双导程蜗杆传动
蜗杆传动

H1 1000P 1 (1 )
W
式中:P1—蜗杆传动的功率,KW
—蜗杆传动的总效率
单位时间由箱体外壁散发到空气中的热量为
H 2 aW A(t1 t0 )
式中 aw—表面散热系数 A—箱体的散热面积
W
t1—箱体的工作温度,在800以内
t0—周围空气温度, t0=200
根据热平衡条件H1=H2可求得箱体的工作温度和应满 足的要求为
式中 px 蜗杆轴向齿距;z1-蜗杆头数; u-齿数比,导程角大,传动效率高; 导程角小,传动效率低。
普通蜗杆传动的m与d1搭配值 (注:d1与m的比值称为蜗杆直径系数q)
3 、传动比i、蜗杆头数Z1和蜗轮齿数Z2
n1 Z 2 i n2 Z1
蜗杆头数Z1通常取为:1,2,3,4,或6
确定圆周力Ft及径向力Fr的方向的方法同外啮合圆柱齿轮 传动,也可按照主动件左右手定则来判断。而轴向力Fa的方向 则可根据相应的圆周力Ft的方向来判定,即Fa1与 Ft2方向相反, Ft1与 Fa2的方向相反。
力的方向判断例题
2. 蜗杆传动的计算载荷
计算载荷=K*名义载荷
K K A K K
1000 P 1 (1 ) t1 t0 80C C aW A
在既定工作条件下,保持正常油温所需要的散热面积, 对于散热肋布置良好的固定式蜗杆减速器,其散热面 积可用下式估算:
A 9 105 a1.88 m2 式中a为传动中心距,mm
若t>80℃或有效的散热面积不足时,则必须 采取措施,以提高其散热能力
1
d1n1
m/s
式中:
d1--蜗杆分度圆直径,mm
n1--蜗杆的转速,r/min
机械原理—蜗杆传动概述课件

蜗杆传动过程中可能产生振动和噪声。了解这些现象的产生机理有助于降低振 动和噪声,提高传动性能。
05
蜗杆传动的强度与失效分析
强度计算
1 2 3
材料力学性能 蜗杆传动的材料强度是其承受载荷的关键因素。 需要考虑材料的弹性模量、屈服强度、抗拉强度 等参数。
接触应力分析 蜗杆与蜗轮在传动过程中会产生接触应力,需要 进行接触应力分析,以确定接触面的应力分布和 大小。
受力分析
法向力与切向力
蜗杆传动中,蜗杆和蜗轮受到法向力 和切向力的作用。这些力的大小和方 向随着传动状态的变化而变化。
摩擦力分析
蜗杆传动中的摩擦力是影响传动效率 的重要因素。分析摩擦力的性质和变 化规律有助于提高传动效率。
动态特性
动态响应
蜗杆传动的动态响应包括速度、加速度和位移的变化。这些动态特性的变化规 律影响传动的稳定性和精度。
主要由蜗杆、蜗轮和机架组成。
圆弧齿蜗杆传动
主要由蜗杆、圆弧齿蜗轮和机架 组成。
锥蜗杆传动
主要由锥蜗杆、直齿圆柱蜗轮和 机架组成。
参数
模数
蜗杆传动的标准参数,表示蜗杆 分度圆直径与齿距之比,是设计、
制造和使用蜗杆传动的依据。
压力角
在分度圆柱面上,螺旋线的切线与 通过切点的平面之间的夹角,是影 响蜗杆传动效率的重要参数。
弯曲应力计算 蜗杆在传递扭矩时会产生弯曲应力,需要计算蜗 杆的弯曲应力,以确保其具有足够的弯曲强度。
失效形式
疲劳断裂
01
在循环载荷作用下,蜗杆和蜗轮的应力超过其疲劳极限,导致
疲劳断裂。
Hale Waihona Puke 胶合磨损02蜗杆和蜗轮在高速重载下,由于摩擦产生高温,导致材料表面
蜗杆

双线蜗杆的两级优化设计双导程蜗杆蜗轮传动是一个方便的消隙机构,它可用于精密机械工具和导向装置。
目的是尽量减少蜗杆和齿轮之间的摩擦力。
约束条件包括蜗杆几何体,应力,位移和蜗杆的固有频率。
为了避免困难的三维优化问题,本文介绍一种两阶段优化方法。
第一级优化使用一个近似模型,在这阶段蜗杆的线程是近似的元素。
蜗杆和蜗轮的节圆直径、模数以及左右侧模块的差异是设计变量。
第二级优化使用真正的三维实体模型与连续螺旋线确定最佳形状的蜗杆线程。
实例表明这是可行的和有效的。
关键词:机械设计;双导程蜗杆;两阶段优化引言蜗轮蜗杆齿轮组是一个重要的机械传动机构,这一装置优点在于其较高减速比和紧凑的尺寸。
这一机构的缺点是功率的损失相对其他类型的齿轮组高。
工业上蜗杆蜗轮组主要用于减速器、导向和定位装置。
因为蜗杆蜗轮组几何性质和动力传输机构不同于其他类型的齿轮,很多运动学和接触蜗杆和蜗轮齿的研究已经进行了1–[7]。
由于近年来高科技产业的蓬勃发展,对精密的机器和精密的制造工艺的需求迅速增加。
精确定位的切割工具或工件的关注重点精密机械制造工艺。
在机械领域精密齿轮和滚珠丝杠实现这些目标的关键部件。
但是众所周知,即使在最高级别的精密齿轮中齿间间隙仍不能消除。
反弹是影响定位精度的主要因素之一。
黑尔和斯洛克姆[ 8]提到一些美国隙设计专利。
其中之一是用于蜗轮蜗杆齿轮传动。
其设计理念是类似于一个滚珠螺杆。
在蜗杆的线程和蜗轮的齿牙之间插入滚珠,尽量减小蜗杆蜗轮之间反弹间隙。
这种设计成本高。
一种更便宜的方法,这是本文提到的,使用的是双导程蜗杆蜗轮组。
蜗杆的双引线是特别设计的,有两种不同导致双向的蜗杆线程。
由于不同的引导线,两侧的线程在轴向方向的厚度不同。
这种设计的优点是蜗杆蜗轮之间的间隙可以通过旋转蜗杆轴调整最适宜的线程确保蜗杆与蜗轮齿配合来减小。
拜尔和纂[ 9]讨论了几何型双导程蜗轮蜗杆。
先进的数学模型可以用来做接触分析与研究。
本文拜尔和纂[ 10 ]提出另外讨论接触牙齿,接触比率和双导程蜗轮蜗杆传动运动误差。
蜗杆传动

a = r + r2 1 1 = m (q + z2 ) 2
2. 蜗杆传动的应用: 蜗杆传动的应用:
两轴交错、传动比较大, 两轴交错、传动比较大,传递功率不太大或间歇工作 的场合。 的场合。
§10-10 蜗杆传动 10二.蜗杆传动的类型简介
按蜗杆的形状分: 按蜗杆的形状分:
圆柱蜗杆机构 环面蜗杆机构 锥蜗杆机构
圆柱蜗杆机构
环面蜗杆机构
锥蜗杆机构
§10-10 蜗杆传动 10圆柱蜗杆机构 阿基米德蜗杆 渐开线蜗杆 圆弧齿圆柱蜗杆 渐开线蜗杆
§10-10 蜗杆传动 101. 蜗杆传动的特点: 蜗杆传动的特点:
1)传动比大,结构紧凑; )传动比大,结构紧凑; 2)具有自锁性; )具有自锁性; 3)传动平稳,无噪声。 )传动平稳,无噪声。 4)机械效率低; )机械效率低; 5)齿间相对滑动速度大,磨损较严重; )齿间相对滑动速度大,磨损较严重; 6)蜗杆轴向力较大,轴承磨损大。 )蜗杆轴向力较大,轴承磨损大。 缺点 优点
2. 压力角: 压力角:
对阿基米德蜗杆, 一般: 对阿基米德蜗杆, 一般:α=20º 动力传动中: 动力传动中:荐用α =25º 分度传动中: 分度传动中:荐用α =15º或12º 或
§10-10 蜗杆传动 103. 导程角: 导程角:
tgγ1 = z1 ⋅ px1 πd1
z1 ⋅ πm = πd1 z1m = d1
——轴面为齿条,端面为阿基米德螺线 轴面为齿条, 轴面为齿条 ——端面为渐开线,基圆柱切面齿形为直线 端面为渐开线, 端面为渐开线 ——轴面为圆弧,法面也为圆弧 轴面为圆弧, 轴面为圆弧
阿基米德蜗杆
圆弧齿圆柱蜗杆
§10-10 蜗杆传动 10三.蜗杆蜗轮正确啮合条件
机械设计基础蜗杆传动

类型与特点
圆柱蜗杆传动
圆柱蜗杆传动具有结构紧 凑、传动比大、工作平稳 、噪音小等优点。常用于 减速装置中。
环面蜗杆传动
环面蜗杆传动的特点是承 载能力高、传动效率高, 但制造和安装精度要求较 高。
锥蜗杆传动
锥蜗杆传动具有较大的传 动比和较紧凑的结构,但 制造和安装精度也较高。
降低摩擦系数
加强冷却和润滑
通过采用先进的表面处理技术或添加减摩 剂等措施,降低蜗杆和蜗轮之间的摩擦系 数,从而减少摩擦损失。
采用有效的冷却和润滑措施,控制传动的工 作温度,以降低热损失和摩擦损失。
05
蜗杆传动的结构设计与制造工艺
结构设计要点
选择适当的蜗杆类型
根据传动要求选择合适的蜗杆类型,如圆柱 蜗杆、环面蜗杆等。
04
蜗杆传动的效率与润滑Biblioteka 效率分析1 2 3
蜗杆传动效率的计算公式
效率 = (输出功率 / 输入功率) × 100%。由于蜗 杆传动中存在滑动摩擦和滚动摩擦,因此其效率 通常低于齿轮传动。
影响蜗杆传动效率的因素
包括蜗杆头数、导程角、摩擦系数、中心距、传 动比等。其中,蜗杆头数和导程角对效率影响较 大。
首先根据蜗杆和蜗轮的相对位置及运动关系,确定作用在蜗杆和蜗轮上的外力 ;然后分析这些外力在蜗杆和蜗轮上产生的内力,包括弯矩、扭矩和轴向力等 。
蜗杆传动的受力特点
由于蜗杆和蜗轮的螺旋角不同,使得作用在蜗杆和蜗轮上的外力产生不同的分 力,这些分力在蜗杆和蜗轮上产生的内力也不同。因此,蜗杆传动的受力分析 较为复杂。
装配顺序与方法
按照先内后外、先难后易的原则进行 装配,注意保证蜗杆和蜗轮的正确啮 合。
蜗杆传动

蜗杆传动蜗杆传动由蜗杆和蜗轮组成,一般蜗杆为主动件。
蜗杆和螺纹一样有右旋和左旋之分蜗杆传动,分别称为右旋蜗杆和左旋蜗杆。
蜗杆上只有一条螺旋线的称为单头蜗杆,即蜗杆转一周,蜗轮转过一齿,若蜗杆上有两条螺旋线,就称为双头蜗杆,即蜗杆转一周,蜗轮转过两个齿。
由蜗杆与蜗轮互相啮合组成的交错轴间的齿轮传动(图1)。
通常两轴的交错角为90°。
一般蜗杆为主动件,蜗轮为从动件。
蜗杆传动的传动比大,工作平稳,噪声小,结构紧凑,可以实现自锁。
但一般的蜗杆传动效率较低,蜗轮常须用较贵的有色金属(如青铜)制造。
蜗杆传动广泛用于分度机构和中小功率的传动系统。
单级蜗杆传动的传动比常用 8~80。
在分度机构或手动机构中蜗杆传动的传动比可达300,用于传递运动时可达到1500。
蜗杆传动-类型蜗杆传动有多种类型,如表所示。
蜗杆传动圆柱蜗杆传动是蜗杆分度曲面为圆柱面的蜗杆传动。
其中常用的有阿基米德圆柱蜗杆传动和圆弧齿圆柱蜗杆传动(图2)。
①阿基米德蜗杆的端面齿廓为阿基米德螺旋线,其轴面齿廓为直线。
阿基米德蜗杆可以在车床上用梯形车刀加工,所以制造简单,但难以磨削,故精度不高。
在阿基米德圆柱蜗杆传动中,蜗杆与蜗轮齿面的接触线与相对滑动速度之间的夹角很小,不易形成润滑油膜,故承载能力较低。
②弧齿圆柱蜗杆传动是一种蜗杆轴面(或法面)齿廓为凹圆弧和蜗轮齿廓为凸圆弧的蜗杆传动。
在这种传动中,接触线与相对滑动速度之间的夹角较大,故易于形成润滑油膜,而且凸凹齿廓相啮合,接触线上齿廓当量曲率半径较大,接触应力较低,因而其承载能力和效率均较其他圆柱蜗杆传动为高。
蜗杆传动-主要参数各类圆柱蜗杆传动的参数和几何尺寸基本相同。
图3为阿基米德圆柱蜗杆传动的主要参数。
通过蜗杆轴线并垂直于蜗轮轴线的平面,称为中间平面。
在中间平面上,蜗杆的齿廓为直线,蜗轮的齿廓为渐开线,蜗杆和蜗轮的啮合相当于齿条和渐开线齿轮的啮合。
因此,蜗杆传动的参数和几何尺寸计算大致与齿轮传动相同,并且在设计和制造中皆以中间平面上的参数和尺寸为基准。
双导程圆柱蜗杆传动的设计与应用

与普通 柱蜗轮蜗杆传动的区别在 于:双导程圆柱蜗杆 ( 包括蜗轮 )的左右齿面具有不相等
的导 ,而同一侧齿面的导 则相等 。假如沿舣 导程 柱蜗杆 的分度 圆柱展开,其左右齿面 上的螺旋线如 l所示 。从 图中可 以看出,蜗杆的两个齿面 ( 即左齿面与右齿面 )上有两个 不相等的导 和 , 导致 了蜗杆的轴 向齿厚沿其轴线从一端到另一端按一定的比例增大( 或 者减小 ) ,而 与 双导 程 圆柱蜗 杆 啮合 的蜗 轮齿 厚均 相等 。这样 ,当蜗 杆沿 轴 向移 动 时 ,它 们之
3 双导程圆柱 蜗杆传 动应用实例 的设计 与计算
最近我公司正在开发研制一种数控弧齿锥齿轮铣齿机 ,该设备为四轴数控伺服驱动,采 用滚切法铣削弧齿锥齿轮及准双曲面齿轮。可以加 模数小于 3 m,最大节径为 2 m [ .m 5 5 m
的小模数弧齿锥齿轮。主要有床身、刀轴部件、工件箱部件 、冷却排屑系统和气动系统等部
公称模数。这样左右齿面分别具有各 自的节点,而与之相啮合的蜗轮左右齿面的节圆 ( 即相 对齿面的分度圆)也与公称值不相 同。由于啮合中心距是根据公称模数来计算 的,因此双导 程 圆柱蜗杆 两 侧 齿面 的传动 相 当于两对 不 同模数 的变 位蜗杆 传动 。大模数 齿面相 当于 负变位 , 小模 数 齿面相 当于 正变 位 。这 就 是双 导程 圆柱蜗 杆传 动 的实质所 在 。
动效率,一般r:10 3 4) / ( —. / 0 5 %,根据被加工工件的技术参数,选择:件箱伺服电机驱动扭矩 [
1 前
言
在生产实践 中经常碰钊这样的情况 ,在蜗杆传动中除必要 的运动侧隙外,要求消除多余 的齿侧间隙。例如,在齿轮加1机床的分度装置和机床读数机构中要求准确传递运动的场合, [ 或住需要避免断续切削力引起扭转振动 的动力传动装置中,如圆工作台、铣床转台等都要求 消除蜗杆传动中过人的侧隙 。为达剑这个 目的,可用缩小中心距 、蜗轮中间平面剖分后作相 对偏转、蜗轮与两个蜗杆啮合等方法,但都有一定的缺点,如增加结构 的复杂程度 ,破坏啮 合性 能、加速齿面磨损等 。为了避免上述这些 问题的产生,在许多要求连续精确分度的结构 中,现 一般 都采 用 双 导程 圆柱 蜗杆 传 动 。我厂 的许 多齿轮 加 工 设备 也采 用 了双 导程 圆柱 蜗杆
双导程蜗轮蜗杆减速机的优点介绍

双导程蜗轮蜗杆减速机的优点介绍双导程蜗轮蜗杆减速机是一种高效的减速机,具有许多优点。
本文将为您介绍这些优点。
1. 高扭矩传递能力双导程蜗轮蜗杆减速机具有高扭矩传递能力,这是由于它的工作原理决定的。
蜗杆作为主动件,螺旋状的蜗轮是被动件,它们之间产生旋转摩擦,从而达到功率传输。
这种设计使得双导程蜗轮蜗杆减速机能够承受更大的扭矩,并且能够输出更大的输出功率。
2. 可靠性高双导程蜗轮蜗杆减速机的设计使得其转速较低,因此它的运转比较平稳,噪音较小,且寿命比较长。
此外,双导程蜗轮蜗杆减速机没有传统减速机的齿轮和链条摩擦,这些零部件容易损坏和磨损,影响传动效率和寿命。
因此,双导程蜗轮蜗杆减速机相对来说更加可靠。
3. 高效率相比于传统减速机,双导程蜗轮蜗杆减速机的效率比较高。
这是因为它的传动过程主要是通过摩擦转换轴的旋转动力,它没有齿轮在传动过程中的摩擦造成的能量损失。
此外,双导程蜗轮蜗杆减速机还采用了精度更高的蜗轮蜗杆副结构,能够有效地减少运动损耗,提高效率。
4. 体积小、重量轻由于双导程蜗轮蜗杆减速机没有传统减速机的齿轮和链条等连接件,这些部件都是比较大,重量也比较重的,而双导程蜗轮蜗杆减速机则采用了紧凑型的结构,因此体积和重量都比较小。
这使得双导程蜗轮蜗杆减速机可以在机器设计上占据较小的空间,也可以减轻机器的重量。
5. 维护成本低双导程蜗轮蜗杆减速机没有齿轮和链条的结构,这些部件在传动过程中容易磨损和故障,并且需要经常更换和维护。
而双导程蜗轮蜗杆减速机的维护成本比较低,主要是因为它的结构相对来说更加简单、紧凑。
此外,双导程蜗轮蜗杆减速机的设计也考虑了易维护,因此在维护方面也比较方便。
结论综上所述,双导程蜗轮蜗杆减速机具有多方面的优点,如高扭矩传递能力、可靠性高、高效率、体积小、重量轻和维护成本低等。
这会让用户在实际应用中更加方便和省心。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双导程蜗杆传动
双导程蜗杆传动具有改变啮合侧隙的特点,能够始终保持正确的啮合关系;并且结构紧
凑,调整方便,因而在要求连续精确分度的结构中被采用,以便调整啮合侧隙到最小程度。
双导程蜗杆副啮合原理与一般的蜗杆副啮合原理相同,蜗杆的轴向截面仍相当于基本齿条,蜗轮则相当于同它啮合的齿轮。
双导程蜗杆齿的左、右两侧面具有不同的齿距 ( 导程 ) 或者说齿的左、右两侧面具有不同的模数 m(m=t /π ) ,但同一侧齿距则是相等的,因此,该蜗杆的齿厚从一端到另一端均匀地逐渐增厚或减薄,故又称变齿厚蜗杆,可用轴向移动蜗杆的方法来消除或调整啮合间隙。
因为同一侧面齿距相同,没有破坏啮合条件,所以当轴向移动蜗杆后,也能保证良好的啮合。
双导程蜗杆的齿形如图 5-36 所示,图中,、分别为蜗杆左、右侧面轴向齿距;为公
称轴向齿矩;、分别为蜗杆左、右侧面齿形角; S 为齿厚; C 为齿槽宽。
下面介绍
双导程蜗杆传动的特殊参数的选择。
图 5-36 双导程蜗杆齿形
1 .公称模数
双导程蜗杆传动的公称模数 m 可看成普通蜗杆副的轴向模数,用强度计算方法求得,并选取标准值,它一般等于左、右齿面模数的平均值。
当公称模数确定后,公称齿距也随之而确定。
从图 5-36 可知
( 5-9)
2 .齿厚增量系数
齿厚增量系数值为蜗杆轴向移动单位长度内的轴向齿厚变化量,即
(5-10)
值与 m 值一样,是确定其他参数的原始数据,因而在设计中首先要确定值。
选择值时应
考虑以下问题:
(1) 为了补偿一定的侧隙,蜗杆轴向移动长度与成反比。
值大,可使蜗杆轴向尺寸紧凑;
但值过大,则使啮合区过分偏移,同时齿顶变尖,齿槽变窄,从而使蜗轮轮齿 ( 大模数值时 )
发生根切, ( 小模数值时 ) 齿顶变尖。
而值过小,则会增大传动机构的轴向尺寸。
(2) 值与啮合节点有一定的关系,由图 5-37 看出,大模数齿面节点向蜗杆的齿根方向
偏移,而小模数齿面节点向蜗杆的齿顶方向偏移,节点偏移量与的关系为
(5-11) 式中,为蜗轮齿数。
图
5-37 啮合关系图
为了保证啮合质量,点不应超出蜗轮的齿顶高,点不应超出蜗杆的齿顶高,即
(5-12) 式中,为齿顶高系数。
因此,根据式 (5-11) 和式 (5-12) 得
(5-13)
3 .齿厚调整量
齿厚调整量ΔS 是为了补偿制造误差和蜗轮的最大允许磨损量所形成的侧隙而选取的。
一般推荐ΔS=0.3~ 0.5mm 。
对于数控回转工作台,ΔS 值应偏小。
当传递动力时,ΔS 也可选为πmk 。
4 .模数差与节距差
模数差Δm 值为左、右齿面模数与公称模数 m 之差的绝对值。
当已知 m 和值
时,有
(5-14) 因而
(5-15)
(5-16)
同样,节距差Δt 值、左面和右面齿距分别为
(5-17)
设计双导程蜗杆时,还要对齿槽变窄、齿顶变尖、蜗轮根切进行验算。
双导程蜗杆的优点是:啮合间隙可调整得很小,根据实际经验,侧隙调整可以小至 0.01~
0.015mm ,而普通蜗轮副一般只能达 0.03 ~ 0.08mm ,因此,双导程蜗杆副能在较小的侧隙下工作,这对提高数控回转工作台的分度精度非常有利。
由于普通蜗杆是用蜗杆沿蜗轮径向移动来调整啮合侧隙,因而改变了传动副的中心距 ( 中心距的改变会引起齿面接触情况变差,甚至加剧磨损,不利于保持蜗轮副的精度 ) ;而双导程蜗杆是用蜗杆轴向移动来调整啮合侧隙,不会改变传动副的中心距,可避免上述缺点。
双导程蜗杆是用修磨调整环来控制调整量,调整准确,方便可靠;而普通蜗轮副的径向调整量较难掌握,调整时也容易产生蜗杆轴线歪斜。
双导程蜗杆的缺点是:蜗杆加工比较麻烦,在车削和磨削蜗杆左、右齿面时,螺纹传动链要选配不同的两套挂轮,而这两种蜗距往往是烦琐的小数,对于精确配算挂轮很费时;同样,在制造加工蜗轮的滚刀时,应根据双导程蜗杆的参数设计制造,通用性差。