多输入描述函数法(精选)

合集下载

《自动控制原理》考点精讲(第8讲 非线性控制系统分析)

《自动控制原理》考点精讲(第8讲  非线性控制系统分析)
(2)稳定性分析很复杂 线性系统的稳定性只取决于系统的结构与参数,而与外部作用 和初始条件无关。 非线性系统的稳定性:与系统的参数与结构、运动的初始状 态、输入信号有直接关系。 非线性系统的某些平衡状态(如果不止有一个平衡状态的话) 可能是稳定的,而另外一些平衡状态却可能是不稳定的。
自动控制原理(自动控制理论)考点精讲
量外,还含有关于ω的高次谐波分量。使输出波形发生非线
性畸变。 正弦响应的复杂性:①跳跃谐振及多值响应;②倍频振荡与 分频振荡;③组合振荡(混沌);④频率捕捉。 混沌:
自动控制原理(自动控制理论)考点精讲
网学天地( )
e
x
x(t)
x(t)
x(t)
x(t)
ωt ωt
ωt ωt
自动控制原理(自动控制理论)考点精讲
自动控制原理(自动控制理论)考点精讲
网学天地( )
例:欠阻尼二阶系统的相平面描述——相轨迹
相轨迹在某些特定情况 下,也可以通过积分法, 直接由微分方程获得x和x 导数的解析关系式:
x dx = f (x, x) ⇒ g(x)dx = h(x)dx dx
自动控制原理(自动控制理论)考点精讲
α
=
dx dx
=
f (x, x) x
则与该曲线相交的任何相轨迹在交点处的切线斜率均为α,
该曲线称为等倾线。 注1:线性系统的等倾线为直线; 注2:非线性系统的等倾线为曲线或折线。
自动控制原理(自动控制理论)考点精讲
网学天地( )
由等倾线的概念知,当相轨迹经过该等倾线上任一点时,其 切线的斜率都相等,均为α。取α为若干不同的常数,即可 在相平面上绘制出若干条等倾线,在等倾线上各点处作斜率 为α的短直线,并以箭头表示切线方向,则构成相轨迹的切 线方向场。

描述函数法

描述函数法

系统有发散趋势;
x 1时,阻尼为正,系统输出能量,
系统有收敛趋势;
如果一个周期中,吸收的能量和发散的能量相等,
则系统就产生一个振幅和频率都不变的持续振荡。
2、x频率对振幅的依赖 x
硬••弹簧•
例2 m x f x Kx K' x3 0
式中:m, f , K为正数
0
••
m x
f

x
K
t
K
'
非线性系统 1 曲线, N
再利用Nyquist稳定判据。
饱和非线性的描述函数:
N
2k
arcsin
s X
s X
k
1
s
2
X
X s X s
Im
1
N
X
0 X s
1
0 Re
k
两位置继电特性的描述函数为: N 4M
X
Im
1 X
N 4M X 0
X
0 Re
y
死区非线性
x k
y
xt
x yt
饱和环节
当输入正弦信号幅值大于一定值时, 其输出出现切顶,变成与输入同频率的 周期非正弦信号。
y1 t
yt y5 t
0
t
y3 t
可以分解成一系列正弦波的叠加, 其基波的频率与输入正弦的频率相同。
一、描述函数定义:
N
Y1 X
1
式中:N— 描述函数;
X— 正弦输入的振幅;
Y1— 输出的傅氏级数基波分量的振幅;
第九章 控制系统的
概述
严格地讲,所有实际物理系统都是非 线性的,总是存在诸如死区、饱和、间隙 等非线性现象。所谓线性系统只是在一定 的工作范围内,非线性的影响很小,以致 可以忽略而已。对于相当多数的闭环系统, 可采用第二章所述的线性化方程解决非线 性问题;但也有一定数量的非线性问题不 能这样处理,只能采用 其他的方法。

描述函数法讲解

描述函数法讲解
0

Ka sintd(t)


KA s in2
td(t
)

2
KAsin1
a

a
1


a
2


AA
A
则饱和特性的描述函数为:
N ( A)
B1

2
K sin1
a

a
1

a
2

A
AA
A
式中,
Asin

a,

sin1
a
A
x(t) k
由于输出波形为奇函数,
A1=0,(单值奇对称)
1

tg1
A1 B1

0
a

t
x(t)
e(t)
e(t)
10
B1

2


x(t)sint d(t)
0

2


KAsin2 td(t)
N ( A)
A12 B12
j arctg A1
e
B1

B1

j
A1
A
AA
用N(A)代替非线性环节,建立起非线性系统的数学描述,可
以将线性系统频率法扩展到非线性系统中,用来分析非线性
系统。
7
说明:
一般情况下,描述函数 N 是输入正弦振幅A和振荡频率的
函数,应表示成 N ( A,) 。
但实际大多数非线性环节中不包含储能元件,它们的输出 与输入信号的频率无关,因此常见NL的描述函数 N 仅是输 入信号幅值A的函数,表示成 N(A)。

《自动控制原理》描述函数法

《自动控制原理》描述函数法

y(t)为非正弦的周期信号,因而可以展开成傅里叶级数:
y(t) = A0 + (An cos nwt + Bn sin nwt) = A0 + Yn sin(nwt + n )
n=1
n=1
其中,A0为直流分量, Yn sin(nwt + n ) 为第n次谐波分量,且有
Yn = An2 + Bn2
(8-60)
试计算该非线性特性的描述函数

x=Asinwt
(8-62)
一般情况下,描述函数N是输入信号幅值A和频率w的函数。当非线 性环节中部包括储能元件时,其输出的一次谐波分量的幅值和相位
差与w无关,故描述函数只与输入信号幅值A有关。至于直流分量, 若非线性环节响应为关于t的奇对称函数,即
(线性环节可近似认为具有和线性环节相类似的频率响
应形式。为此,定义正弦输入信号作用下,非线性环节的稳态输出
中一次谐波分量和输入信号的复数比为非线性环节的描述函数,用
N(A)表示:
N ( A) = N ( A) e jN (A) = Y1 e j1 = B1 + jA1
A
A
例8—3 设继电特性为
则由式(8-58)
取变换
,有
而当非线性特性为输入x的奇函数时,即f(x)=-f(-x),有
y(t + ) = f [Asin w(t + )] = f [Asin( + wt)] = f [− Asin wt]
w
w
= f (−x) = − f (x) = − y(t)
即y(t)为t的奇对称函数,直流分量为零。 , 按下式计算:
另外,描述函数法只能用来研究系统的频率响应特性,不能给出时 间响应的确切信息。

描述函数法

描述函数法

所以其描述函数为
N ( A)
B(A)
jC ( A)
Kn B0 (
A) a
jC0
(
A a
)
Kn N0 ( A)
回环非线性的描述函数是复数,基准描述函数负倒数曲线如图所示。
4
继电器特性及其正弦信号输入时的输入-输出波形如图所示。
继电器特性的数学表达式为:
y(t) M
θ1 ωt θ2
其中:
πA
1 ( a )2 A
1
(
ma A
)2
K
n
B0
(
A a
,
m)
C( A)
2Kna2 πA2
(m
1)
KnC0 (
A a
, m)
由此可得继电器特性的基准描述函数为
A
2a
B0
(
a
n
B0
(
A) a
式中
θ1
sin 1
a A
所以其描述函数为
N ( A)
B( A)
jC( A)
2Kn
π
sin 1
a
a
1
(
a
线性的基准描述函数为
N0 ( A)
N ( A) Kn
B0
(
A a
)
从死区非线性的描述函数表达式可以看出,死区非线性的描述函数也只有一个
实部。在复平面上,可绘出死区非线性的基准描述函数负倒数曲线,如下图所示。
§7-2 描述函数法
一、描述函数的基本概念
非线性系统的结构图如图所示。图中 G(s)为线性部分的传递函数,N为非线性 元件。
(1)设非线性环节N 的输出量只和输入量有关,即y=f(x)。

逻辑函数的逻辑功能的五种表示方法(一)

逻辑函数的逻辑功能的五种表示方法(一)

逻辑函数的逻辑功能的五种表示方法(一)逻辑函数的逻辑功能的五种表示逻辑函数是数学中的一种特殊函数,它主要用于描述不同条件下的逻辑关系。

逻辑函数的逻辑功能可以用多种方式表示,下面将详细介绍五种常见的表示方法。

1. 真值表表示真值表是逻辑函数最常见的一种表示方法,它用表格的形式展示了逻辑函数在不同输入条件下的输出结果。

对于一个逻辑函数,输入条件可以有多个,每个输入条件都有两种可能的取值:真(1)或假(0)。

真值表根据所有可能的输入条件和对应的输出结果,列出了逻辑函数的所有情况。

以与门(AND gate)为例,它的真值表如下所示:输入1 | 输入2 | 输出 ||||——| | 0 | 0 | 0 | | 0 | 1 | 0 | | 1 | 0 | 0 | | 1 |1 | 1 |2. 真值公式表示真值公式是逻辑函数的另一种常见表示方法,它通过逻辑运算符和逻辑变量来描述逻辑函数的逻辑关系。

逻辑运算符包括与(∧)、或(∨)和非(¬),逻辑变量表示逻辑函数的输入条件。

对于与门来说,它的真值公式可以表示为:输出 = 输入1 ∧ 输入2。

3. 简化逻辑公式表示简化逻辑公式是在真值公式的基础上,经过化简处理得到的一种简化形式。

化简的目的是通过逻辑代数的运算规则,将逻辑函数表示为更简洁的形式。

继续以与门为例,其真值公式为:输出 = 输入1 ∧ 输入2。

通过逻辑代数的化简规则,可以将其简化为:输出 = 输入 1 × 输入2。

4. 逻辑图表示逻辑图是一种图形化的表示方法,使用逻辑门和连接线来表示逻辑函数的逻辑关系。

逻辑门有与门、或门和非门等,连接线表示逻辑变量之间的输入输出关系。

与门的逻辑图如下所示:and_gateand_gate5. 逻辑符号表示逻辑符号是逻辑函数的一种特殊表示方法,它使用特定的符号来表示逻辑运算符和逻辑变量。

常见的逻辑符号包括∧(与)、∨(或)和¬(非)等。

同样以与门为例,它的逻辑符号表示为:输出 = 输入1 ∧ 输入2。

8-4描述函数法

8-4描述函数法
n 1 n 1
式中 A0—直流分量; Yn sin( nt n ) — n次谐波, 且 Yn ( An2 Bn2 )1/ 2, n arctan( An / Bn )。
An 1




1 A0 y (t )d t 2 1 y (t ) cos( n t )d t ;Bn y (t ) sin( n t )d t ;
负倒描述函数曲线上的箭头表示A增大的方向。 ☆非线性系统的稳定性判定规则: (最小相位系统,P = 0 ) (1) G( jω)曲线不包围-1/N(A)曲线,闭环系统稳定; (2) G( jω)曲线包围-1/N(A)曲线,闭环系统不稳定; (3) G( jω)曲线与 -1/N(A) 曲线相交,闭环系统可能 出现自振荡;自振荡的频率为G(jω) 在交点处的 ω值,振幅是N(A)在交点处的A值。 例8-5 非线性系统如图所示,分析系统稳定性。
N
y
例:
x
N ( A) N1 ( A) N2 ( A)
k1
x10 y1
x2
k2
x20
y2
y
k1 ( x x10 ) x x10 0 | x | x10 y1 k1 ( x x10 ) x x10

k2 x20 y2 k2 x2 k2 x20

x2 x20 | x2 | x20 x2 x20

2

Y j B1 jA1 e ; A A
解:该非线性特性关于原点对称,A0=0; y (t ) cos t 是 ( t ) 的奇函数,A1=0;
B1


0
y (t ) sin t d t cos

7-1描述函数法

7-1描述函数法

非线性系统对于正弦输入信号的响应则比较复杂, 非线性系统对于正弦输入信号的响应则比较复杂, 会产生一些比较奇特的现象。 会产生一些比较奇特的现象。例如跳跃谐振和多值响 波形畸变、倍频振荡和分频振荡等。 应、波形畸变、倍频振荡和分频振荡等。 考虑有名的杜芬方程
& m&& + fx + k1 x + k 3 x 3 = p cos ωt x
r(t)=0 x y N G(s) c(t)
(2)非线性环节的输入输出静特性曲线是奇对称的。 )非线性环节的输入输出静特性曲线是奇对称的。 (3)系统的线性部分具有良好的低通滤波特性。 )系统的线性部分具有良好的低通滤波特性。
12
2.描述函数的定义 描述函数的定义 设系统的非线性环节输入信号是正弦信号 x(t) = Asinωt 则其输出一般为周期性的非正弦信号, 则其输出一般为周期性的非正弦信号,可以展成傅 氏级数 ∞ y(t) = A + ∑( An cos nωt + Bn sin nωt) 0
0,| x |≤ a y = k(x − a), x > a k(x + a), x < −a
3. 滞环特性 滞环特性表现为正向与反向特性不是重叠在一起 而是在输入—输出曲线上出现闭合环路 输出曲线上出现闭合环路。 ,而是在输入 输出曲线上出现闭合环路。又称为间 隙特性。 隙特性。
0
x(t) x0>1 x0<1
递减并趋于0。 当x0<1时,x(t) 递减并趋于 。 时
x0 t ln x −1 0
由上例可见,初始条件不同, 由上例可见,初始条件不同,自由运动的稳定性 亦不同。因此非线性系统的稳定性不仅与系统的结构 非线性系统的稳定性不仅与 亦不同。因此非线性系统的稳定性不仅与系统的结构 和参数有关,而且与系统的初始条件有直接的关系。 系统的初始条件有直接的关系 和参数有关,而且与系统的初始条件有直接的关系。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档