描述函数法讲解
描述函数法

系统有发散趋势;
x 1时,阻尼为正,系统输出能量,
系统有收敛趋势;
如果一个周期中,吸收的能量和发散的能量相等,
则系统就产生一个振幅和频率都不变的持续振荡。
2、x频率对振幅的依赖 x
硬••弹簧•
例2 m x f x Kx K' x3 0
式中:m, f , K为正数
0
••
m x
f
•
x
K
t
K
'
非线性系统 1 曲线, N
再利用Nyquist稳定判据。
饱和非线性的描述函数:
N
2k
arcsin
s X
s X
k
1
s
2
X
X s X s
Im
1
N
X
0 X s
1
0 Re
k
两位置继电特性的描述函数为: N 4M
X
Im
1 X
N 4M X 0
X
0 Re
y
死区非线性
x k
y
xt
x yt
饱和环节
当输入正弦信号幅值大于一定值时, 其输出出现切顶,变成与输入同频率的 周期非正弦信号。
y1 t
yt y5 t
0
t
y3 t
可以分解成一系列正弦波的叠加, 其基波的频率与输入正弦的频率相同。
一、描述函数定义:
N
Y1 X
1
式中:N— 描述函数;
X— 正弦输入的振幅;
Y1— 输出的傅氏级数基波分量的振幅;
第九章 控制系统的
概述
严格地讲,所有实际物理系统都是非 线性的,总是存在诸如死区、饱和、间隙 等非线性现象。所谓线性系统只是在一定 的工作范围内,非线性的影响很小,以致 可以忽略而已。对于相当多数的闭环系统, 可采用第二章所述的线性化方程解决非线 性问题;但也有一定数量的非线性问题不 能这样处理,只能采用 其他的方法。
《自动控制原理》描述函数法

y(t)为非正弦的周期信号,因而可以展开成傅里叶级数:
y(t) = A0 + (An cos nwt + Bn sin nwt) = A0 + Yn sin(nwt + n )
n=1
n=1
其中,A0为直流分量, Yn sin(nwt + n ) 为第n次谐波分量,且有
Yn = An2 + Bn2
(8-60)
试计算该非线性特性的描述函数
解
x=Asinwt
(8-62)
一般情况下,描述函数N是输入信号幅值A和频率w的函数。当非线 性环节中部包括储能元件时,其输出的一次谐波分量的幅值和相位
差与w无关,故描述函数只与输入信号幅值A有关。至于直流分量, 若非线性环节响应为关于t的奇对称函数,即
(线性环节可近似认为具有和线性环节相类似的频率响
应形式。为此,定义正弦输入信号作用下,非线性环节的稳态输出
中一次谐波分量和输入信号的复数比为非线性环节的描述函数,用
N(A)表示:
N ( A) = N ( A) e jN (A) = Y1 e j1 = B1 + jA1
A
A
例8—3 设继电特性为
则由式(8-58)
取变换
,有
而当非线性特性为输入x的奇函数时,即f(x)=-f(-x),有
y(t + ) = f [Asin w(t + )] = f [Asin( + wt)] = f [− Asin wt]
w
w
= f (−x) = − f (x) = − y(t)
即y(t)为t的奇对称函数,直流分量为零。 , 按下式计算:
另外,描述函数法只能用来研究系统的频率响应特性,不能给出时 间响应的确切信息。
描述函数法

7.2 描述函数
一、描述函数的定义 1.描述函数法的应用条件
(1)非线性系统的结构图可以简化成只有一个非线性 环节N+一个线性部分G(s)串联的闭环结构。 (2)非线性环节N的输入输出特性曲线奇对称,以保 证非线性元件在正弦信号作用下的输出不包含直 流分量。
(3)线性部分G(s)具有良好的低通特性,使得系统 信号中的高次谐波大大衰减,可以用基波来近似。
7.2 描述函数
描述函数定义为:输出的基波分量与输入正弦函 数的复数比:
B1 ( A) jA1 ( A) Y1 ( A) j1 ( A) N ( A) e A A 显然,描述函数是A的增益与输入正弦函数的幅值有关。如果 非线性特性是单值奇对称的,那么:
1 1
1 1
0 ; | x | a t [(0, 1 ) ( 1, 1 ) (2 1,2 )]
二、描述函数的计算
因为死区特性是单值奇对称的,所以
B1
4
1
2
A1 0, 1 0
0
y (t ) sin td (t ) y (t ) sin td (t )
A1 0, 1 0, N B1 / A
二、 描述函数的计算
1)死区特性
y
1 1
1 2 1
二、 描述函数的计算
-a a
输入:x(t ) A sin t ( A a)
输出:
k ( x a) k ( Asin t a) ; x a t ( , ) y k ( x a) k ( Asin t a) ; x a t ( ,2 )
1 1 1 1
Y1 sin( t 1 ) Y1 A1 B1
第四节 用描述函数法分析非线性系统2003

内容提要 ✓1. 系统的典型结构及前提条件 ✓2. 非线性系统的稳定分析 ✓3. 自振荡分析 ✓4. 非线性系统方框图的简化
1. 系统的典型结构及前提条件
➢ 典型结构
r(t)=0
x
y
c(t)
N
G(s)
非线性系统的分析: 稳定性
自振荡
奈奎斯特判据在非线性
频率特性在非线性系统
当G(j)曲线通过(-0.5, j0)
点时,求kmax
Re[G(
j )]
1
0.05
0.3K
2 0.0004
4
50
0.5
得
kmax 7.5
当K=7.5时,-1/N(x)与G(jω)相交于b1(-0.5, j0) 点,若取K<7.5,则两曲线不再相交,此时系统 是稳定的,不会产生自振荡。
4. 非线性系统方框图的简化
-1/N(X)
30
1(0 22)
4524j(4524)
求G( j)与1/N(X)曲线的交点。
G( j)
令ImG( j) =0,得 =1.414 (rad/s)
Re [G( j)] =1.414= 1.66 1 X 1.66
N(X) 4
X=2.1
Im 0 Re
13
【例8-1】非线性系统如图8-27(a)所示。
-1 c
Re
0
若复平面中-1/N(x)曲线与G(j)曲线有交点, 则交点对应着等幅振荡,这个等幅振荡能否稳定地 存在?也就是说,若系统受到一个瞬时扰动使振荡 的振幅发生变化,系统是否具有恢复到施加扰动之 前的能力?若可以,该等幅振荡可以稳定地存在, 能够被观察到,称之为自持振荡,反之,则振荡不 能稳定地存在,必然转移到其他运动状态。
第七章(非线性系统的描述函数法)

§7.4非线性系统的描述函数分析法一、描述函数法的基本概念假设非线性系统的输入函数为)sin()(t X t x ω=非线性环节Nx (t )n(t )输出n(t)将是非正弦的周期信号。
可以展成傅利叶级数,n(t)是由恒定分量、基波分量、和高次谐波组成。
假设1:如果非线性部分的特性曲线具有中心对称性质,那以输出信号n(t)的波形具有奇次对称性(波形的后半个周期重复前半个周期的变化,但符号相反)输出不含直流分量,输出响应的平均值为零。
假设2:线性部分具有良好的低通滤波性,那么高次谐波的幅值远小于基波。
闭环通道内近似地只有一次谐波信号流通。
对于一般的非线性系统而言这个条件是满足的,线性部分的低通滤波性越好,用描述函数法分析的精度越高。
上述两个假设满足时,非线性环节的输入是一个正弦信号,系统的输出是相同频率的正弦信号,对于非线性环节的输出只研究其基波成分就足够了。
假设系统中非线性环节的输入函数为tX t x ωsin )(=输出信号可以展成傅利叶级数∑∑∞=∞=++=++=1010)sin(2)cos sin (2)(i i i i i i t i Y A t i B t i A A t n ϕωωω⎰=πωωπ20)()cos()(1t d t i t n A i ⎰=πωωπ20)()sin()(1t d t i t n B i 22iii BA Y +=iii B A tg1-=ϕ若非线性部分是齐次对称的,则A 0=0,线性部分又具有低通滤波特性,可以认为非线性环节的输出中只有基波分量能够通过闭环回路反馈到输入端。
输出部分的基波分量为)sin(cos sin )(11111ϕωωω+=+=t Y t B t A t y ⎰=πωωπ201)()cos()(1t d t t n A ⎰=πωωπ201)()sin()(1t d t t n B 21211B A Y +=1111B A tg -=ϕ可以用一个复数来描述非线性环节输入正弦信号和输出信号基波的关系。
8-4描述函数法

式中 A0—直流分量; Yn sin( nt n ) — n次谐波, 且 Yn ( An2 Bn2 )1/ 2, n arctan( An / Bn )。
An 1
1 A0 y (t )d t 2 1 y (t ) cos( n t )d t ;Bn y (t ) sin( n t )d t ;
负倒描述函数曲线上的箭头表示A增大的方向。 ☆非线性系统的稳定性判定规则: (最小相位系统,P = 0 ) (1) G( jω)曲线不包围-1/N(A)曲线,闭环系统稳定; (2) G( jω)曲线包围-1/N(A)曲线,闭环系统不稳定; (3) G( jω)曲线与 -1/N(A) 曲线相交,闭环系统可能 出现自振荡;自振荡的频率为G(jω) 在交点处的 ω值,振幅是N(A)在交点处的A值。 例8-5 非线性系统如图所示,分析系统稳定性。
N
y
例:
x
N ( A) N1 ( A) N2 ( A)
k1
x10 y1
x2
k2
x20
y2
y
k1 ( x x10 ) x x10 0 | x | x10 y1 k1 ( x x10 ) x x10
k2 x20 y2 k2 x2 k2 x20
x2 x20 | x2 | x20 x2 x20
2
Y j B1 jA1 e ; A A
解:该非线性特性关于原点对称,A0=0; y (t ) cos t 是 ( t ) 的奇函数,A1=0;
B1
0
y (t ) sin t d t cos
自控理论 8-4用描述函数法分析非线性系统

(8-26)
非线性特性的负倒描述函数
对于某一个特定的X 对于某一个特定的 0及ω0,式(8-26)或 或 成立, 式(8-27)成立,这相当于线性系统中 G(jω) = -1 成立 ω 的情况,会产生等幅的周期性振荡。式中1/N(X)为描述函数的负倒特性 , 它相当于线性 为描述函数的负倒特性, 为描述函数的负倒特性 系统的临界点( , ) 系统的临界点(-1,j0)。
−
1 N(X )
Re
G ( jω )
− 0.3 K Re[G ( jω )] = 1 + 0.05ω 2 + 0.0004ω 4
− K (1 − 0.02ω 2 ) Im[G ( jω )] = ω (1 + 0.05ω 2 + 0.0004ω 4 )
令 Im[G(jω)]=0,得 Im[G(jω)]=0
因此, 因此,可以认为能够通过线性部分又反馈到非线性 环节输入端的信号只是基波正弦信号,这个结果, 环节输入端的信号只是基波正弦信号,这个结果, 恰与前面的假定相吻合。因此, 恰与前面的假定相吻合。因此,自振荡时可认为系 统各部分的输入输出量均是基波频率的正弦量。 统各部分的输入输出量均是基波频率的正弦量。 在上述的条件下, 在上述的条件下,可以用非线性环节的描述函 数近似表示非线性环节的特性, 数近似表示非线性环节的特性,线性环节的特性可 用频率特性表示,此时非线性系统的方框图如图8用频率特性表示,此时非线性系统的方框图如图 25所示。 所示。 所示
扰动使 X ↑→ a移到c → 进入稳定区 X ↓→ 回到a点 a点 : 扰动使X ↓→ a移到d → 进入不稳定区 ↑→回到a点 X
第7章_3_描述函数法介绍

描述函数法也称为谐波线性化法 谐波线性化法,或称为谐波 谐波线性化法 谐波 平衡法。这是一种工程近似方法。 主要分析非线性 平衡法 系统极限环的稳定性,以及确定非线性闭环系统在 正弦函数作用下的输出特性。 应用描述函数法分析非线性系统时, 系统的阶次 不受限制。
3
7.5.1 描述函数的基本概念
A 的变化而变化的。
1 非线性系统负倒描述函数曲线 − 是临界 N ( A)
稳定点的轨迹。
22
在线性部分为稳定环节的前提下,给出Nyquist图 稳定性判据: 中的非线性系统稳定性判据 稳定性判据 (1) 如果线性部分频率特性 G ( jω ) 由 ω )
=0向
1 ω → ∞ 变化时,非线性系统负倒描述特性 − N ( A) 始终位于曲线 G ( jω ) 的左侧,即曲线 G ( jω )不包围临界 1 点轨迹线 − ,则非线性系统稳定,不可能产生 N ( A)
A 其中: n =
n =1 ∞ n =1
∞
1 2π A0 = ∫0 x(t )dωt 2π 1 2π Bn = ∫ x(t ) sin nωtdωt
∫ π
π
1
2π
0
x(t ) cos nωtdωt
0
Xn = A + B
2 n
2 n
An φn = arctan Bn
12
图像关于原点中心对称, 当非线性特性是奇函数时, 则有:A0
N ( A) =
从而有:
A +B e A
2 1 2 1
A1 j arctan B1
当非线性输出为单值奇函数时,有: 1 A
=0
A1 φ1 = arctan = arctan 0 = 0 B1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ka sintd(t)
KA s in2
td(t
)
2
KAsin1
a
a
1
a
2
AA
A
则饱和特性的描述函数为:
N ( A)
B1
2
K sin1
a
a
1
a
2
A
AA
A
式中,
Asin
a,
sin1
a
A
x(t) k
由于输出波形为奇函数,
A1=0,(单值奇对称)
1
tg1
A1 B1
0
a
t
x(t)
e(t)
e(t)
10
B1
2
x(t)sint d(t)
0
2
KAsin2 td(t)
N ( A)
A12 B12
j arctg A1
e
B1
B1
j
A1
A
AA
用N(A)代替非线性环节,建立起非线性系统的数学描述,可
以将线性系统频率法扩展到非线性系统中,用来分析非线性
系统。
7
说明:
一般情况下,描述函数 N 是输入正弦振幅A和振荡频率的
函数,应表示成 N ( A,) 。
但实际大多数非线性环节中不包含储能元件,它们的输出 与输入信号的频率无关,因此常见NL的描述函数 N 仅是输 入信号幅值A的函数,表示成 N(A)。
若N (NAL的) 特B1性A是,单即值描奇述对函称数的是,输则入x正(t弦)是信奇号函幅数值,A的则实A函1 数0;
若NL的特性是非单值奇对称的,则x(t)既非奇函数也非偶
函数,则 A1 0, B1 0 ,描述函数是输入正弦信号幅值的
复函数。
8
8.3.2 典型非线性特性的描述函数
1. 饱和特性
饱和特性输入 e(t) Ak
a e(t)
t
e(t)
t
图8-10 饱和特性及输入输出波形
9
当A a 时,饱和特性输出x(t)为
KA s in t ,
x(t
)
Ka,
KA s in t ,
0 t t t
2
8.3.1 描述函数的概念
描述函数适用于具有以下特点(限制条件)的非线性系统:
1、系统线性部分和非线性环节可以分离。
如图1所示,NL为非线性环节,G为线性部分的传递函数。
r
e
x
-
NL
G
y
图8-9 非线性系统典型结构
3
2、非线性特性具奇对称特性,且输入输出关系为 静特性(不含储能元件)。
如此,非线性环节输入为正弦量时,其输出为周期函数, 可展开成傅立叶级数,且其直流分量为零。
f(x)=-f(-x)
3、线性部分应具良好的低通滤波特性。
可以认为高次谐波完全滤掉,输出仅存在基波分量。
若满足以上条件,描述函数可定义为非线性环节输出基波分量 与输入正弦量的复数比,记为N(A)。
设非线性环节的输入为正弦量 e(t) Asint
4
一般情况下,其输出为周期函数,可展开成傅立叶级数
0,
0 t
x(t
)
K
(
A s in t
a),
t
0,
t
式中, Asin a, sin1 a
A
输出亦为奇函数,故A1=0,1 0
B1
2
x(t ) sin td (t )
0
2 K Asint asintd(t)
0
1
B1
2
x(t)sint d(t)
0
则基波分量为
x1(t) A1 cost B1 sint x1 sin(t 1)
式中
x1 A12 B12
1
arctg
A1 B1
6
则描述函数为
N ( A) x1 e j1 A
由式可知,描述函数是输入振幅A的函数,是一个可变增益的 放大系数。
1
描述函数法将一个非线性装置或环节用一个可变增益的环 节来代替。这个可变增益是输入正弦振幅A和振荡频率的 函数。
求法:给非线性环节作用一个正弦输入,在非线性环节满 足一定条件下,其输出为一周期函数,且可展开成傅立叶 级数;取输出基波分量与输入正弦量的复数比,即可求得 该非线性环节的描述函数(或可变放大系数);用这个可 变放大系数代替非线性环节,即可用线性系统中频率法分 析系统。
§8.3 描述函数法
• 描述函数法是P.J. Daniel在1940年首先提出的, 其基本思想是:在一定的假设条件下,将非线性 环节在正弦信号作用下的输出用一次谐波分量来 近似,并导出非线性环节的等效近似频率特性, 即描述函数。
• 描述函数法主要用来分析在无外作用下的情况, 非线性系统的稳定性和自振荡问题。这种方法不 受系统阶次的限制,对系统的初步分析和设计十 分方便,因而获得了广泛的应用。但它是一种近 似分析方法,其应用有一定的限制条件;而且只 能用来研究系统的频率响应特性,不能给出时间 响应的确切信息。
当
a A
变大,N(A)随着减小;
a
当 A 趋近于1时,N(A)趋近于零。
x(t )
A0 2
An cos nt
n1
Bn sin nt
式中,由于非线性为奇对称特性,所以A0=0。
而
1
An
2
x(t)cos nt d(t)
0
Bn
1
2
x(t)sin nt d(t)
0
5
取基波分量,有
1
A1
2
x(t)cost d(t)
N(A)是输入振幅A的实函数,而且是非线性关系。 因此,可将描述函数看作为一可变放大系数的放大器。11
2. 死区特性
当输入 e(t) Asint 时,死区特性输入输出波形如下:
x(t)
x(t)
k
a
a
e(t)
.
t
e(t)
t
图8-11 死区特性及输入输出波形
12
由图可知,当 e(t) Asint ,且 A a时,死区输出为
13
解得
B1
2
KA
2
sin1
a A
a A
1
a
2
A
则死区特性的描述函数为:
N ( A) B1 2 K sin1 a a
1
a
2
A 2
A A A
a
由式可知,当 A 很小,即不灵敏区小,N(A)趋近于K;