7.8 近似数、有效数字及有理数的混合运算
第二章 有理数及其运算(知识归纳+题型突破)(解析版)

第二章有理数1.了解具有相反意义的量,正负数的概念;2.理解有理数、相反数、绝对值、倒数的概念,能正确解题;3.理解数轴的概念,并能正确画出数轴,,在数轴上表示数;4.理解有理数加法、减法、乘法、除法法则、;5.理解有理数乘方定义及运算;6.能掌握加法、减法的运算定律和运算技巧,熟练计算;能掌握乘法的运算定律和运算技巧,熟练计算;7.通过将减法转化成加法和将除法转化成乘法,初步培养学生数学的归一思想8.进一步掌握有理数的五则混合运算;9.理解科学记数法,了解近似数;10.能运用科学记数法表示较大的数.知识点1 正数和负数1.概念正数:大于0的数叫做正数。
负数:在正数前面加上负号“—”的数叫做负数。
注:0既不是正数也不是负数,是正数和负数的分界线,是整数,自然数,有理数。
(不是带“—”号的数都是负数,而是在正数前加“—”的数。
)2.意义:在同一个问题上,用正数和负数表示具有相反意义的量。
知识点2:有理数1.概念整数:正整数、0、负整数统称为整数。
分数:正分数、负分数统称分数。
(有限小数与无限循环小数都是有理数。
)注:正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。
2.分类:两种⑴按正、负性质分类:⑵按整数、分数分类:正有理数正整数正整数有理数正分数整数0零有理数负整数负有理数负整数分数正分数负分数负分数知识点3:数轴1.概念:规定了原点、正方向、单位长度的直线叫做数轴。
三要素:原点、正方向、单位长度2.对应关系:数轴上的点和有理数是一一对应的。
比较大小:在数轴上,右边的数总比左边的数大。
3.应用求两点之间的距离:两点在原点的同侧作减法,在原点的两侧作加法。
(注意不带“+”“—”号)知识点3 :相反数1.概念代数:只有符号不同的两个数叫做相反数。
(0的相反数是0)几何:在数轴上,离原点的距离相等的两个点所表示的数叫做相反数。
2.性质:若a与b互为相反数,则a+b=0,即a=-b;反之,若a+b=0,则a与b互为相反数。
七年级上册数学第二单元知识点

七年级上册数学第二单元知识点七年级上册数学第二单元知识点:第二章有理数解读有理数的有关概念一、正数与负数:1.正数:大于0的数叫正数。
像+1.8,+420、+30、+10%等带有理数“+”号的数叫做正数。
为了强调正数,前面加上“+”号,也可以省略不写。
2.负数:小于0的数叫负数。
像-3、-4754、-50、-0.6、-15%等。
※而负数前面带“-”号,而且不能省略。
3.零既不是正数也不是负数,它是正数与负数的分界点。
注意:对于正数与负数,不能简单地理解为:带“+”号的数是正数,带“-”号的数是负数。
例如-a不一定是负数,因为字母a代表任何一个有理数,当a是0时,-a是0,当a是负数时,-a是正数。
二、有理数及其分类:有理数:整数与分数统称为有理数。
整数包括三类:正整数、零、负整数。
分数包括两类:正分数和负分数。
注意:小学学过的零表示没有,而引入负数后,就不能把“零”完全当作没有了,如0℃就是一个特定的温度;现在我们学过的数,除p和与p有关的数外,其他的数都是有理数;引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大到整数。
三、数轴:1.数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴。
注意:①数轴是一条直线,可以向两端无限延伸;②数轴有三要素:原点、正方向、单位长度三者缺一不可;③原点的位置、正方向的取向、单位长度的大小的选定,都是根据实际需要而定的。
2.数轴的画法:1一条水平的直线;2直线的适当位置选取一点作为原点,并用0表示这点;3定向右为正方向,用箭头表示出来;4选取适当的长度作为单位长度,从原点向右,每隔一个单位长度取一点,依次为1,2,3,从原点向左,每隔一个单位长度取一点,依次为-1,-2,-3。
四、相反数:代数意义:只有符号不同的两个数互为相反数。
如-2和2.规定零的相反数是零。
几何意义:位于原点的两侧且与原点的距离相等的点所表示的两个数。
注意:相反数是成对出现的,不能单独存在,如+2与-2互为相反数,说明+2的相反数是-2,-2的相反数是+2,单独一个数不能说相反数;“只有”的含义说明像+5与-3这样的两个数不是互为相反数。
七年级数学近似数和有效数字;用计算器进行数的简单运算华东师大版知识精讲

七年级数学近似数和有效数字;用计算器进行数的简单运算华东师大版【本讲教育信息】一. 教学内容:§2.14 近似数和有效数字§2.15 用计算器进行数的简单运算[学习目标]1. 了解近似数和有效数字的意义,能对已给出的由四舍五入得到的近似数,说出它的精确度。
(即精确到哪一位),有几个有效数字;给出一个数,能按指定的精确度要求,用四舍五入法取近似数。
2. 会用计算器作有理数的加、减、乘、除、乘方运算和它们的混合运算,体会计算器在学习和生活中的作用,初步感受到解决问题的程序思想,接受现代科技思想的基本训练。
[知识内容](一)近似数和有效数字:1. 有效数字的概念:一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字。
2. 难点解读:我们知道,在很多情况下,一个数可以准确无误地表示一个量,而且在要求上也是准确的,如人口普查,考试成绩等等,都是准确的,但在实际生活中,还存在着大量不要求绝对准确或不可能做到绝对准确的量,如估计作物的产量、全家人的开支等等。
近似数就是为适应这种相对准确的数而产生的概念,四舍五入是一种规定,这种规定也是相对合理的,或说统一要求就是相对合理的。
精确到××位,是指四舍五入到这一位,这点同学们应该明白;按四舍五入取近似数,是指对要精确到的那一位数后的一位数“四舍五入”。
3. 注意事项:(1)在进行近似数的计算时,中间过程应该要求精确度多取一位。
(2)近似数中后面的数字0不能省略不写,如与是不同的,它的精确度不同。
4. 一般地,我们所求的近似值都是用四舍五入得到的。
但是在解决某些实际问题时,要用到不足近似值(如零件毛坯的内径)与过剩近似值(如下料问题)。
(二)用计算器进行数的简单运算。
1. 本节的重点是学会运用计算器进行简单的加、减、乘、除、乘方这五种运算。
2. 本节的难点是如何正确使用和充分利用各种键盘。
3. 难点解读:计算器具有运算快、操作简便、体积小、携带方便等特点。
初一上册数学有理数的混合运算

有理数的混合运算一、有理数的运算1、有理数的加法 (1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不等的异号两数相加,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值;互为相反的两个数相加得0;一个数同0相加,仍得这个数。
例20 计算下列各式①(– 3)–(– 4)+7 ② )()(32312105--+--- ③()3.5-+()2.3-()5.2--()8.4+-(2)有理数加法的运算律:加法的交换律 :a+b=b+a ;加法的结合律:( a+b ) +c = a + (b +c)知识窗口:用加法的运算律进行简便运算的基本思路是:先把互为相反数的数相加;把同分母的分数先相加;把符号相同的数先相加;把相加得整数的数先相加。
例21 计算下列各式①2)10()8()3()7(+-+++++- ②)25.0()3211()813(413125.0-+++-++ 2、有理数的减法(1)有理数减法法则:减去一个数等于加上这个数的相反数。
(2)有理数减法常见的错误:顾此失彼,没有顾到结果的符号;仍用小学计算的习惯,不把减法变加法;只改变运算符号,不改变减数的符号,没有把减数变成相反数。
(3)有理数加减混合运算步骤:先把减法变成加法,再按有理数加法法则进行运算;概念剖析:减法是加法的逆运算,用法则“减去一个数等于加上这个数的相反数”即可转化。
转化后它满足加法法则和运算律。
例22 计算:59117+---例23 月球表面的温度中午是C o101,半夜是C o153-,中午比半夜高多少度?例24 已知m 是6的相反数,n 比m 的相反数小5,求n 比m 大多少? 3、有理数的乘法(1)有理数乘法的法则:两个有理数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。
(2)有理数乘法的运算律:交换律:ab=ba ;结合律:(ab)c=a(bc);交换律:a(b+c)=ab+ac 。
初一数学1-4有理数的混合运算、科学计数法和近似数知识点、经典例题及练习题带答案(最新整理)

环球雅思教育学科教师讲义讲义编号: GE—ZBM 副校长/组长签字:签字日期:学员编号:年级:课时数:3学员姓名:辅导科目:学科教师:课题有理数的混合运算、科学计数法和近似数授课日期及时段教学目的掌握混合运算的运算法则和近似数重难点有理数的混合运算【考纲说明】1、掌握有理数的加减法法则和有理数混合运算的运算步骤。
2、注意有理数混合运算符号混淆问题。
3、掌握科学计数法的表示方法和近似数的表示。
4、本部分在中考中占3-5分。
【趣味链接】科学计数法的前身我们追溯到五千年到八千年前看一看,这时,四大文明古国都早已从母系社会过渡到父系社会了,生产力的发展导致国家雏形的产生,生产规模的扩大则刺激了人们对大数的需要.比如某个原始国家组织了一支部队,国王陛下总不能老是说:“我的这支战无不胜的部队共计有9名士兵!”于是,慢慢地就出现了“十”、“百”、“千”、“万”这些符号.在我国商代的甲骨文上就有“八日辛亥允戈伐二千六百五十六人”的刻文.即在八日辛亥那天消灭敌人共计2656人.在商周的青铜器上也刻有一些大的数字.以后又出现了“亿”、“兆”这样的大数单位. 而在古罗马,最大的记数单位只有“千”.他们用M表示一千.“三千”则写成“MMM”.“一万”就得写成“MMMMMMMMMM”.真不敢想象,如果他们需要记一千万时怎么办,难道要写上一万个M不成?然而,古希腊有一位伟大的学者,他却数清了“充满宇宙的沙子数”,那就是阿基米德.他写了一篇论文,叫做《计沙法》,在这篇文章中,他提出的记数方法,同现代数学中表示大数的方法很类似.他从古希腊的最大数字单位“万”开始,引进新数“万万(亿)”作为第二阶单位,然后是“亿亿”(第三阶单位),“亿亿亿”(第四阶单位),等等,每阶单位都是它前一阶单位的1亿倍.【知识梳理】一、有理数的混合运算1、有理数的加法法则:2、有理数的加法运算定律:.3、有理数减法法则及表达式:.4、有理数减法符号的确定及表示:.5、有理数加减法混合运算应注意的问题:.二、科学计数法1、把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数,且0<a<10),使用的是科学记数法。
近似数及其计算方法

近似数及其计算方法江苏省泗阳县李口中学沈正中一、求近似数的三种方法1.四舍五入法这是一种最常用的求近似数的方法,就是看确定保留数位的下一位数字,比5小的(即0、1、2、3、4),就把这个数字以及后面的所有数字舍去;如果这个数字比4大(即5、6、7、8、9),就把这个数字以及后面的所有数字舍去后,向前一位进一。
如64.96283,保留到万分位写为64.9628,即64.96283≈64.9628(以下类推),保留到千分位写作64.963,保留到百分位写作68.96,保留到十分位写作64.0,保留到整数写作64。
由此可以看出:“四舍”时,近似数比准确值小,“五入”时,近似数比准确值大。
在实际生活中,有时把一个数的留存数位确认后,只要下一位数字或后面的数字存有不以0的(即1、2、3、……、9),都必须向前一位入一。
例如:同学们同时回去独木舟,每只船上最多可载7个同学,17个同学至少须要几只船?17÷7≈2.4,就是说17个同学须要2只船还余3人,这3人还须要一只船,所以一共须要3只船。
即17÷7=≈3(只)。
由此可知:用进一法获得的对数数总比精确值大。
在实际生活中,有时把一个数的保留数位确定后,不管下一位数字或后面的数字是几(即0、1、2、3、……、9),都不要向前一位进一。
例如:用一根5m米短水管制成一批27cm长相同规格的水管,可以制成多少根?500÷27=≈18(根)由此可知:Weinreb尾法获得的对数数总比精确数大。
二、近似数的四则混合运算1.对数数的加减法在一般情况下,近似数相加减的和或差精确到哪一位,与已知数中精确度最低的一个相同,计算法则:(1)确认结果准确至哪一个数位(与已知数中精确度最高那个数准确数位相同);(2)把已知数中的其它数,四舍五入到已知数中精确度最低那个数数位的下一位;(3)展开排序,并且把配得的数的末位数字四舍五入。
【例1】求近似数25.4、0.456、8.738和56的和。
九年义务教育全日制初级中学数学教学大纲(试用修订版)

九年义务教育全日制初级中学数学教学大纲(试用修订版)教学方法是多种多样的,每一种教学方法都有它的特点和适用范围。
在教学时要根据具体情况,合理并创造性地运用教学方法,充分调动学生的积极性。
为了提高教学质量和教学效率,要提倡广泛使用科学计算器,并按照教学的需要和各地的实际情况,积极创造条件,采用模型、投影、录像和计算机软件、多媒体等现代教育技术手段。
(六)正确组织练习。
练习是数学教学的有机组成部分,对于学生掌握基础知识、基本技能和发展能力是必不可少的,是他们学好数学的必要条件。
练习的目的是使学生进一步理解和掌握数学基础知识,训练、培养和发展学生的基本技能和能力,能够及时发现和弥补教和学中的遗漏或不足,培养学生良好的学习习惯和品质。
要注意充分发挥练习的作用,加强对解题的正确指导,应注意引导学生从解题的思想方法上作必要的概括。
为了使练习能起到应有的作用,应注意以下几点:1.目的要明确,题目要精选。
2.题量要适度,首先要保证必须的基本题。
3.习题难度要适中,布置作业要区别对待。
对学习有困难的学生,要给予必要的辅导。
4.要循序渐进,由浅入深,由单一到综合。
还要有适度的开放题。
5.要求学生在弄懂课文内容的基础上,独立完成作业。
6.在作业出现错误时,教师应及时指导学生弄清错误原因,并要求学生及时改正。
7.切实完成实习作业和探究性活动。
(七)改进教学测试和评估。
教学测试和评估必须以教学目标为依据,其目的不仅是评定学生的学习成绩,促进教师改进教学,更重要的是为了激励学生努力学习。
要注意通过课堂提问、观察、谈话、学生作业和平时测验,及时了解学生的学习状况,吸收教学的反馈信息。
要注意评估手段和方法的改革。
考试、考查既要测量学生理解和掌握基础知识、基本技能的情况,又要测量他们的数学基本能力和综合运用数学的能力,并评估他们的创新意识和实践能力发展情况。
要按照课程计划和本大纲的要求,控制考试、考查的次数,设计考题要依据教学内容和教学目标,试题要体现教学重点,难易适当,不出偏题、怪题和助长死记硬背的题目。
七年级近似数有效数字

近似数与有效数字一、近似数和有效数字1、近似数一个数与准确数相近(比准确数略多或者略少些),这一个数称之为近似数产生近似数的主要原因:①“计算”产生近似数.如除不尽,有圆周率π参加计算的结果等等;②用测量工具测出的量一般都是近似数,如长度、重量、时间等等;③不容易得到,或不可能得到准确数时,只能得到近似数,如人口普查的结果,就只能是一个近似数;④由于不必要知道准确数而产生近似数.2、有效数字对一个近似数,从左面第一个不是0的数字起,到末位数字止,所有的数字都称为这个近似数的有效数字.3、精确度:是近似数与准确数的接近程度.近似数一般由四舍五入法取得,四舍五入到哪一位,就说这个近似数精确到那一位.精确一般有两种形式:一是精确到哪一位;二是保留几个有效数字.在用四舍五入法取近似数时,只需考虑指定的精确度后面的第一个数即可.4、用科学记数法a×10n表示的的近似数中,a的末位数字在还原后的数中是哪一个数位,就说这个近似数精确到了哪一位,它的有效数字就是a的有效数字.如4.80×104精确到百位,而不是百分位.实际上 4.80×104=48000,8后面的第一个0在百位上,所以4.80×104精确到百位.它有三个有效数字.例1、判断下列各数,哪些是准确数,哪些是近似数.(1)初一(2)班有43名学生,数学期末考试的平均成绩是82.5分;(2)某歌星在体育馆举办音乐会,大约有一万二千人参加;(3)通过计算,直径为10cm的圆的周长是31.4cm;(4)检查一双没洗过的手,发现带有各种细菌8亿个;(5)1999年我国国民经济增长7.8%.例2、下列由四舍五入得到的近似数,各精确到哪一位?各有哪几个有效数字?(1)38200(2)0.040 (3)20.05000(4)4×104注:(1)一个近似数的位数与精确度有关,不能随意添上或去掉末位的零.如20.05000的有效数字是2、0、0、5、0、0、0七个.而20.05的有效数字是2、0、0、5四个.因为20.05000精确到0.00001,而20.05精确到0.01,精确度不一样,有效数字也不同,所以右边的三个0不能随意去掉.(2)对有效数字,如0.040,4左边的两个0不是有效数字,4右边的0是有效数字.(3)近似数40000与4×104有区别40000表示精确到个位,有五个有效数字4、0、0、0、0,而4×104表示精确到万位,有1个有效数字4.例3、用四舍五入法,按括号里的要求对下列各数取近似值.(1)1.5982(精确到0.01)(2)0.03049(保留两个有效数字)(3)3.3074(精确到个位)(4)81.661(保留三个有效数字)例4、指出下列各问题中的准确数和近似数,以及近似数各精确到哪一位?各有几个有效数字?(1)某厂1998年的产值约为1500万元,约是1978年的12倍;(2)某校初一(2)班有学生52人,平均身高约为1.57米,平均体重约为50.5千克;(3)我国人口约12亿人;(4)一次数学测验,初一(1)班平均分约为88.6分,初一(2)班约为89.0分.例5、小明和小红测量同一张课桌的高度,小明测得的高度是1.1米,小红测得的高度是1.10米,两人测得的结果是否相同?为什么?(可以从精确度和有效数字两个方面去说明区别.)例6、测得小明的身高约为1.66米,试说出小明身高准确值的范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例8、若a、b、c为有理数,且 a b c 1 , 求 abc 的值。
abc
abc
解: ∵
a b c 1 abc
∴ abc>0 a、b、c中必为两负一正 ∴ abc>0
∴ abc abc
∴ abc 1
abc
4000838302
1、科学计数法 2、求近似数和有效数字 3、有理数的混合运算
4000838302
思维探索 ☞
2、近似数和有效数字: 一般地,一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位。 例如:π≈3.14,精确到百分位(0.01)。 一个近似数,从左边第一个非0数字起,到末位数字止,所有数字都是这
个近似数的有效数字。 例如:近似数0.0108有3个有效数字,分别是1,0,8;6.4×104 有2个有
B、2.545<a<2.ห้องสมุดไป่ตู้75
C、2.555≤a<2.565
D、2.555<a≤2.565
4000838302
例6:计算:
(1)
1 2 13 32 2 3 11
2
3 3
解:原式 1 2 (1) 9 8 ( 3)
效数字,分别是6,4。
4000838302
例1. (1) 用科学记数法表示下列各数
①150000000 ②384400 ③ -300000
(2) 指出下列用科学记数法表示的数原来各是什么数
① 3 ×104 ②4.05 ×1012
③-3.801 ×106
解:(1)原式=1.5 ×108 原式=3.844 ×105
解:(1) ①百分位,3个有效数字 ② 万分位,2
个有效数字 ③千位,2个有效数字
④百位,3
个有效数字;
(2) ① 0.51 ② 8.6 ×104 ③ 0.029 ④ 2.0
4000838302
B 例3:近似数13.5亿精确到( )。
A、亿位 B、千万位 C、十亿位 D、十分位
B 例4:下列说法正确的是( )。
(4)此题的正确结果是______4_32__________。
解:原式 3 1 22 1 3 3 5 ①
3
4 4
3 1 4 2 1 5 3 2
31 4 25 35
② ③
3 1 8 4 2
3
3
4000838302
小升初暑期衔接版
4000838302
8、近似数、有效数字及 有理数的混合运算
4000838302
情景导入
1、科学记数法: 把一个大于10的数表示成a×10n 的形式(其中a是整数数位只有一
位的数,n是正整数),这种记数方法叫做科学记数法。 例如:567000000=5.67×100000000=5.67×108 。
5
23
8 3
1 2009
1 2008
解:原式 27 5 5 8 3 11
4
8
27 5 81
4 270 1
271
4000838302
例7、阅读下面的计算过程:
3 1 22 [(1 )2 (3 0.75)] 5
A、近似数27.0精确到个位,有3个有效数字:2,7,0 B、近似数27.0精确到十分位,有3个有效数字:2,7,0 C、8万和80000的精确度相同 D、近似数0.15和0.150是相同的
例5:如果一个数a利用四舍五入的方法取近似数是2.56,那么这个数的
取值范围是( C )。
A、2.54<a<2.57
1
3 2
23 3
解:原式
8
8
3 5
25 81
1 2
2 3
3
1
5
1
3
27 3
22 27
27
22
4000838302
(4)
33
11 4
2
27 4
1 2 1 9 2
2
9
12 69
1 18
4000838302
(2)
22
4 3
22
1
1 2
1 3
12
解:原式
4000838302
(3)
23
23
3 5
5 9
2
3
2
解:原式 3 1 22 1 3 3 5 ①
3
4 4
3 1 4 25
②
3
31 2
③
35
311 15
4000838302
回答下列问题:
(1)步骤①错在 去括号时没有变号
;
(2)步骤①到步骤②错在 “-”写成了“+;”
(3)步骤②到步骤③错在 乘除法计算错误 ;
4000838302
4000838302
想 原式=-3 ×105 一
想
(2)原式=30000 原式=4050000000000
?
原式=-381000
4000838302
例2:(1) 下列由四舍五入得到的近似数各精确到哪一位?各有几个有效数字?
① 4.20 ② 0.0022 ③ 4.5万 ④3.05 ×104
(2) 用四舍五入法取下列各数的近似数。 ① 0.507;(精确到百分位) ② 86400;(保留2个有效数字) ③ 0.02866;(精确到0.001) ④ 1.99;(精确到0.1)