波尔氢原子理论

合集下载

玻尔理论与氢原子跃迁(含答案)

玻尔理论与氢原子跃迁(含答案)

玻尔理论与氢原子跃迁一、基础知识 (一)玻尔理论1、定态:原子只能处于一系列不连续的能量状态中,在这些能量状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量.2、跃迁:原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即hν=Em -En.(h 是普朗克常量,h =6.63×10-34 J·s)3、轨道:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应.原子的定态是不连续的,因此电子的可能轨道也是不连续的.4、氢原子的能级、能级公式 (1)氢原子的能级图(如图所示) (2)氢原子的能级和轨道半径 ①氢原子的能级公式:En =1n2E1(n =1,2,3,…),其中E1为基态能量,其数值为E1= -13.6 eV .②氢原子的半径公式:rn =n 2r1(n =1,2,3,…),其中r1为基态半径,又称玻尔半径,其数值为r1=0.53×10-10m.(二)氢原子能级及能级跃迁对原子跃迁条件的理解(1)原子从低能级向高能级跃迁,吸收一定能量的光子.只有当一个光子的能量满足hν=E 末-E 初时,才能被某一个原子吸收,使原子从低能级E 初向高能级E 末跃迁,而当光子能量hν大于或小于E 末-E 初时都不能被原子吸收.(2)原子从高能级向低能级跃迁,以光子的形式向外辐射能量,所辐射的光子能量恰等于发生跃迁时的两能级间的能量差.特别提醒 原子的总能量En =Ekn +Epn ,由ke2r2n =m v2rn 得Ekn =12ke2rn ,因此,Ekn 随r 的增大而减小,又En随n 的增大而增大,故Epn 随n 的增大而增大,电势能的变化也可以从电场力做功的角度进行判断,当r 减小时,电场力做正功,电势能减小,反之,电势能增大. 二、练习1、根据玻尔理论,下列说法正确的是( )A .电子绕核运动有加速度,就要向外辐射电磁波B .处于定态的原子,其电子绕核运动,但它并不向外辐射能量C .原子内电子的可能轨道是不连续的D .原子能级跃迁时,辐射或吸收光子的能量取决于两个轨道的能量差 答案 BCD解析 根据玻尔理论,电子绕核运动有加速度,但并不向外辐射能量,也不会向外辐射电磁波,故A 错误,B 正确.玻尔理论中的第二条假设,就是电子绕核运动可能的轨道半径是量子化的,不连续的,C 正确.原子在发生能级跃迁时,要放出或吸收一定频率的光子,光子能量取决于两个能级之差,故D 正确.2、下列说法中正确的是( )A .氢原子由较高能级跃迁到较低能级时,电子动能增加,原子势能减少B .原子核的衰变是原子核在其他粒子的轰击下而发生的C .β衰变所释放的电子是原子核内的中子转化成质子而产生的D .放射性元素的半衰期随温度和压强的变化而变化 答案 AC解析 原子核的衰变是自发进行的,选项B 错误;半衰期是放射性元素的固有特性,不 会随外部因素而改变,选项D 错误.3、(2000•安徽)根据玻尔理论,某原子的电子从能量为E 的轨道跃迁到能量为E'的轨道,辐射出波长为λ的光.以h 表示普朗克常量,C 表示真空中的光速,则E ′等于( C )A .E−h λ/cB .E+h λ/cC .E−h c /λD E+hc /λ4、欲使处于基态的氢原子激发,下列措施可行的是 A.用10.2 eV 的光子照射 B.用11 eV 的光子照射 C.用14 eV 的光子照射D.用11 eV 的光子碰撞[命题意图]:考查考生对玻尔原子模型的跃迁假设的理解能力及推理能力.[解答]:由"玻尔理论"的跃迁假设可知,氢原子在各能级间,只能吸收能量值刚好等于两能级之差的光子.由氢原子能级关系不难算出,10.2 eV 刚好为氢原子n=1和n=2的两能级之差,而11 eV 则不是氢原子基态和任一激发态的能量之差,因而氢原子只能吸收前者被激发,而不能吸收后者.对14 eV 的光子,其能量大于氢原子电离能,足可使“氢原子”电离,而不受氢原子能级间跃迁条件限制.由能的转化和守恒定律不难知道,氢原子吸收14 eV 的光子电离后产生的自由电子仍具有0.4 eV 的动能.另外,用电子去碰撞氢原子时,入射电子的动能可全部或部分地为氢原子吸收,所以只要入射电子的动能大于或等于基态和某个激发态能量之差,也可使氢原子激发,故正确选项为ACD.例1、一个具有E K0=20.40eV 动能、处于基态的氢原子与一个静止的、同样处于基态的氢原子发生对心碰撞(正碰),则下列关于处于基态的氢原子向激发态跃迁的说法中正确的是( ) A.不可能发生跃迁 B.可能跃迁到n=2的第一激发态 C.可能跃迁到n=3的第二激发态 D.可能跃迁到n=4的第三激发态【解析】两个氢原子做完全非弹性碰撞时损失的动能最大,损失动能的极值0110.22E E ev ∆==,所以处于基态的氢原子只可能跃迁到n=2的第一激发态。

氢原子光谱 玻尔理论

氢原子光谱 玻尔理论

20 世纪经典物理遇到的困难普朗克能量子假说爱因斯坦光量子假说经典物理学在进入20世纪以后,受到了冲击。

经典理论在解释一些新的试验结果上遇到了严重的困难。

玻尔在原子结构中引入量子化解释氢原子光谱很早人们就知道,气态原子被火花、电弧或其他方法激发可以发光,经棱镜分光后,能得到不连续的线状光谱。

气态原子棱镜屏幕看似杂乱无章的光谱线是否有规律??Rydberg 提出以一个经验的公式:22111=H R c n mm n νλ⎛⎫=-> ⎪⎝⎭其中,R H =1.09677576×107m -1是氢的Rydberg 常数。

经验公式背后的物理意义??原子结构=1m =2m =3m =4m =5m =6m根据卢瑟福的原子核式结构模型,氢原子中核外电子会绕原子核做圆周运动。

是否能解释发光的物理机制?原子坍塌灾难根据经典电磁理论,电子加速运动,要辐射电磁波,电子能量减小,圆周运动半径减小。

(1)定态轨道(2)定态跃迁1913年,时年28岁丹麦人玻尔在卢瑟福实验室做博士后,就原子结构模型提出了两点假设:r n =L r p =⨯r μυ=⨯r μυ=n r μυ=质量为,速度为υμ(1)定态轨道电子只能处在特定的轨道上绕原子核转动,并不往外辐射能量。

电子的这种稳定的状态叫做定态。

轨道必须满足量子化条件:电子的角动量L 只能取的整数倍,即( n=1,2,3, … )L n=4222s n e E n μ=- =电子在定态轨道上的能量2212se E r μυ=-电子做圆周运动的向心力是库仑力提供的2222204s e Ze r r r μυπε==向心力库仑力联立两式,可得2s e n υ=222s n r e μ=r n =L r p =⨯r μυ=⨯r μυ=n r μυ=质量为,速度为υμ(2)定态跃迁电子可以从一个能级E n 跃迁到另一个较低(高)的能级E m ,同时将发射(吸收)一个光子。

玻尔氢原子理论的三条假设是

玻尔氢原子理论的三条假设是

玻尔氢原子理论的三条假设N.玻尔首创的第一个将量子概念应用于原子现象的理论。

1911年E.卢瑟福提出原子核式模型,这一模型与经典物理理论之间存在着尖锐矛盾,原子将不断辐射能量而不可能稳定存在;原子发射连续谱,而不是实际上的离散谱线。

玻尔着眼于原子的稳定性,吸取了M.普朗克、A. 爱因斯坦的量子概念,于1913年考虑氢原子中电子圆形轨道运动,提出原子结构的玻尔理论[1]。

理论的三条基本假设是:①定态假设:原子只能处于一系列不连续的能量的状态中,在这些状态中原子是稳定的,这些状态叫定态。

原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应,原子的定态是不连续的,因此电子的可能轨道的分布也是不连续的,电子在这些可能的轨道上的运动是一种驻波形式的振动。

②跃迁假设:原子系统从一个定态过渡到另一个定态,伴随着光辐射量子的发射和吸收。

辐射或吸收的光子的能量由这两种定态的能量差来决定,即hν=|E 初-E末|③轨道量子化:电子绕核运动,其轨道半径不是任意的,只有电子在轨道上的角动量满足下列条件的轨道才是可能的:mvr=nh/(2π)(n=1,2,3…)式中的n是正整数,称为量子数。

玻尔理论在氢原子中的应用⑴氢原子核外电子轨道的半径设电子处于第n条轨道,轨道半径为(rn),根据玻尔理论的轨道量子化得m(vn)(rn)=mvr=nh/(2π)(n=1,2,3…)①电子绕核作圆周运动时,由电子和原子核之间的库仑力来提供向心力,所以有m(vn)^2/(rn)=1/(4πε0)*[e^2/(rn)^2]②由①②式可得(rn)=ε0h^2*n^2/(πme^2) (n=1,2,3…)当n=1时,第一条轨道半径为r1=ε0h^2/(πme^2) =5.3*10^-11(m),其他可能的轨道半径为(rn)=r1,4r1,9r1,25r1…⑵氢原子的能级当电子在第n条轨道上运动时,原子系统的总能量E叫做第n条轨道的能级,其数值等于电子绕核转动时的动能和电子与原子的电势能的代数和En=1/2*m*(vn)^2-e^2/(4πε0(rn))③由②式得1/2*m*(vn)^2=e^2/(8πε0(rn))④将④式代入③式得En=-me^4/(8(ε0)^2h^2n^2)⑤这就是氢原子的能级公式当n=1时,第一条轨道的能级为E1==-me^4/(8(ε0)^2h^2)=-13.6eV.其他可能轨道的能级为En=E1/n^2=-13.6/n^2(eV)(n=2,3,4…)由轨道半径的表达式可以看出,量子数n越大,轨道的半径越大,能级越高.n=1时能级最低,这时原子所处的状态称为基态,n=2,3,4,5…时原子所处的状态称为激发态.⑶玻尔理论对氢光谱的解释由玻尔理论可知,氢原子中的电子从较高能级(设其量子数为n)向较低能级(设其量子数为m)跃迁时,它向外辐射的光子能量为hν=En-Em=-me^4/(8(ε0)^2h^2)(1/n^2-1/m^2)由于c=λν,上式可化为1/λ=me^4/(8(ε0)^2h^2)(1/m^2-1/n^2) 将上式和里德伯公式作比较得R=me^4/(8(ε0)^2h^3c)=1.097373*10^7m^(-1)这个数据和实验所得的数据1.0967758*10^7m^(-1)基本一致,因此用玻尔理论能较好的解释氢原子的光谱规律,包括氢原子的各种谱线系.例如: 赖曼系、巴尔末系、帕邢系、布喇开系等的规律。

我们主要研究了氢原子的光谱规律及玻尔的氢原子理论

我们主要研究了氢原子的光谱规律及玻尔的氢原子理论

里n* 称为有效量子数。
从所得的光谱可以计算出各条谱线对应的有效量子数,如表4.1所
示表中的有效量子数 n* 有些接近整数(第一辅线系和柏格曼系)
有些离整数远一些(第二辅线最远,主线系),且都一般都比n略 小,可写成
n* n
Δ 称为量子数亏损,我们注意到,同一线系的Δ 差不多相等。
这是因为同一线系的末态是相同的,而初态的电子轨道角动量量 子数相同。
二、碱金属原子的光 谱在前面讨论氢原子光谱时,我们已知道,氢原子的光谱可表示为
~

RH
1 m2

1 n2

~

RH n2
式中第一项为原子跃迁的终态,决定光谱所在的线系,第二项
为原子跃迁的初态。
在同一线系中(m相同)随着n的增大,谱线的波长越来越短,且 间隔越来越小,最后趋于线系限。
用能级图表示为如图所示(锂原 子):
从图中可以看出,碱金属原子能级与氢原子能级不同。
氢原子的能级只与主量子数n有关,而碱金属原子的能级除了与
主量子数有关外,还与电子的轨道角量子数l有关。 图中把能级按l值分类,l相同的能级画在同一列上。 n相同而l不同的能级有较大差别,l愈小能级越低。 n越小,则不同l的能级差别越大。
玻尔理论无法解释谱线的这种精细结构。
模型的局限性还表现在它缺乏计算原子其它性质的理论方 法例。如不能计算出不同谱线的相对强 度换。言之,处在n=3态上的电子有多少次直接跳到1态上,有多少 次先跳到2再到1上发出两种光。对此玻尔理论无能为力。
其问题出在理论结构本身,它是经典理论与量子条件的结合(所 以又称为旧量子论),其量子条件没有理论根据,缺乏逻辑的统 一性。
第一辅线(漫线系) ~ 2 p nd n 3,4 ~ 3 p nd n 3,4

14-2康普顿效应氢原子玻尔理论

14-2康普顿效应氢原子玻尔理论
Photoelectric effect Compton scattering Pair production
三、康普顿散射实验
实验演示及实验结论:
I(相对强度) 0
45
90
在散射线中除有
( 0);
0
,还

0与 0 无关,但随散射角
增大而增大。
135
0
(散射波长)
四、光子说的解释
拓展:电子能谱
能量关系可表示:
hv EbEkEr
电子结合能 电子动能
原子的反冲能量 Er 21Mma*2
电子能谱是利用高能光子照射被测样品,测量由此
引根起据的激光发电源子的能量不分同布,的电一子种能谱谱学方又法分。为:
X射线光电子能谱(简称 XPS)
(X-Ray Photoelectron Spectrometer) 紫外光电子能谱(简称 UPS)
(Ultraviolet Photoelectron Spectrometer) 俄歇电子能谱(简称 AES)
(Auger Electron Spectrometer)
拓展:电子能谱
X射线光电子能谱(XPS) (X-Ray Photoelectron
Spectrometer)
在X射线作用下,各种轨道电子都有可能从原子中激发成为 光电子,由于各种原子、分子的轨道电子的结合能是一定的, 因此可用来测定固体表面的电子结构和表面组分的化学成分。
说明:
(1)氢原子的能量是一系 列分立的值——能级。
(2)由于 E 0 ,则 E 1
为把电子从第一玻尔轨道 移到无穷远处所需的能量 值,称为电离能。
自 氢原子能级图
由 态
n
E/eV

玻尔的氢原子理论

玻尔的氢原子理论

玻尔的氢原子理论
为此,J.汤姆孙在1904年提出了原子结构的枣糕式模型.该模型认 为,原子可以看作一个球体,原子的正电荷和质量均匀分布在球内, 电子则一颗一颗地镶嵌其中.1909年,J.汤姆孙的学生卢瑟福为了验证 原子结构的枣糕式模型,完成了著名的α粒子散射实验.实验发现α粒 子在轰击金箔时,绝大多数α粒子都穿透金箔,方向也几乎不变,但 是大约有1/8 000的α粒子会发生大角度偏转,即被反弹回来.这样的 实验结果是枣糕式模型根本无法解释的,因为如果说金箔中的金原子 都是枣糕式的结构,那么整个金箔上各点的性质应该近乎均匀,α粒 子轰击上去,要么全部透射过去,要么全部反弹回来,而不可能是一 些穿透过去,一些反弹回来.
玻尔的氢原子理论
二、 原子结构模型
1897年,J.汤姆孙发现了电子.在此之前,原 子被认为是物质结构的最小单元,是不可分的,可 是电子的发现却表明原子中包含带负电的电子.那 么,原子中必然还有带正电的部分,这就说明原子 是可分的,是有内部结构的.执着的科学家就会继 续追问:原子的内部结构是什么样的?简洁的里德 伯光谱公式是不是氢原子内部结构的外在表现?
玻尔的氢原子理论
三、 玻尔的三点基本假设
为了解决原子结构有核模型的稳定性和氢原子光谱的分 立性问题,玻尔提出以下三个假设:
(1)定态假设.原子中的电子绕着原子核做圆周运动, 但是只能沿着一系列特定的轨道运动,而不能够任意转动, 当电子在这些轨道运动时,不向外辐射电磁波,原子系统处 于稳定状态,具有一定的能量.不同的轨道,具有不同的能 量,按照从小到大的顺序记为E1、E2、E3等.
玻尔的氢原子理论
可是这个模型却遭到很多物理学家的质疑.因为按照当时的物 理理论(包括经典力学、经典电磁理论及热力学统计物理),这 样一个模型是根本不可能的,原因有以下两个:

氢原子的玻尔理论

氢原子的玻尔理论

③氢原子的能级 ( energy level ) E1 基态 ( ground state ) E2 , E3 ,… ,激发态 ( excited ) ④由玻尔假设可导出广义巴尔末公式
hν = En- Ek /8ε 1/λ = ν /c = me4/8ε0h3c(1/k2 - 1/n2 ) 1/λ = R (1/k2 - 1/n2 ) , n > k
小结
1.玻尔假设 1.玻尔假设 ①定态假设 跃迁假设 ②跃迁假设 hν = En- Ek 2.德布罗意 德布罗意假设 2.德布罗意假设 λ = h / mv ; E = hν
h 1 1 λ= =h • mv 2qm U
电子的德布罗意波长: 电子的德布罗意波长: 德布罗意波长
λ e = 1.23 •
1 U
(nm)
3.电子衍射
二、电子显微镜
■光学显微镜能分辨的两点间最小距离: 光学显微镜能分辨的两点间最小距离:
λ越小,Z越小,则分辨本领越高。 越小, 越小,则分辨本领越高。 ■但可见光波长较大,即光学显微镜分辨 但可见光波长较大, 本领有限。 本领有限。 ■电子显微镜可提高分辨本领 利用电子射线代替照射光
λ = h / p = h / mv ν =E / h
(德布罗意公式) 德布罗意公式 公式)
2.德布罗意波长 德布罗意波长
设带电粒子的电量:q ,质量:m ,速度: 质量: 速度: 设带电粒子的电量: v ,加速它的电压:U 。则粒子获得的动 加速它的电压: 能为: 能为: 1 2qU 2 mv = qU 则 v = m 2 带电粒子的德布罗意波长: 德布罗意波长 带电粒子的德布罗意波长:
hν = En- Ek
辐射或吸收光子的频率: 辐射或吸收光子的频率: ν =(En- Ek)/ h

波尔的氢原子理论

波尔的氢原子理论
5
2 卢瑟福的核式模型
卢瑟福1871年8月13日出生在 新西兰,1894年大学毕业,1895年 到 英 国 剑 桥 大 学 学 习 , 成 为 J.J. 汤 姆孙的研究生。1908年卢瑟福荣获 诺贝尔化学奖,同年在曼切斯特大 学任教,继续指导他的学生进行 粒子散射的实验研究。
卢瑟福的α粒子散射验证了核式模型。
19-1 波尔的氢原子理论
量子物理起源于对原子物理的研究,人们从高能粒子的 散射实验和原子光谱中获得原子内部信息。
3
4
一 玻尔理论的实验基础
1 汤姆逊葡萄干面包模型
1903年,汤姆孙提出原子结构模 型:原子里面带正电的部分均匀地 分布在整个原子球体中,而带负电 的电子镶嵌在带正电的球体之中。 带正电的球体与带负电的电子二者 电量相等,故原子不显电性。
5 6 普芳德(Pfund)系
区域 紫外 可见 可见 红外 红外
此后又发现碱金属也有类似的规律。
日期 1906年 1880年 1908年 1922年 1924年
3 里兹并合原理
~ T(m α) T(n β)
R
光谱项 : T(m) (m )2
R
T (n) (n )2 10
三 经典电磁理论遇到的困难
6
粒子散射
4 2
H
e
,
q 2e, 原子量为4,m 7500me
粒子束射向金箔:
-
(1) 多数 0
+
(2)少数 较大
1 / 8000被反射,
(3)极少数 ,反弹
大部分透过。
7
1911年,卢瑟福提出原子的 “有核结构模型”
原子的核式模型
原子由原子核和核外电子 构成,原子核带正电荷,占据 整个原子的极小一部分空间, 而电子带负电,绕着原子核转 动,如同行星绕太阳转动一样。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原子具有线光谱; 各谱线间具有一定的关系; 每一谱线的波数都可表达 为两个光谱项之差。 2
经典理论的解释: 1)根据原子的有核模型,原子能量为:
2 2 2 1 e e E Eek U meV ( ) 2 4or 8 or 2 2 V e f向心 mo r 4 or 2
2 2 e e E Eek U 8 or 8orn
能量量子化
将 rn 代入上式:
4 me En 2 2 2 8 0 h n
(n 1,2,3)
基态能量
n 1 (第一玻尔轨道) E1 13 6eV n 1
E1 E1 13 6 En 2 (eV ) ( E1 , 4 , 9 ) n
hRc hRc h 2 2 k n
光子的能量 = 能量之差。 取不连续的值 1913‘哲学杂志’原子构造与分子构造 4
2. 玻尔原子系统的基本假设
1) 定态假设:原子处于一系列不连续稳定态。
E1, E 2, E3En (E1 E2 E3 ) 2) 跃迁假设: kn En Ek h
独立认真完成作业 !
赖曼系:
普芳德系:
~ 1 R( 1 1 ) n 6,7,8, 52 n2
3. 广义的巴尔末公式:(氢原子光谱的其它线系)
~ R( 1 1 ) 2 2 k n
k 1,2,3, n k 1, k 2,
R 称为光谱项 其中: R 和 2 2 k n 实验表明:
大 学 物 理
教 案
第 25 章
玻尔的原子量子理论
一、经典理论对原子结构存在的困难 1. 氢原子光谱
2. 巴尔末系的里德伯公式(1885)
2 n B 2 (n 3,4,5,6) n 4 ~ 1 R( 1 1 ) (n 3,4,5,6,) 22 n2
B
4
n 1
2
2 e Vn 1 40 n
n 1,2,
3
4 5
n、速度 Vn
在r1的轨道上:
V1 106m s1
V1 1 C 137
7
4. 氢原子光谱的理论解释 1)里德伯常数的理论值
4 E E me n k 根据: 2 3 c ( 12 12 ) h 8 0 h c k n
(5)在 k , n 时,跃迁频率 v 与电子绕核运动 的频率相同(玻尔理论回到了经典理论)
2. 局限性
(1)对稍复杂的原子光谱,定性、定量都不能解释。
(2)对氢原子谱线的强度、宽度、偏振等问题遇到难以克服 的困难。 (3)沿用了经典物理的轨道等许多概念。 14
作业:
第 25 章——3,7,9 思 考(6、8、10)
而 实验值:
每一个光谱项都对应一个确定能级:
R En n2 hc
8
2)解释分立的谱线 能级不连续 v 不连续, 不同的v对应不同的谱线。
5 4 3
En Ek h h
3)解释谱线系
为什么存在谱线系?
0 85eV 1 51eV 3 39eV
为什么有些谱线在短波区、 有些长波区? 什么情况下 在什么区?
1.卢瑟福原子模型(原子的有核模型) 质疑:
原子的稳定性问题?
原子分立的线状光谱?
r
mv
玻尔:1911年秋、哥本哈根 剑桥 汤姆逊、 卢瑟福 普朗克、 爱因斯坦、 汉森 广义的巴尔末公式: 1922 Nobel Price
c
k n 1 1 Rc ( 2 2 ) k n
~ R( 1 1 ) 2 2
解: E 0 , E1 13 6 结合能 E E1 0 (13 6) 13 6(eV ) 例2:将氢原子中n=2 的电子搬到无限远处需要多少能量? 解: E2 E 激发能量
13 6 ? 0 4
13 6 ? (eV) 4
13
三、玻尔理论的成功及局限性 1. 成功 (对氢原子、类氢离子、一价的 Na , K , Li ) (1) rn , En , R (2)定态、频率跃迁的概念 (3)推出广义的巴尔末公式,预言了k=1,4,5的存在, 果然在1915——1924年间发现了这些谱线。 (4)对元素周期表能作一些解释
P
(2)V=4.9 v 后,I , 形成一峰值 就有峰值出现。 (3)每隔V=4.9 v, 0 5 10
15 ( V) 10
300 200
阴极
栅极 汞 蒸 气 G V
板极 A
K 100 0 5 10 15 (V)
P
为什么? 只能有一个解释: 4.9 eV 恰好是汞原子某能级间的能量差 汞原子基态能 – 第一激发态能量=4.9 eV 实验证实: 汞原子发射的光谱: 253 .7 nm 代入光子能量公式: h h c 4.89 eV E
me 4 En 2 2 2 8 0 n h
令:
me 4 R 2 3 8 0 h c
1 1 Rc ( 2 2 ) k n
这是什么?
~ 1 R( 1 1 ) c k 2 n2
得:
——广义的巴尔末公式!
R 1 097373 107 m 1 R 1 096776 107 m 1
பைடு நூலகம்
激发态
6
4 o n 2 2 rn me 2
rn r1、4r1、9r1 n 1,2 ,3 ,
E1 E1 13 6 En 2 E1、 、 4 9 n
一个能级将对应一条圆轨道 3)电子运动的速度
2 2 mV e 由: r 4 or 2
En me 2 2 2 8 0 hn
4 on22 rn n 1,2,3, 2 me
轨道是量子化的 5
4 on22 rn n 1,2,3, 2 me
n 1
r1 0. 53 Å
-------第一玻尔轨道半径
其它可能的轨道: 2)氢原子的能级
rn n2 r1
(r1 , 4r1 , 9r1 )
电子在半径为 rn 的轨道上运动时,原子系统的总能量是:
进一步的实验证实: 第二激发态电势为 6.7 v 电离电势为 10.4 v
V=4.9v

11
注意几个概念: 1. 状态能量:原子系统处于某激发态时所具有的能量。 2. 激发能量:原子从基态被激发到某一激发态,外界所 提供的能量 某状态的激发能量 = 该状态的状态能量 - 基态能量 3. 氢原子的状态能量
向心力作用 电子加速运动 辐射电磁波
E,r
原子半径为 1015 m 相矛盾 实际半径为 1010 m
2)原子发光的频率应等于电子运动的频率 电子运动轨道不断减小,速度大小不变 运动周期减小 频率增大 辐射光谱应是连续光谱
与实验相矛盾 3
二、玻尔的原子量子论

氢原子中电子的状态能量
4. 结 合 能: 将动能为零的电子从无限远处移来和一个离 子结合成基态 的原子所放出的能量。数值上 等于最低能量的绝对值 5. 电 离 能:把某能级的电子搬到无限远处所需要的能 量。数值上等于状态能量的绝对值
12
例1:计算将动能为零的自由电子从无限远处移来和一个 氢离子结合成正常状态的氢原子所放出的能量。
看:E
2
E


n1
13 6eV
氢原子能级图 9
5. 夫兰克—赫兹实验——验证原子系统定态能级存在 实验装置: K极 G极 电压V 加反向电压 G极 P极 阴极 栅极 汞 蒸 K 气 G V 实验结果: 300 200 100 (1)改变 V, V , Ek , I , ——到达P极的电子增加。 板极 A
3) 轨道量子化条件:
En Ek (n 1,2,)
量子数
L n n h 2
3. 玻尔的氢原子理论:
1)氢原子的轨道半径:
2 e E Eek U 8 or mV 2 e2 r 4 or 2
mVr
E 0 r , E 0
束缚态 原子电离
L mVr n
——经验公式
4 里德伯常数的实验值: R 1 096776 107 m 1 B
1
~ 1 R( 1 1 ) n 2,3,4, 紫外区 12 n2 ~ 1 R( 1 1 ) n 4,5,6, 帕邢系: 32 n2 ~ 1 R( 1 1 ) n 5,6,7, 红外区 布喇开系: 42 n2
相关文档
最新文档