人教版初一数学上册如何学好绝对值
初中数学七年级上册《绝对值》知识简要与举例

初中数学七年级上册《绝对值》知识简要与举例1.绝对值的概念是代数的重要概念之一,它是学习代数后续内容的基础.同时,利用绝对值的概念,能使我们进一步认识已学过的概念.例如,我们可以把任何一个有理数看成是由符号与绝对值两部分组成;又如,互为相反数的两个数,其实质是绝对值相等而符号相反的两个数.像-6和6,它们的符号相反,而其绝对值|-6|=|6|=6.2.理解绝对值的意义,应注意以下三点:(1)绝对值的非负性即任何一个数a的绝对值,总是非负的.即|a|≥0.当a≠0时,|a|>0;当a=0时,|a|=0.(2)绝对值相等的两个数或相等,或互为相反数.如|2|=|+2|=2,|+2|=|-2|=2.一般地,若|x|=|y|,则有x=y或x=-y.(3)学习了绝对值的几何意义后,数轴的概念、画法、利用数轴比较数的大小、相反数以及绝对值,借助数轴,这些知识便都联系到一起了.3.用正负数可以表示具有相反意义的量.但在实际生产和生活中,有时不考虑方向性.如:计算汽车的耗油量时,知道行驶单位路程的耗油量,只需求出汽车行驶的总路程,便可求出耗油量,与行驶的方向无关而汽车所走的路程就只需用正数表示,因此,引出绝对值的概念.4.绝对值的三种表达方法.(1)文字语言表达法(绝对值的概念):一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零.(2)用数学式子法:设a为任意有理数,则(3)绝对值的几何意义:一个数的绝对值就是表示这个数的点离开原点的距离.[例1]判断题(2)|-0.01|<0.( )(3)-(-4)<|-4|.( )(4)|a|=a.( )(5)当a≤0时,|a|+a=0.( )答案:(1)√;(2)×;(3)×;(4)×;(5)√.说明:在有理数的大小比较中,如果含有绝对值或相反数时,可先化简,然后再进行比较.[例2]填空题(5)______________与它的绝对值互为相反数;(6)如果|a|=|-7|,那么a=________.说明:如果两个数相等或互为相反数,那么这两个数的绝对值相等;反之,如果这两个数的绝对值相等,那么这两个数相等或互为相反数.[例3]a为何值时,下列各式成立?(1)|a|=a;(2)|a|=-a;(3)|a|≥a;(4)|a|<a;(5)|a|=5;(6)|a|=-5.解:(1)a≥0;(2)a≤0;(3)a为任意有理数时,都使|a|≥a成立;(4)a为任意有理数时,|a|<a都不成立;(5)a=±5;(6)a为任意有理数时,|a|=-5都不成立.说明:本题解决的关键是牢固掌握绝对值的非负性,即|a|≥0.另外,(3)、(4)小题还要准确理解有理数大小的比较法则.[例4]比较大小:[例5]把下列各数按照从大到小的顺序用“>”连接起来:说明:学了绝对值的概念之后,比较两有理数大小的基本方法,我们便有了两种:(1)数轴法;(2)绝对值法.在这小节的后一部分,介绍了利用绝对值比较两个负数的大小的办法.这既可巩固绝对值的概念,又把比较有理数大小的方法提高了一步.利用绝对值来比较两有理数大小的方法是我们常用的方法之一.前面提到绝对值的概念是代数中重要的概念之一,我们应该很好地掌握它.[例6](1)若a>3,则|a-3|=________;(2)若a=3,则|a-3|=________;(3)若a<3,则|a-3|=________.分析:要想正确地化简|a-3|的结果.关键是确定a-3的符号.当a>3时,a -3>0,即a-3为正,由正数的绝对值是它本身,可得结果为a-3;当a=3时,a -3=0,所以|a-3|=|0|=0;当a<3时,a-3<0,即a-3为负数,由负数的绝对值等于它的相反数可得|a-3|=-(a-3).解:(1)a>3时,|a-3|=a-3;(2)a=3时,|a-3|=0;(3)a<3时,|a-3|=-(a-3)说明:由本题的解法说明,化简含有字母的式子的绝对值时,必须先讨论这个式子的计算结果的正负性.否则会出现错误,如|a-3|=a-3(×).。
人教版数学七年级上册1.2.4《绝对值》教案

人教版数学七年级上册1.2.4《绝对值》教案一. 教材分析《绝对值》是人教版数学七年级上册第1章第2节的内容,本节课主要让学生理解绝对值的概念,掌握绝对值的性质,并能运用绝对值解决一些实际问题。
绝对值是数学中的一个基本概念,它在日常生活和工农业生产中有着广泛的应用。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,他们对数学概念的理解和运用已经有了一定的基础。
但同时,学生对新的数学概念的接受和理解还需要一定的引导和培养。
他们对绝对值的概念和性质可能还存在一些模糊的认识,需要通过实例和练习来加深理解。
三. 教学目标1.让学生理解绝对值的概念,掌握绝对值的性质。
2.培养学生运用绝对值解决实际问题的能力。
3.培养学生的抽象思维能力和逻辑思维能力。
四. 教学重难点1.绝对值的概念和性质。
2.运用绝对值解决实际问题。
五. 教学方法采用问题驱动法、实例教学法和小组合作学习法,引导学生通过观察、思考、讨论、操作等活动,掌握绝对值的概念和性质,提高学生的动手操作能力和解决问题的能力。
六. 教学准备1.PPT课件。
2.相关例题和练习题。
3.学生分组合作学习资料。
七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,如温度、距离等,引导学生思考这些问题的共同特点,从而引出绝对值的概念。
2.呈现(10分钟)介绍绝对值的定义,用PPT展示绝对值的图形表示,让学生直观地理解绝对值的概念。
同时,给出绝对值的性质,让学生通过观察和思考来理解这些性质。
3.操练(10分钟)让学生分组合作,运用绝对值的性质解决一些实际问题,如求距离、计算温度等。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示一些练习题,让学生独立完成,检验学生对绝对值概念和性质的掌握程度。
教师选取部分题目进行讲解,分析解题思路。
5.拓展(10分钟)让学生思考绝对值在实际生活中的应用,如地图上的距离、股票的涨跌等。
引导学生运用绝对值的知识解决这些问题,提高学生的应用能力。
人教版数学七年级上册1.2.4绝对值(教案)

(五)总结回顾(用时5分钟)
今天的学习,我们了解了绝对值的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对绝对值的理解。我希望大家能够掌握这些知识点,并在解决实际问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
人教版数学七年级上册1.2.4绝对值(教案)
一、教学内容
人教版数学七年级上册1.2.4绝对值:本节主要内容包括绝对值的概念、绝对值的性质及其在数轴上的表示。具体教学内容如下:
1.理解绝对值的概念,掌握表示方法,例如|a|表示a的绝对值。
2.掌握绝对值的性质,如:正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值是0。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解绝对值的基本概念。绝对值是一个数在数轴上表示的距离,不考虑方向。它是表示数值大小的重要工具,广泛应用于数学和日常生活中。
2.案例分析:接下来,我们来看一个具体的案例。数轴上,点-3和点3的距离都是3,这个距离就是绝对值。通过这个案例,我们可以理解绝对值是如何帮助我们解决距离问题的。
我也注意到,在小组讨论中,有些学生对于绝对值在实际生活中的应用提出了很有创意的想法。这让我感到很高兴,说明学生们能够将所学知识联系到生活实际,这是我教学的一个重要目标。
然而,我也发现了一些需要改进的地方。在重点难点解析部分,我可能需要更多的耐心和不同的教学方法来帮助那些理解起来比较慢的学生。我计划在下一次课时,增加一些互动性更强的问题,让学生们更多地参与到解答过程中来,而不是单向的讲解。
3.重点难点解析:在讲授过程中,我会特别强调绝对值的定义和性质这两个重点。对于难点部分,比如负数的绝对值是它的相反数,我会通过数轴上的具体点和图形来帮助大家理解。
初一数学绝对值知识点、考点及例题梳理

初一数学绝对值知识点、考点及例题梳理绝对值是初一上册数学的重难点之一,很多同学绝对值的学习中都存在着一些问题,所有问题的根源大都是对绝对值的概念理解不透彻,没有建立起完整的知识体系,在此梳理下在绝对值学习中需要注意的一些要点。
在绝对值的学习中,首先需要去理解和掌握的就是绝对值的概念,什么是绝对值呢?在数轴上,一个数所对应的点与原点之间的距离。
在概念的理解中需要注意,绝对值这个概念是从数轴引出的,它表示的是距离,绝对值本质上是数轴上两点之间的距离,哪两点之间的距离呢?表示某个数的点和原点。
那么由绝对值的定义,我们可以得到有关绝对值的那些性质呢?因为绝对值表示的是距离,从日常经验可知,距离最小为0,不可能为负数,所以就得出了绝对值最重要的一条性质:绝对值具有非负性。
从绝对值的定义出发,结合绝对值的非负性,可以得到绝对值的代数意义,也看成是绝对值性质的推广:正数的绝对值等于它本身;0的绝对值是0;负数的绝对值等于它的相反数。
以上三条需要牢记。
这是求绝对值和简化绝对值的方法基础。
除过绝对值的定义和性质之外,在绝对值的学习中还需要注意以下细节和要点:任何数都有绝对值,只有一个,而且是非负的。
但是有两个数的绝对值等于正数,而且是相反的。
很多同学容易漏掉其中的一个,比较容易出错。
在有关绝对值的运算,在解含有绝对值的方程中,经常需要运用到分类讨论思路。
绝对值的概念来源于数轴,代表数轴上两点之间的距离。
绝对值与数轴有着密切的关系,在绝对值相关题目的分析和求解中,一定要注意数形结合思想的应用。
特别是在绝对值的几何意义的理解和应用上,需要结合数轴来分析和解决。
绝对值等于它本身的数是正数和0,绝对值等于它的相反数的数是负数和0.1.解决问题的关键是理解绝对值的定义和性质,把握其非负性。
2、求一个数的绝对值,先判定这个数是正数、负数还是0,再根据绝对值的性质确定最终的结果。
3、利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小。
人教版-数学-七年级上册-《绝对值》学习指导

《绝对值》学习指导学习目标:1、理解、掌握绝对值概念,体会绝对值的作用与意义;2、掌握求一个已知数的绝对值和有理数大小比较的方法.知识点:绝对值一、绝对值的概念一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作| a |.注:(1)这里的a可以是正数、负数和0.(2)由于绝对值表示的是数轴上a的点与原点的距离,距离是一个非负数,所以可知| a |≥0.二、绝对值的代数含义绝对值是分正数、负数和零三种情况来说明的。
也就是,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零。
即当a为有理数时,| a | =(0) 0(0)(0)a aaa a⎧⎪=⎨⎪-⎩><.三、绝对值的几何意义一个数的绝对值就是数轴上表示这个数的点离开原点的距离。
即若a是有理数,则| a |就是数轴上表示“a”的点与原点“0”的距离,如,数轴上到原点的长度为6的点有两个,即±6,这个长度6就是6和-6的绝对值。
数轴是中学代数中数形结合思想最简单也是最基本的表现形式,利用数轴强化绝对值概念,不但可以从几何直观上理解绝对值的意义,而且能渗透数形结合的思想方法。
四、绝对值的主要性质(1)正数及负数的绝对值都是正数,零的绝对值还是零。
即,任何一个数的绝对值都是非负数,也就是,若a为有理数,则| a |≥0;(2)任何两个互为相反数的绝对值总相等,即,若a为有理数,则| a | = |-a |;(3)任何一个有理数都不大于它的绝对值,即,若a为有理数,则a≤| a | .预习检测:1、一般地,数轴上表示数a的点与原点的叫做数a的绝对值.记作.2、对于任意数a,若a>0,则| a |= ;若a=0,则| a |= ;若a<0,则| a |= .练习:1、写出下列各数的绝对值:6,-8,-3.9,52,112-,100,0.2、判断下列说法是否正确:(1)符号相反的数互为相反数;(2)一个数的绝对值越大,表示它的点在数轴上越靠右;(3)一个数的绝对值越大,表示它的点在数轴上离原点越远;(4)当a≠0时,| a |总是大于0.3、判断下列说法是否正确:(1)| 5 |=| -5 |;(2)-| 5 |=| -5 |;(3)-5=| -5 |.4、比较下列各数的大小:(1)3和-5;(2)-3和-5;(3)-2.5和-| -2.25 |;(4)35-和34-.参考答案:1、6,8,3.9,52,112,100,0.2、(1)错;(2)错;(3)对;(4)对.3、(1)对;(2)错;(3)错.4、(1)3>-5;(1)-3>-5;(3)-2.5<-| -2.25 |;(4)35->34-.。
人教版七年级数学上册:1.2.4《绝对值》说课稿4

人教版七年级数学上册:1.2.4《绝对值》说课稿4一. 教材分析《人教版七年级数学上册:1.2.4《绝对值》》这一节内容,主要介绍了绝对值的概念及其性质。
绝对值是数学中一个重要的概念,它体现了数轴上点到原点的距离,具有鲜明的几何特征。
教材通过简单的例子引入绝对值的概念,再引导学生探究绝对值的性质,从而使学生掌握绝对值的基本概念和运用。
二. 学情分析七年级的学生已经具备了一定的数学基础,对数轴有了初步的认识。
但他们对绝对值的理解还较为模糊,需要在教学中通过具体例子和几何直观来加深对绝对值概念的理解。
此外,学生在这一阶段正处于从小学到初中的过渡,学习方式和方法需要进行一定的调整,因此在教学过程中,教师需要关注学生的学习习惯和思维方式的培养。
三. 说教学目标1.知识与技能目标:通过本节课的学习,使学生理解绝对值的概念,掌握绝对值的性质,并能运用绝对值解决一些实际问题。
2.过程与方法目标:通过观察、思考、探究、交流等过程,培养学生的逻辑思维能力和解决实际问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们积极思考、勇于探索的精神。
四. 说教学重难点1.教学重点:绝对值的概念及其性质。
2.教学难点:绝对值性质的推导和运用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等,引导学生主动探究、积极交流。
2.教学手段:利用多媒体课件、数轴模型等辅助教学,增强教学的直观性和趣味性。
六. 说教学过程1.导入新课:通过一个简单的例子,引导学生思考绝对值的概念,激发学生的学习兴趣。
2.讲解绝对值的概念:结合数轴,讲解绝对值的几何意义,使学生理解并掌握绝对值的概念。
3.探究绝对值的性质:引导学生观察、分析、总结绝对值的性质,并通过小组讨论加深理解。
4.运用绝对值解决实际问题:布置一些实际问题,让学生运用绝对值的知识进行解决,巩固所学内容。
5.课堂小结:对本节课的内容进行总结,强调绝对值的概念和性质。
第一章 第6课 绝对值-七年级上册初一数学(人教版)

第一章第6课绝对值-七年级上册初一数学(人教版)1. 绝对值的概念绝对值是数学中的一个重要概念,简单来说,它表示一个数与0的距离。
对于任意一个实数a,它的绝对值记作|a|,定义如下:•如果a大于等于0,则|a|等于a本身;•如果a小于0,则|a|等于-a。
绝对值的计算结果始终为非负数。
2. 绝对值的性质绝对值有以下几个重要的性质:•非负性:对于任意一个实数a,|a|大于等于0。
•正负性:对于任意一个实数a,如果a大于0,则|a|等于a本身;如果a小于0,则|a|等于-a。
•零的绝对值:|0|等于0。
•数轴上的表示:数轴上的点a到原点0的距离就是|a|。
3. 绝对值的运算3.1. 绝对值的加法绝对值的加法遵循以下规则:对于任意两个实数a和b,有以下等式成立:|a + b| <= |a| + |b|即绝对值的加法不会增加数的绝对值,而是有可能减小。
3.2. 绝对值的减法绝对值的减法遵循以下规则:对于任意两个实数a和b,有以下等式成立:|a - b| <= |a| + |b|即绝对值的减法的结果的绝对值不会大于原来两个数的绝对值之和。
3.3. 绝对值的乘法绝对值的乘法遵循以下规则:对于任意两个实数a和b,有以下等式成立:|a * b| = |a| * |b|即绝对值的乘法相当于两个数的绝对值相乘。
4. 绝对值的应用4.1. 距离的计算绝对值可以用来计算两个数在数轴上的距离。
例如,记数轴上的点A和点B的坐标分别为a和b,则点A和点B之间的距离为|a - b|。
4.2. 数据的取模在实际问题中,我们常常需要对数据进行取模运算。
取模运算即取绝对值,可以去除数据的符号,使得结果始终为非负数。
4.3. 求解不等式绝对值可以用来求解一些简单的不等式。
例如,求解|2x - 1| < 5这个不等式,可以分为两种情况讨论:当2x - 1大于等于0时,原不等式可化简为2x - 1 < 5,解得x < 3;当2x - 1小于0时,原不等式可化简为-(2x - 1) < 5,解得x > -2。
人教版七年级数学上册:1.2.4《绝对值》说课稿1

人教版七年级数学上册:1.2.4《绝对值》说课稿1一. 教材分析《绝对值》是人教版七年级数学上册第一章第二节第四个小节的内容。
绝对值是数学中的一个基本概念,它表示一个数在数轴上所对应的点与原点的距离。
这个概念在初中数学中非常重要,它不仅涉及到实数的概念,还与代数、几何等多个数学领域有着密切的联系。
在后续的学习中,绝对值的概念会不断出现,因此,让学生深刻理解绝对值的意义和应用是非常必要的。
二. 学情分析七年级的学生已经具备了一定的实数基础,对于数轴的概念也有了一定的了解。
但是,他们对于抽象的概念的理解还相对较弱,需要通过具体的实例和实际操作来帮助理解。
同时,七年级的学生正处于青春期,注意力容易分散,因此,在教学过程中,需要通过多种教学手段来吸引他们的注意力,激发他们的学习兴趣。
三. 说教学目标1.知识与技能:让学生理解绝对值的定义,掌握绝对值的性质,能够运用绝对值解决实际问题。
2.过程与方法:通过实例和实际操作,让学生体验绝对值的概念,培养学生的抽象思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的自主学习能力。
四. 说教学重难点1.教学重点:绝对值的定义和性质。
2.教学难点:绝对值在实际问题中的应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法,通过提问引导学生思考,激发学生的学习兴趣。
2.教学手段:利用多媒体课件,结合板书,以实例和实际操作的方式进行教学。
六. 说教学过程1.导入:通过一个实际问题,引出绝对值的概念,激发学生的学习兴趣。
2.新课导入:介绍绝对值的定义和性质,让学生通过实例来体验绝对值的概念。
3.课堂讲解:通过讲解和实际操作,让学生理解绝对值的性质,能够运用绝对值解决实际问题。
4.课堂练习:设计一些练习题,让学生运用绝对值的知识来解决问题,巩固所学的内容。
5.课堂小结:对本节课的内容进行总结,让学生明确学习的重点。
七. 说板书设计板书设计要清晰、简洁,能够突出绝对值的概念和性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何学好绝对值
绝对值是中学数学的一个重要概念,学好它非常重要。
要学好绝对值,除了熟练掌握正负数、相反数和绝对值的性质外,还应掌握绝对值的几何意义,具体来说要注意以下几点。
一、正确判断正负数,准确写出相反数
例1. 三个数a 、b 、c 在数轴上的对应点如图1,化简a a b c b c ++---=_____。
解:由图1可知c b a b c b a <<><>000,,,,||||。
∴+<-<a b b c 00,
∴原式=--++-=a a b c b c 0
二、逆用绝对值的性质解题
例2. 已知
a b -==123,||,且a b >,则a b +的值为_________。
解: ±=22
∴-=a 12或a -=-12
∴=a 3或a =-1
同理可得b =±3
a b >
∴==-a b 33,或a b =-=-13,
故a b +的值为0或-4
三、利用好绝对值的非负性
例3. 已知
a a
b -+++=3250,求a b +的值。
解: a -3与a b ++25都是非负数,且它们的和为零
∴-=a 30且a b ++=250
∴==-∴+=-=-a b a b 34
341,
四、注意零这一特殊数
例4. 如果a a -+-=440,那么a 的取值范围是_________。
解:由已知式可知a a
-=-44 a -4与4-a 互为相反数
∴-≤∴≤a a 40
4
注意:在这里许多同学只重视a -4是一个负数,而忽视了a -=40也成立这一特殊性,易把答案填为a <4。
五、要有分类讨论的思想
例5. 求代数式a a b b ab ab ++2的值。
解:(1)当a b >>00,时,
原式=
++=++=a a b b ab ab 21214
(2)当a b <<00,时,
原式=
-+-+=--+=-a a b b ab ab 21212
(3)当a b ><00,时,
原式=
+-+-=--=-a a b b ab ab 21212
(4)当a b <>00,时,
原式=
-++-=-+-=a a b b ab ab 21210
综上所述,所求代数式的值为4、-2和0。
六、熟练掌握其几何意义
例6. 求31-+-x x 的最小值。
解:如图2,设数轴上的三点A 、B 、C 所表示的数分别为1、3、x ,其中C 可视为一个动点,这样,此题就可转化为求A C BC +的最小值。
由图形可知,当点C 在线段AB 上时A C BC +最小,此时A C BC A B +==2,故当13≤≤x 时,31-+-x x 有最小值,其最小值为2。
1、已知一个数的两个平方根分别是2a+3和4-a ,求这个数负的平方根是多少
3、已知a 、b 0b =,解关于x 的方程()122
-=++a b x a 。
化简、|23- | + |23-|- |12- |。