描述函数法讲解共51页文档

合集下载

描述函数法

描述函数法

系统有发散趋势;
x 1时,阻尼为正,系统输出能量,
系统有收敛趋势;
如果一个周期中,吸收的能量和发散的能量相等,
则系统就产生一个振幅和频率都不变的持续振荡。
2、x频率对振幅的依赖 x
硬••弹簧•
例2 m x f x Kx K' x3 0
式中:m, f , K为正数
0
••
m x
f

x
K
t
K
'
非线性系统 1 曲线, N
再利用Nyquist稳定判据。
饱和非线性的描述函数:
N
2k
arcsin
s X
s X
k
1
s
2
X
X s X s
Im
1
N
X
0 X s
1
0 Re
k
两位置继电特性的描述函数为: N 4M
X
Im
1 X
N 4M X 0
X
0 Re
y
死区非线性
x k
y
xt
x yt
饱和环节
当输入正弦信号幅值大于一定值时, 其输出出现切顶,变成与输入同频率的 周期非正弦信号。
y1 t
yt y5 t
0
t
y3 t
可以分解成一系列正弦波的叠加, 其基波的频率与输入正弦的频率相同。
一、描述函数定义:
N
Y1 X
1
式中:N— 描述函数;
X— 正弦输入的振幅;
Y1— 输出的傅氏级数基波分量的振幅;
第九章 控制系统的
概述
严格地讲,所有实际物理系统都是非 线性的,总是存在诸如死区、饱和、间隙 等非线性现象。所谓线性系统只是在一定 的工作范围内,非线性的影响很小,以致 可以忽略而已。对于相当多数的闭环系统, 可采用第二章所述的线性化方程解决非线 性问题;但也有一定数量的非线性问题不 能这样处理,只能采用 其他的方法。

描述函数法讲解

描述函数法讲解
0

Ka sintd(t)


KA s in2
td(t
)

2
KAsin1
a

a
1


a
2


AA
A
则饱和特性的描述函数为:
N ( A)
B1

2
K sin1
a

a
1

a
2

A
AA
A
式中,
Asin

a,

sin1
a
A
x(t) k
由于输出波形为奇函数,
A1=0,(单值奇对称)
1

tg1
A1 B1

0
a

t
x(t)
e(t)
e(t)
10
B1

2


x(t)sint d(t)
0

2


KAsin2 td(t)
N ( A)
A12 B12
j arctg A1
e
B1

B1

j
A1
A
AA
用N(A)代替非线性环节,建立起非线性系统的数学描述,可
以将线性系统频率法扩展到非线性系统中,用来分析非线性
系统。
7
说明:
一般情况下,描述函数 N 是输入正弦振幅A和振荡频率的
函数,应表示成 N ( A,) 。
但实际大多数非线性环节中不包含储能元件,它们的输出 与输入信号的频率无关,因此常见NL的描述函数 N 仅是输 入信号幅值A的函数,表示成 N(A)。

《自动控制原理》描述函数法

《自动控制原理》描述函数法

y(t)为非正弦的周期信号,因而可以展开成傅里叶级数:
y(t) = A0 + (An cos nwt + Bn sin nwt) = A0 + Yn sin(nwt + n )
n=1
n=1
其中,A0为直流分量, Yn sin(nwt + n ) 为第n次谐波分量,且有
Yn = An2 + Bn2
(8-60)
试计算该非线性特性的描述函数

x=Asinwt
(8-62)
一般情况下,描述函数N是输入信号幅值A和频率w的函数。当非线 性环节中部包括储能元件时,其输出的一次谐波分量的幅值和相位
差与w无关,故描述函数只与输入信号幅值A有关。至于直流分量, 若非线性环节响应为关于t的奇对称函数,即
(线性环节可近似认为具有和线性环节相类似的频率响
应形式。为此,定义正弦输入信号作用下,非线性环节的稳态输出
中一次谐波分量和输入信号的复数比为非线性环节的描述函数,用
N(A)表示:
N ( A) = N ( A) e jN (A) = Y1 e j1 = B1 + jA1
A
A
例8—3 设继电特性为
则由式(8-58)
取变换
,有
而当非线性特性为输入x的奇函数时,即f(x)=-f(-x),有
y(t + ) = f [Asin w(t + )] = f [Asin( + wt)] = f [− Asin wt]
w
w
= f (−x) = − f (x) = − y(t)
即y(t)为t的奇对称函数,直流分量为零。 , 按下式计算:
另外,描述函数法只能用来研究系统的频率响应特性,不能给出时 间响应的确切信息。

描述函数法

描述函数法

7.2 描述函数
一、描述函数的定义 1.描述函数法的应用条件
(1)非线性系统的结构图可以简化成只有一个非线性 环节N+一个线性部分G(s)串联的闭环结构。 (2)非线性环节N的输入输出特性曲线奇对称,以保 证非线性元件在正弦信号作用下的输出不包含直 流分量。
(3)线性部分G(s)具有良好的低通特性,使得系统 信号中的高次谐波大大衰减,可以用基波来近似。
7.2 描述函数
描述函数定义为:输出的基波分量与输入正弦函 数的复数比:
B1 ( A) jA1 ( A) Y1 ( A) j1 ( A) N ( A) e A A 显然,描述函数是A的增益与输入正弦函数的幅值有关。如果 非线性特性是单值奇对称的,那么:
1 1
1 1
0 ; | x | a t [(0, 1 ) ( 1, 1 ) (2 1,2 )]
二、描述函数的计算
因为死区特性是单值奇对称的,所以
B1

4
1
2
A1 0, 1 0
0
y (t ) sin td (t ) y (t ) sin td (t )
A1 0, 1 0, N B1 / A
二、 描述函数的计算
1)死区特性
y
1 1
1 2 1

二、 描述函数的计算
-a a
输入:x(t ) A sin t ( A a)
输出:
k ( x a) k ( Asin t a) ; x a t ( , ) y k ( x a) k ( Asin t a) ; x a t ( ,2 )
1 1 1 1
Y1 sin( t 1 ) Y1 A1 B1

描述函数

描述函数

非线性特性的描述函数的共同点
1)单值非线性的描述函数是实数,非单值非线性的描述函数是复数:
2)非线性的描述函数可叠加、即
y y1 y2
设y1、y2、y分别有N1(A)、N2(A)、N(A)
N(A) N1(A) N2 (A)
N1 N2
N1( A) N 2 ( A)
非线性系统与线性系统的差异
b点为稳定自振交点。
a点:不稳定自振交点 b点:稳定自振交点 c点:不稳定自振交点
典型非线性系统的稳定性
具有饱和特性的非线性系统 具有死区特性的非线性系统 具有间隙特性的非线性系统 具有理想继电器特性的非线性系统 具有滞环继电器特性的非线性系统
具有饱和特性的非线性系统
1


N ( A) 2k[sin 1 a a 1 ( a )2
ImG( j) 0
2
ReG( j) |

2
3K
4 52 4 |
2
1 N ( A)
Re G( j) |
0.5
2
K=3
非线性系统的校正
C(s) G(s)N(A) R(s) 1 G(s)N(A)
!改变G(j ) !改变N(A)
① K=20,死区继电器特性M=3,a=l,试分析系统稳定性; ②如果系统出现自持振荡,如何消除之?
b Ab
具有理想继电器特性的非线性系统
1 A N(A) 4M
负倒描述函数轨迹为整个负实轴
1)如只有一个交点 必为稳定的自振交点
2)如有数个交点 必有稳定的自振交点
具有滞环继电器特性的非线性系统
1 A (180 0 sin1 h )
N ( A) 4M

自控 第8章-3 描述函数法

自控 第8章-3 描述函数法
3
y(t) A0 ( An cos nt Bn sin nt) n1
A0 (Yn sin( nt n ) n1
其中,
A0
1
2
2
y(t)d (t)
0
为直流分量
Yn sin( nt n ) 为n次谐波
转换关系 Yn
An2 Bn2 ,
n
arctg
An Bn
An , Bn 为傅里叶系数
4
傅里叶系数计算
An
1
2
y(t) cos ntd(t)
0
Bn
1
2
y(t) sin ntd(t)
0
(n 1,2, )
若 A0 0 , 且 n 1 时,Yn 均很小
则可以用一次谐波近似表示非线性环节的正弦响应
y(t) A1 cost B1 sin t Y1 sin( t 1)
5
非线性环节稳态输出中一次谐波分量和输入信 号的复数比定义为非线性环节的描述函数
24
图B: 交点处周期运动振幅为A0 假设系统受小的扰动,使 A A1 A0 因为系统稳定
所以,振幅将衰减,最终 A 0
j
1 N ( A)
0 N1 N0 N2
G( j)
图B
若 A A2 A0 系统不稳定 所以,振幅将增大,最终 A
所以N0点的周期运动是不稳定的
25
图C:两个交点
对于N20点,若 A A2 A20 系统不稳定 A A20
23
图A:交点标记为N0 交点处周期运动振幅为A0 假设系统受小的扰动,使
j
1 N ( A)
0 N2 N0 N1
A A1 A0
G( j)
因为 G( j)曲线包围 N (1A)曲线,系统不稳定

第七章(非线性系统的描述函数法)

第七章(非线性系统的描述函数法)

§7.4非线性系统的描述函数分析法一、描述函数法的基本概念假设非线性系统的输入函数为)sin()(t X t x ω=非线性环节Nx (t )n(t )输出n(t)将是非正弦的周期信号。

可以展成傅利叶级数,n(t)是由恒定分量、基波分量、和高次谐波组成。

假设1:如果非线性部分的特性曲线具有中心对称性质,那以输出信号n(t)的波形具有奇次对称性(波形的后半个周期重复前半个周期的变化,但符号相反)输出不含直流分量,输出响应的平均值为零。

假设2:线性部分具有良好的低通滤波性,那么高次谐波的幅值远小于基波。

闭环通道内近似地只有一次谐波信号流通。

对于一般的非线性系统而言这个条件是满足的,线性部分的低通滤波性越好,用描述函数法分析的精度越高。

上述两个假设满足时,非线性环节的输入是一个正弦信号,系统的输出是相同频率的正弦信号,对于非线性环节的输出只研究其基波成分就足够了。

假设系统中非线性环节的输入函数为tX t x ωsin )(=输出信号可以展成傅利叶级数∑∑∞=∞=++=++=1010)sin(2)cos sin (2)(i i i i i i t i Y A t i B t i A A t n ϕωωω⎰=πωωπ20)()cos()(1t d t i t n A i ⎰=πωωπ20)()sin()(1t d t i t n B i 22iii BA Y +=iii B A tg1-=ϕ若非线性部分是齐次对称的,则A 0=0,线性部分又具有低通滤波特性,可以认为非线性环节的输出中只有基波分量能够通过闭环回路反馈到输入端。

输出部分的基波分量为)sin(cos sin )(11111ϕωωω+=+=t Y t B t A t y ⎰=πωωπ201)()cos()(1t d t t n A ⎰=πωωπ201)()sin()(1t d t t n B 21211B A Y +=1111B A tg -=ϕ可以用一个复数来描述非线性环节输入正弦信号和输出信号基波的关系。

8-4描述函数法

8-4描述函数法
n 1 n 1
式中 A0—直流分量; Yn sin( nt n ) — n次谐波, 且 Yn ( An2 Bn2 )1/ 2, n arctan( An / Bn )。
An 1




1 A0 y (t )d t 2 1 y (t ) cos( n t )d t ;Bn y (t ) sin( n t )d t ;
负倒描述函数曲线上的箭头表示A增大的方向。 ☆非线性系统的稳定性判定规则: (最小相位系统,P = 0 ) (1) G( jω)曲线不包围-1/N(A)曲线,闭环系统稳定; (2) G( jω)曲线包围-1/N(A)曲线,闭环系统不稳定; (3) G( jω)曲线与 -1/N(A) 曲线相交,闭环系统可能 出现自振荡;自振荡的频率为G(jω) 在交点处的 ω值,振幅是N(A)在交点处的A值。 例8-5 非线性系统如图所示,分析系统稳定性。
N
y
例:
x
N ( A) N1 ( A) N2 ( A)
k1
x10 y1
x2
k2
x20
y2
y
k1 ( x x10 ) x x10 0 | x | x10 y1 k1 ( x x10 ) x x10

k2 x20 y2 k2 x2 k2 x20

x2 x20 | x2 | x20 x2 x20

2

Y j B1 jA1 e ; A A
解:该非线性特性关于原点对称,A0=0; y (t ) cos t 是 ( t ) 的奇函数,A1=0;
B1


0
y (t ) sin t d t cos
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档