所需的费用低;当 x =10 000时, y1= y2,选择两个方案的费用相同.
5. [应用意识]某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的
羽毛球拍,每副球拍配 x ( x ≥2)个羽毛球,供社区居民免费借用.该社区附近
第六章 一次函数
培优专题20:一次函数与方案的设计与选择
一次函数的实际应用(1)

一次函数的实际应用(1)辅导教案精准突破:知识点:一次函数的实际应用1、思路:一次函数的实际应用就是把实际问题抽象成数学问题,建立一次函数模型,通过解决一次函数问题从而解决实际问题.2、利用一次函数的知识解应用题的一般步骤:(1)设定实际问题中的变量.(2)建立一次函数表达式.(3)确定自变量的取值范围,保证函数具有实际意义.(4)解答一次函数问题,如最大(小)值.(5)写出答案.3、一次函数实际应用中四种应用问题的注意事项:一、行程问题:路程速度时间二、方案设计问题:(1)在方案问题中,往往要通过计算不同方案的收费总额,从而比较出哪一种方案比较优惠.(2)在方案问题中,有时需要根据已经提供的方案设计一种新方案,从而让优惠幅度最大化.三、阶梯收费问题:阶梯收费问题主要集中在电费,水费,出租车费用等问题中,重在分段计算.四、最大利润问题:利润售价进价(或成本).总价单价数量一、一次函数行程问题1、,两地相距,甲、乙两人从两地出发相向而行,甲先出发.图中,表示两人离地的距离与时间的关系,请结合图象解答下列问题:(1)表示乙离地的距离与时间关系的图象是(填或);甲的速度是,乙的速度是;(2)甲出发多少小时两人恰好相距?2、年月日时分四川汶川发生里氏级强力地震,某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点千米的灾区,乙组由于要携带一些救灾物资,比甲组迟出发小时(从甲组出发时开始计时),图中的折线、线段分别表示甲、乙两组的所走路程(千米)、(千米)与时间(小时)之间的函数关系对应的图象.请根据图象所提供的信息,解决下列问题:(1)由于汽车发生故障,甲组在途中停留了小时;(2)甲组的汽车排除故障后,立即提速赶往灾区,请问甲组的汽车在排除故障时,距出发点的路程是多少千米?(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过千米,请通过计算说明,按图象所表示的走法是否符合约定?二、一次函数方案设计问题1、某电信局收取网费如下:网网费为每小时元,网网费为每小时元,但要收取元月租费.设网费为(元),上网时间是(小时),分别写出两种网的和的函数关系式,某网民每月上网小时,他应选哪种上网方式比较划算?2、“五•一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以下信息,解答下列问题:(1)设租车时间为小时,租用甲公司的车所需费用为元,租用乙公司的车所需费用为元,分别求出,关于的函数表达式;(2)请你帮助小明计算并选择哪个出游方案合算.3、为更新果树品种,某果园计划新购进、两个品种的果树苗栽植培育,若计划购进这两种果树苗共棵,其中种树苗的单价为元棵,购买种苗所需费用(元)与购买数量(棵)之间存在如图所示的函数关系.(1)求与的函数关系式;(2)若在购买计划中,种树苗的数量不超过棵,但不少于种树苗的数量,请设计购买方案,使总费用最低,并求出最低费用.1、某地出租车计费方法如图,表示行驶里程,(元)表示车费,请根据图象解答下列问题:(1)该地出租车的起步价是元;(2)当时,求与之间的函数关系式;(3)若某乘客有一次乘出租车的里程为,则这位乘客需付出租车车费多少元?2、某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过吨(含吨)时,每吨按政府补贴优惠价收费;每月超过吨,超过部分每吨按市场调节价收费,小黄家月份用水吨,交水费元,月份用水吨,交水费元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;(2)设每月用水量为吨,应交水费为元,写出与之间的函数关系式;(3)小黄家月份用水吨,他家应交水费多少元?1、某人在再就业中心的扶持下,创办了“亦杨”报刊零售点,对经营的某种晚报,并提供了如下信息:①买进每份元,卖出每份元;②一个月内(以天计),有天每天可以卖出份,其余天每天只能卖出份;③一个月内,每天从报社买进的报纸份数必须相同,当天卖不掉的报纸以每份元退回给报社:(1)填表:(2)设每天从报社买进该种晚报份时,月利润为元,试求出于的函数关系式,并求月利润的最大值.2、新学期开学了,文具店张经理购进只两种型号的文具进行销售,其进价和售价之间的关系如下表:(1)张经理如何进货,才能使进货款恰好为元?(2)要使销售文具所获利润最大,且所获利润不超过进货价格的,请你帮张经理设计一个进货方案,并求出其所获利润的最大值.3、某房地产开发公司计划建甲、乙两种户型的住房共套,该公司所用建房资金不少于万元,甲种户型每套成本和售价分别为万元和万元,乙种户型每套成本和售价分别为万元和万元,设计划建甲种户型套.(1)该公司最少建甲种户型多少套?(2)若甲种户型不超过套,选择哪种建房方案,该公司获利最大?最大利润是多少?(3)在(2)的条件下,根据国家房地产政策,公司计划每套甲种户型住房的售价降低万元,乙种户型住房的售价不变,且预计所建的两种住房能全部售出,直接写出该公司获得最大利润的方案.4、为了抓住世博会商机,某商店决定购进A、B两种世博会纪念品.若购进A种纪念品10件,B种纪念品5件,需要1 000元;若购进A种纪念品5件,B种纪念品3件,需要550元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑到市场需求,要求购进A种纪念品的数量不少于B种纪念品数量的6倍,且不超过B种纪念品数量的8倍,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?。
中考题中“方案设计型”问题的解法

中考题中“方案设计型”问题的解法2001年各地中考试题中出现了许多高质量的方案设计型题目,以激励学生运用数学知识和思想方法去解决现实生活中的问题,现介绍这类中考题的几种解法,供同学们毕业复习时参考。
一、用一元一次方程来解例1:我省某地生产的一种绿色蔬菜,在市场上若直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元。
当地一家农工商公司收获这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季节等条件限制,公司必须用15天的时间将这批蔬菜全部销售加工完毕。
为此,公司研制了在种可行方案:方案一:将蔬菜全部进行粗加工。
方案二:尽可能多的对蔬菜进行精加工,没来得及进行加工的蔬菜,在市场上直接出售。
方案三:将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好用15天完成。
你认为哪种方案获利最多?为什么?二、用一元一次不等式来解例2:某园林的门票每张10元,一次使用,考虑到人们的不同需求,也为了吸引更多的游客,该园林除了保留原来的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票从购买日起,可供持票者使用一年),年票分为A、B、C三类:A类年票每张120元,持票者进入园林时,无需再购买门票:B类门票每张60元,持票者进入该园林时,需再购买门票,每次2元,C类门票每张40元,持票者进入该园林时,需再购买门票,每次3元。
(1)如果你只选择一种购买门票的方法,并且你计划在一年中用80元在该园林的门票上,试通过计算,找出可使进入该园林的次数最多的购票方式。
(2)求一年中进入该园林至少超过多少次时,购买A类年票比较合算?三、用方程与不等式混合组来解例3:在双休日,某公司决定组织48名员工到附近一水上公园坐船游园,公司先派四、用分式方程来解例4:“丽园”开发公司生产的960件新产品,需要精加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完这批产品比乙工厂单独加工完这批产品多用20天,而乙工厂每天比甲工厂多加工8件产品,公司需付甲工厂加工费用每天80元,乙工厂加工费用每天120元。
一次函数的方案设计问题

一次函数与方案设计问题一、生产方案的设计例1(河北)某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A,B两种产品,共50件.已知生产一件A种产品需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B种产品,需用甲种原料4千克、乙种原料10千克,可获利润1200元.(1)要求安排A,B两种产品的生产件数,有哪几种方案?请你设计出来;(2)生产A,B两种产品获总利润是y (元),其中一种的生产件数是x,试写出y与x之间的函数关系式,并利用函数的性质说明(1)中的哪种生产方案获总利润最大?最大利润是多少?练习:(2012.攀枝花)煤炭是攀枝花的主要矿产资源之一,煤炭生产企业需要对煤炭运送到用煤单位所产生的费用进行核算并纳入企业生产计划.某煤矿现有1000吨煤炭要全部运往A、B两厂,通过了解获得A、B两厂的有关信息如下表(表中运费栏“元/t?km”表示:每吨煤炭运送一千米所需的费用):厂别运费(元/t?km)路程(km)需求量(t)A 0.45 200 不超过600B a(a为常数)150 不超过800(1)写出总运费y(元)与运往A厂的煤炭量x(t)之间的函数关系式,并写出自变量的取值范围;(2)请你运用函数有关知识,为该煤矿设计总运费最少的运送方案,并求出最少的总运费(可用含a的代数式表示)例2(湖北)一报刊销售亭从报社订购某晚报的价格是每份0.7元,销售价是每份1元,卖不掉的报纸还可以0.20元的价格退回报社.在一个月内(以30天计算),有20天每天可卖出100份,其余10天每天只能卖出60份,但每天报亭从报社订购的份数必须相同.若以报亭每天从报社订购的份数为自变量x,每月所获得的利润为函数y.(1)写出y与x之间的函数关系式,并指出自变量x的取值范围;(2)报亭应该每天从报社订购多少份报纸,才能使每月获得的利润最大?最大利润是多少?练习:(2012鸡西)为了迎接“五·一”小长假的购物高峰,某运动品牌服装专卖店准备购进甲、乙两种服装,甲种服装每件进价180 元,售价320 元;乙种服装每件进价150 元,售价280元.⑴若该专卖店同时购进甲、乙两种服装共200 件,恰好用去32400 元,求购进甲、乙两种服装各多少件?⑵该专卖店为使甲、乙两种服装共200 件的总利润(利润= 售价- 进价)不少于26700 元,且不超过26800 元,则该专卖店有几种进货方案?⑶在⑵的条件下,专卖店准备在 5 月 1 日当天对甲种服装进行优惠促销活动,决定对甲种服装每件优惠 a (0 <a <20 )元出售,乙种服装价格不变. 那么该专卖店要获得最大利润应如何进货?例3(2012?郴州)某校为开展好大课间活动,欲购买单价为20元的排球和单价为80元的篮球共100个.(1)设购买排球数为x(个),购买两种球的总费用为y(元),请你写出y与x的函数关系式(不要求写出自变量的取值范围);(2)如果购买两种球的总费用不超过6620元,并且篮球数不少于排球数的3倍,那么有哪几种购买方案?(3)从节约开支的角度来看,你认为采用哪种方案更合算练习:某校校长暑假将带领该校市级“三好生”去北京旅游.甲旅行社说:“如果校长买全票一张,则其余学生可享受半价优待.”乙旅行社说:“包括校长在内,全部按全票价的6折(即按全票价的60%收费)优惠.”若全票价为240元.(1)设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费(建立表达式);(2)当学生数是多少时,两家旅行社的收费一样;(3)就学生数x讨论哪家旅行社更优惠.四.调运方案的设计例4(2012?温州)温州享有“中国笔都”之称,其产品畅销全球,某制笔企业欲将n件产品运往A,B,C 三地销售,要求运往C地的件数是运往A地件数的2倍,各地的运费如图所示.设安排x件产品运往A地.(1)当n=200时,①根据信息填表:A地B地C地合计产品件数x 2x 200(件)运费(元)30x②若运往B 地的件数不多于运往C 地的件数,总运费不超过4000元,则有哪几种运输方案?(2)若总运费为5800元,求n 的最小值.练习:(深圳)深圳某科技公司在甲地、乙地分别生产了17台、15台同一种型号的检测设备,全部运往大运赛场A 、B两馆,其中运往A 馆18台、运往B 馆14台;运往A 、B 两馆的运费如表1:(1)设甲地运往A 馆的设备有x 台,请填写表2,并求出总运费元y (元)与x (台)的函数关系式;表2(2)要使总运费不高于20200元,请你帮助该公司设计调配方案,并写出有哪几种方案;(3)当x 为多少时,总运费最小,最小值是多少?出发地目的地甲地乙地A 馆800元/台700元/台B 馆500元/台600元/台出发地目的地甲地乙地A 馆B 馆。
构造一次函数模型解方案设计应用题

甲公 司 乙公 司 丙公 司 6 0 5 0 1o 0 6 8 1 0 4 2 3 10 5o 10 O0 7o 0
解 答下列 问题 : ( 若乙 1 ) 丙两家公 司的包装与装卸及运输 的费用总和恰好是 甲公 司的2 , 、两市的 倍 求A B
距离( 精确到个位) ; ( 如果A、两市 的距离为s 2 ) 曰 千米 , 且这批水 果在包装与装卸以及运输过程中的损耗 为30 0 元/、 那么要使公 司支付的总费用( / 时, J 包装与装 卸费用 、 运输 费用及损耗三项之 和) 最小 , 应选 择哪家运输公司? 解析: 这是一道结合实际设计的应用题. 其 背景是我们熟悉的运输问题 , 所涉及的数据用 表格给m, 同学们只要仔细看懂表格 , 运用所收 集的数据建立一次函数模型,再根据一次函数 的增减性及函数 自变量的取值范围, 就能够解
yz 8+00 [ +) 30 1s10, =s10+ s 2 ]× 0=4+60
:O+ 0 ls7 o
加工的水产品全部出售 , 那么如何安排生产可 使一天所获得的利润最大? 最大利润是多少? 解析: 本题要求最大利润, 只要建立起一次 3 × 0=3+ 60- o. , ) 3o l 10・ ] s ・ ,) .2 ・ 函数模型, 根据增减性即可求解.
时’ 一, _ l J 2・= +, } . = .
。
i
业 船 拿 }
J
J
} } } } } } } 警} }— } j } } } } } } }
当b-1, I =2 ' 从而 一一 1k J= 2‘
} jI }, 凶 业 } jI 警拿,l | }
一次函数的应用——方案选择问题“微课”教学设计

一次函数的应用——方案选择问题“微课”教学设计一. 教材分析本次微课的教学内容是一次函数的应用——方案选择问题。
一次函数是初中数学中的重要内容,也是实际生活中应用广泛的知识点。
通过本次微课的学习,让学生能够理解一次函数的概念,掌握一次函数的图像特征,并能运用一次函数解决实际问题。
二. 学情分析学生在学习本次微课之前,已经掌握了二次函数的相关知识,具备了一定的数学思维能力。
但部分学生对于一次函数的图像特征和实际应用可能还有一定的困惑。
因此,在教学过程中,需要关注学生的学习需求,针对性地进行讲解和辅导。
三. 教学目标1.让学生掌握一次函数的概念和图像特征。
2.培养学生运用一次函数解决实际问题的能力。
3.提高学生分析问题和解决问题的能力。
四. 教学重难点1.一次函数的概念和图像特征。
2.一次函数在实际问题中的应用。
五. 教学方法采用问题驱动的教学方法,通过生动的案例引导学生思考和探究,让学生在解决问题的过程中掌握一次函数的知识和应用。
同时,运用互动式教学,鼓励学生提问和发表见解,提高学生的参与度和积极性。
六. 教学准备1.准备相关的教学案例和问题,以便进行课堂讨论和练习。
2.准备一次函数的图像资料,以便进行直观讲解和分析。
七. 教学过程1.导入(5分钟)通过一个实际问题引出一次函数的概念,激发学生的兴趣。
例如:某商场举行打折活动,商品的原价可以表示为一次函数y=2x+1,其中x表示购买的商品数量,y表示需要支付的总金额。
请根据这个一次函数,回答以下问题:购买2件商品需要支付多少金额?购买5件商品需要支付多少金额?2.呈现(10分钟)讲解一次函数的一般形式y=kx+b,解释k和b的含义,并通过图像展示一次函数的特征。
同时,引导学生思考一次函数在实际生活中的应用,如路程、速度、单价等问题。
3.操练(10分钟)让学生通过实例计算和绘制一次函数的图像,加深对一次函数的理解。
例如:给出一次函数y=3x-2,让学生计算x=0、x=1、x=2时的y值,并绘制出函数的图像。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数与方案设计问题一次函数是最基本的函数,它与一次方程、一次不等式有密切联系,在实际生活中有广泛的应用。
例如,利用一次函数等有关知识可以在某些经济活动中作出具体的方案决策。
近几年来一些省市的中考试题中出现了这方面的应用题,这些试题新颖灵活,具有较强的时代气息和很强的选拔功能。
1.调运方案设计例1 北京某厂和上海某厂同时制成电子计算机若干台,北京厂可支援外地10台,上海厂可支援外地4台,现在决定给重庆8台,汉口6台。
如果从北京运往汉口、重庆的运费分别是4百元/台、8百元/台,从上海运往汉口、重庆的运费分别是3百元/台、5百元/台。
求:(1)若总运费为8400元,上海运往汉口应是多少台?(2)若要求总运费不超过8200元,共有几种调运方案?(3)求出总运费最低的调运方案,最低总运费是多少元?解 设上海厂运往汉口x 台,那么上海运往重庆有(4-x)台,北京厂运往汉口(6-x)台,北京厂运往重庆(4+x)台,则总运费W 关于x 的一次函数关系式:W=3x+4(6-x)+5(4-x)+8(4+x)=76+2x 。
(1) 当W=84(百元)时,则有76+2x=84,解得x=4。
若总运费为8400元,上海厂应运往汉口4台。
(2) 当W ≤82(元),则⎩⎨⎧≤+≤≤8227640x x解得0≤x ≤3,因为x 只能取整数,所以x 只有四种可的能值:0、1、2、3。
答:若要求总运费不超过8200元,共有4种调运方案。
(3) 因为一次函数W=76+2x 随着x 的增大而增大,又因为0≤x ≤3,所以当x=0时,函数W=76+2x 有最小值,最小值是W=76(百元),即最低总运费是7600元。
此时的调运方案是:上海厂的4台全部运往重庆;北京厂运往汉口6台,运往重庆4台。
本题运用了函数思想得出了总运费W 与变量x 的一般关系,再根据要求运用方程思想、不等式等知识解决了调运方案的设计问题。
并求出了最低运费价。
2.生产方案的设计例2 某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A 、B 两种产品,共50件。
已知生产一件A 种产品需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B 种产品,需用甲种原料4千克、乙种原料10千克,可获利润1200元。
(1)要求安排A 、B 两种产品的生产件数,有哪几种方案?请你设计出来;(2)生产A 、B 两种产品获总利润是y(元),其中一种的生产件数是x ,试写出y 与x 之间的函数关系式,并利用函数的性质说明(1)中的哪种生产方案获总利润最大?最大利润是多少?解 (1)设安排生产A 种产品x 件,则生产B 种产品是(50-x)件。
由题意得⎩⎨⎧≤-+≤-+290)50(103360)50(49x x x x )2()1(解不等式组得 30≤x ≤32。
因为x 是整数,所以x 只取30、31、32,相应的(50-x)的值是20、19、18。
所以,生产的方案有三种,即第一种生产方案:生产A 种产品30件,B 种产品20件;第二种生产方案:生产A 种产品31件,B 种产品19件;第三种生产方案:生产A 种产品32件,B 种产品18件。
(2)设生产A 种产品的件数是x ,则生产B 种产品的件数是50-x 。
由题意得y=700x+1200(50-x)=-500x+6000。
(其中x 只能取30,31,32。
)因为 -500<0, 所以 此一次函数y 随x 的增大而减小,所以 当x=30时,y 的值最大。
因此,按第一种生产方案安排生产,获总利润最大,最大利润是:-500·3+6000=4500(元)。
本题是利用不等式组的知识,得到几种生产方案的设计,再利用一次函数性质得出最佳设计方案问题。
3、营销方案的设计例3 某新建商场设有百货部、服装部和家电部三个经营部,共有190名售货员,计划全商场日营业额(指每日卖出商品所收到的总金额)为60万元。
由于营业性质不同,分配到三个部的售货员的人数也就不等,根据经验,各类商品每1万元营业额所需售货员人数如表1,每1万元营业额所得利润情况如表2。
表1 表2商场将计划日营业额分配给三个经营部,设分配给百货部、服装部和家电部的营业额分别为x(万元)、y(万元)、z(万元)(x,y,z 都是整数)。
(1) 请用含x 的代数式分别表示y 和z ;(2) 若商场预计每日的总利润为C(万元),且C 满足19≤C ≤19.7,问这个商场应怎样分配日营业额给三个经营部?各部应分别安排多少名售货员?解 (1)由题意得⎩⎨⎧=++=++19024560z y x z y x ,解得 .225,2335xz x y +=-=(2) C=0.3x+0.5y+0.2z=-0.35x+22.5。
因为 19≤C ≤19.7, 所以 9≤-0.35x+22.5≤19.7,解得 8≤x ≤10。
因为 x,y,z 是正整,且x 为偶数,所以 x=8或10。
当x=8时,y=23,z=29,售货员分别为40人,92人,58人;当x=10时,y=20,z=30,售货员分别为50人,80人,60人。
本题是运用方程组的知识,求出了用x 的代数式表示y 、z ,再运用不等式和一次函数等知识解决经营调配方案设计问题。
4.优惠方案的设计例4某校校长暑假将带领该校市级“三好生”去北京旅游。
甲旅行社说:“如果校长买全票一张,则其余学生可享受半价优待。
”乙旅行社说:“包括校长在内,全部按全票价的6折(即按全票价的60%收费)优惠。
”若全票价为240元。
(1)设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费(建立表达式);(2)当学生数是多少时,两家旅行社的收费一样;(3)就学生数x讨论哪家旅行社更优惠。
解 (1)y甲=120x+240, y乙=240·60%(x+1)=144x+144。
(2)根据题意,得120x+240=144x+144, 解得 x=4。
答:当学生人数为4人时,两家旅行社的收费一样多。
(3)当y甲>y乙,120x+240>144x+144,解得 x<4。
当y甲<y乙,120x+240<144x+144, 解得 x>4。
答:当学生人数少于4人时,乙旅行社更优惠;当学生人数多于4人时,甲旅行社更优惠;本题运用了一次函数、方程、不等式等知识,解决了优惠方案的设计问题。
综上所述,利用一次函数的图象、性质及不等式的整数解与方程的有关知识解决了实际生活中许多的方案设计问题,如果学生能切实理解和掌握这方面的知识与应用,对解决方案问题的数学题是很有效的。
练习1.某童装厂现有甲种布料38米,乙种布料26米,现计划用这两种布料生产L、M两种型号的童装共50套,已知做一套L型号的童装需用甲种布料0.5米,乙种布料1米,可获利45元;做一套M型号的童装需用甲种布料0.9米,乙种布料0.2米,可获利润30元。
设生产L型号的童装套数为x,用这批布料生产这两种型号的童装所获利润为y(元)。
(1)写出y(元)关于x(套)的函数解析式;并求出自变量x的取值范围;(2)该厂在生产这批童装中,当L型号的童装为多少套时,能使该厂所获的利润最大?最大利润为多少?2.A城有化肥200吨,B城有化肥300吨,现要把化肥运往C、D两农村,如果从A城运往C、D两地运费分别是20元/吨与25元/吨,从B城运往C、D两地运费分别是15元/吨与22元/吨,现已知C地需要220吨,D地需要280吨,如果个体户承包了这项运输任务,请帮他算一算,怎样调运花钱最小?3.下表所示为装运甲、乙、丙三种蔬菜的重量及利润。
某汽车运输公司计划装运甲、乙、丙三种蔬菜到外地销售(每辆汽车按规定满载,并且每辆汽车只装一种蔬菜)(1)若用8辆汽车装运乙、丙两种蔬菜11吨到A地销售,问装运乙、丙两种蔬菜的汽车各多少辆?(2)公司计划用20辆汽车装运甲、乙、丙三种蔬菜36吨到B地销售(每种蔬菜不少于一车),如何安排装运,可使公司获得最大利润?最大利润是多少?4.有批货物,若年初出售可获利2000元,然后将本利一起存入银行。
银行利息为10%,若年末出售,可获利2620元,但要支付120元仓库保管费,问这批货物是年初还是年末出售为好?答案:1. (1) y=15x+1500;自变量x的取值范围是18、19、20。
(2) 当x=20时,y的最大值是1800元。
2. 设A城化肥运往C地x吨,总运费为y元,则y=2x+10060 (0≤x≤200),当x=0时,y的最小值为10060元。
3. (1) 应安排2辆汽车装运乙种蔬菜,6辆汽车装运丙种蔬菜。
(2) 设安排y辆汽车装运甲种蔬菜,z辆汽车装运乙种蔬菜,则用[20-(y+z)]辆汽车装运丙种蔬菜。
得 2y+z+1.5[20-(y+z)]=36,化简,得 z=y-12,所以 y-12=32-2y。
因为 y≥1, z≥1, 20-(y+z)≥1,所以 y≥1, y-12≥1, 32-2y≥1,所以 13≤y≤15.5。
设获利润S百元,则S=5y+108,当y=15时,S的最大值是183,z=y-12=3, 20-(y+z)=2。
4. (1) 当成本大于3000元时,年初出售好;(2) 当成本等于3000元时,年初、年末出售都一样;(3) 当成本小于3000元时,年末出售好。