东南大学《电磁场理论》复习总结
电磁场复习纲要

《电磁场理论》知识点第一章 矢量分析一、基本概念、规律矢量微分算子在不同坐标系中的表达,标量场的梯度、矢量场的散度和旋度在不同坐标系中的计算公式,常用的矢量恒等式(见附录一1.和2.)、矢量积分定理(高斯散度定理、斯托克斯旋度定理及亥姆霍兹定理)。
二、基本技能练习1、已知位置矢量z y x e z e y ex r ˆˆˆ++=ρ,r 是它的模。
在直角坐标系中证明 (1)r r r ρ=∇ (2)3=•∇r ρ (3)∇×0=r ρ (4)∇×(0)=∇r (5)03=•∇r rρ2、已知矢量z y e xy e x eA z y x 2ˆˆˆ++=ϖ,求出其散度和旋度。
3、在直角坐标系证明0A ∇⋅∇⨯=r4、已知矢量y x e eA ˆ2ˆ+=ϖ,z x e eB ˆ3ˆ-=ϖ,分别求出矢量A ϖ和B ϖ的大小及B A ϖϖ⋅ 5、证明位置矢量x y z r e x e y e z =++r r r r的散度,并由此说明矢量场的散度与坐标的选择无关。
6、矢量函数z y x e x e y ex A ˆˆˆ2++-=ϖ,试求 (1)A ϖ⋅∇(2)若在xy 平面上有一边长为2的正方形,且正方形的中心在坐标原点,试求该矢量A ϖ穿过此正方形的通量。
第二章 静电场一、基本常数真空中介电常数0ε二、基本概念、规律静电场、库仑定律、电场强度、电位及其微分方程、电荷密度、电偶极子模型、高斯定理、环路定理、极化强度矢量、电位移矢量、场方程(真空中和电介质中)、介质性能方程,边界条件,场能及场能密度。
三、基本技能练习1、设非均匀介质中的自由电荷密度为ρ,试证明其中的束缚电荷密度为)(00εεερεεερ-∇•---=D b ρ。
2、证明极化介质中,极化电荷体密度b ρ与自由电荷体密度ρ的关系为:ρεεερ0--=b 。
3、一半径为a 内部均匀分布着体密度为0ρ的电荷的球体。
求任意点的电场强度及电位。
电磁场理论知识点总结

电磁场理论知识点总结一、电磁场的基本概念电磁场是物理学中的一个重要概念,它是由电场和磁场相互作用而形成的统一体。
电场是由电荷产生的,它对处在其中的电荷有力的作用。
电荷分为正电荷和负电荷,同种电荷相互排斥,异种电荷相互吸引。
电场强度是描述电场强弱和方向的物理量,用 E 表示。
电场强度的定义是单位正电荷在电场中所受到的力。
磁场是由电流或者运动电荷产生的,它对处在其中的运动电荷或者电流有力的作用。
磁场强度用 H 表示,磁感应强度用 B 表示。
磁感应强度是描述磁场强弱和方向的物理量,它等于垂直通过单位面积的磁力线的数量。
二、库仑定律与高斯定理库仑定律描述了真空中两个静止点电荷之间的相互作用力与它们的电荷量以及距离之间的关系。
其表达式为:F = k q1 q2 / r²,其中 k 是库仑常量,q1 和 q2 是两个点电荷的电荷量,r 是它们之间的距离。
高斯定理是电场中的一个重要定理,它表明通过一个闭合曲面的电通量等于这个闭合曲面所包围的电荷的代数和除以真空中的介电常数。
简单来说,如果一个闭合曲面内没有电荷,那么通过这个曲面的电通量为零;如果有电荷,电通量就与电荷量成正比。
三、安培定律与毕奥萨伐尔定律安培定律描述了电流元在磁场中所受到的安培力。
安培力的大小与电流元的大小、电流元所在位置的磁感应强度、电流元与磁感应强度之间的夹角有关。
毕奥萨伐尔定律用于计算电流元在空间某点产生的磁感应强度。
它表明电流元在空间某点产生的磁感应强度与电流元的大小、电流元到该点的距离以及电流元与该点连线和电流方向之间的夹角有关。
四、法拉第电磁感应定律法拉第电磁感应定律指出,当穿过闭合回路的磁通量发生变化时,回路中就会产生感应电动势。
感应电动势的大小与磁通量的变化率成正比。
这一定律揭示了电磁感应现象的本质,是发电机等电磁设备的工作原理基础。
五、麦克斯韦方程组麦克斯韦方程组是电磁场理论的核心,它由四个方程组成,分别描述了电场的高斯定律、磁场的高斯定律、法拉第电磁感应定律和安培麦克斯韦定律。
电磁场理论复习指导

电磁场理论复习指导第一章 矢量分析知识点: ● 矢量代数:()()()A B C B A C C B A ⨯⨯=-()()()A B C B C A C A B⨯=⨯=⨯● 基本概念:场的定义,方向导数、梯度,通量、散度和环量、涡量、旋度 ● 无旋场、无散场及矢量分解定义 以及矢量场的Helmholtz 定理● ▽算子的运算矢量性和微分性,运算规则 ,注意合法运算,两者兼顾。
● 矢量分析中的若干积分定理Guass 定理,Stokes 定理,其他用到会给出2314()r r r r πδ⎛⎫⎛⎫∇=∇= ⎪ ⎪⎝⎭⎝⎭ 30r r ⎛⎫∇⨯= ⎪⎝⎭第二章 静电场知识点:● 静电场的基本定律:基本概念和定律(库仑定律、叠加原理、电场强度、电流密度的定义、点电荷的数学模型、各种分布的电场强度表达式、零级近似)静电场的基本方程:高斯定理和环路定理● 静电场的电位:电位的由来、定义,电位降概念、电位满足的方程(泊松方程和拉普拉斯方程)● 电位的多级展开:单级项和偶级项,点偶极子的物理模型,性质● 存在介质时的静电场:介质极化、极化强度和极化电荷的概念和定义;存在介质时满足的基本方程;本构关系;边界条件(切向电场连续,法向电位移矢量在表面无自由电荷时连续。
电位连续,电位的法向导数在表面无自由电荷时连续),等效思想(三种模型);介质的极化特性(尤其是线性均匀各项同性介质)● 静电场中的导体:基本概念和性质;理想化模型;导体系电容(电容系数等定义和物理意义)互易性 ● 静电场的能量:有无介质时,能量的表达式和物理意义,注意有一个只能表征能量 ● 静电场的求解方法:直接积分法;高斯定理加叠加原理;解泊松方程,注意边界条件和对称性第三章 边值问题的解法知识点:●唯一性定理:概念;重要意义●镜像法:(可直接记忆结果)思路、理论根据、方法;主要是课上所讲几种镜像以及其叠加问题;注意使用镜像法的几个要点(5个)以及对称性●解析函数法:基本概念,保角变换法(指数、对数、幂函数)注意使用条件和单一性区域●分离变量法:定义,解题思路和步骤;直角坐标系需自己记忆,圆柱和球坐标系会给出正交性公式(只考课上所讲几种情况)●格林函数法:基本思想、定义和分类,(只要求解格林函数,无需求解电位分布)●恒定电流场的电场:一般规律:电流和电流密度的定义以及它们之间的关系;电荷守恒定律;焦耳定律;恒定电流场的基本特性;基本方程和边界条件;导电介质中的恒定电流场:欧姆定律;维持恒定电流场的条件;基本方程和边界条件;理想导体在恒定电流场中的特性以及与静电场中导体的对偶性;恒定电流场的求解方法(高斯定理、恒定电流条件;解拉普拉斯方程;电阻的串并联;利用对偶性)一般求解漏电导。
(整理)电磁场理论知识点总结

电磁场与电磁波总结第1章 场论初步一、矢量代数A •B =AB cos θA B ⨯=AB e AB sin θA •(B ⨯C ) = B •(C ⨯A ) = C •(A ⨯B ) A ⨯ (B ⨯C ) = B (A •C ) – C •(A •B ) 二、三种正交坐标系 1. 直角坐标系矢量线元 x y z =++l e e e d x y z矢量面元 =++S e e e x y z d dxdy dzdx dxdy 体积元 d V = dx dy dz单位矢量的关系 ⨯=e e e x y z ⨯=e e e y z x ⨯=e e e z x y 2. 圆柱形坐标系矢量线元 =++l e e e z d d d dz ρϕρρϕl 矢量面元 =+e e z dS d dz d d ρρϕρρϕ 体积元 dV = ρ d ρ d ϕ d z 单位矢量的关系 ⨯=⨯⨯=e e e e e =e e e e zz z ρϕϕρρϕ3. 球坐标系矢量线元 d l = e r d r + e θ r d θ + e ϕ r sin θ d ϕ 矢量面元 d S = e r r 2sin θ d θ d ϕ 体积元 dv = r 2sin θ d r d θ d ϕ 单位矢量的关系 ⨯=⨯⨯=e e e e e =e e e e r r r θϕθϕϕθcos sin 0sin cos 0 001x r y z z A A A A A A ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ϕϕϕϕϕsin cos sin sin cos cos cos cos sin sin sin cos 0x r y z A A A A A A ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦θϕθϕθϕθθϕθϕθϕϕsin 0cos cos 0sin 010r r z A A A A A A ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦θϕϕθθθθ三、矢量场的散度和旋度 1. 通量与散度=⋅⎰A S Sd Φ 0lim∆→⋅=∇⋅=∆⎰A S A A Sv d div v2. 环流量与旋度=⋅⎰A l ld Γ maxn 0rot =lim∆→⋅∆⎰A lA e lS d S3. 计算公式∂∂∂∇=++∂∂∂⋅A y x zA A A x y z11()∂∂∂∇=++∂∂∂⋅A zA A A z ϕρρρρρϕ 22111()(sin )sin sin ∂∂∂∇=++∂∂∂⋅A r A r A A r r r r ϕθθθθθϕx y z ∂∂∂∇⨯=∂∂∂e e e A x y z x y z A A A ∂∂∂∇⨯=∂∂∂e e e A z z z A A A ρϕρϕρρϕρ sin sin ∂∂∂∇⨯=∂∂∂e e e A r r zr r r A r A r A ρϕθθθϕθ 4. 矢量场的高斯定理与斯托克斯定理⋅=∇⋅⎰⎰A S A SV d dV⋅=∇⨯⋅⎰⎰A l A S lSd d四、标量场的梯度 1. 方向导数与梯度00()()lim∆→-∂=∂∆l P u M u M u llcos cos cos ∂∂∂∂=++∂∂∂∂P uu u ulx y zαβγ cos ∇⋅=∇e l u u θ grad ∂∂∂∂==+∂∂∂∂e e e +e n x y zu u u uu n x y z2. 计算公式∂∂∂∇=++∂∂∂e e e xy z u u uu x y z1∂∂∂∇=++∂∂∂e e e z u u u u z ρϕρρϕ 11sin ∂∂∂∇=++∂∂∂e e e r u u uu r r r zθϕθθ 五、无散场与无旋场1. 无散场 ()0∇⋅∇⨯=A =∇⨯F A2. 无旋场 ()0∇⨯∇=u =∇F u六、拉普拉斯运算算子 1. 直角坐标系22222222222222222222222222222222∂∂∂∇=++∇=∇+∇+∇∂∂∂∂∂∂∂∂∂∂∂∂∇=++∇=++∇=++∂∂∂∂∂∂∂∂∂A e e e x x y y z zy y y x x x z z z x y zu u u u A A A x y zA A A A A A A A A A A A x y z x y z x y z,,2. 圆柱坐标系22222222222222111212⎛⎫∂∂∂∂∇=++ ⎪∂∂∂∂⎝⎭∂∂⎛⎫⎛⎫∇=∇--+∇-++∇ ⎪ ⎪∂∂⎝⎭⎝⎭A e e e z z u u uu zA A A A A A A ϕρρρρϕϕϕρρρρρϕρρϕρρϕ3. 球坐标系22222222111sin sin sin ⎛⎫∂∂∂∂∂⎛⎫∇=++ ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭u u uu r r r r r r θθθϕθϕ ⎪⎪⎭⎫⎝⎛∂∂+-∂∂+∇+⎪⎪⎭⎫⎝⎛∂∂--∂∂+∇+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂---∇=∇ϕθθθϕθϕθθθθϕθθθθϕϕϕϕθθθϕθθA r A r A r A A r A r A r A A r A r A r A r A r r r r r 222222222222222222sin cos 2sin 1sin 2sin cos 2sin 12sin 22cot 22e e e A 七、亥姆霍兹定理如果矢量场F 在无限区域中处处是单值的,且其导数连续有界,则当矢量场的散度、旋度和边界条件(即矢量场在有限区域V ’边界上的分布)给定后,该矢量场F 唯一确定为()()()=-∇+∇⨯F r r A r φ其中 1()()4''∇⋅'='-⎰F r r r r V dV φπ1()()4''∇⨯'='-⎰F r A r r r V dV π第2章 电磁学基本规律一、麦克斯韦方程组 1. 静电场基本规律真空中方程:d ⋅=⎰SE S qεd 0⋅=⎰lE l 0∇⋅=E ρε 0∇⨯=E 场位关系:3''()(')'4'-=-⎰r r E r r r r V q dV ρπε =-∇E φ 01()()d 4π''='-⎰r r |r r |V V ρφε介质中方程:d ⋅=⎰D S Sqd 0⋅=⎰lE l ∇⋅=D ρ 0∇⨯=E极化:0=+D E P ε e 00(1)=+==D E E E r χεεεε 极化电荷:==⋅P e PS n n P ρ =-∇⋅P P ρ2. 恒定电场基本规律电荷守恒定律:0∂∇⋅+=∂J tρ传导电流: =J E σ 与运流电流:ρ=J v恒定电场方程:d 0⋅=⎰J S Sd 0l⋅=⎰E l 0∇⋅=J 0∇⨯E =3. 恒定磁场基本规律真空中方程:0 d ⋅=⎰B l lI μ d 0⋅=⎰SB S 0∇⨯=B J μ 0∇⋅=B场位关系:03()( )()d 4π ''⨯-'='-⎰J r r r B r r r VV μ =∇⨯B A 0 ()()d 4π'''='-⎰J r A r r r V V μ 介质中方程:d ⋅=⎰H l lId 0⋅=⎰SB S ∇⨯=H J 0∇⋅=B磁化:0=-BH M μ m 00(1)=+B H =H =H r χμμμμ 磁化电流:m =∇⨯J M ms n =⨯J M e4. 电磁感应定律d d ⋅=-⋅⎰⎰S E l B S ld dt ∂∇⨯=-∂BE t5. 全电流定律和位移电流全电流定律: d ()d ∂⋅=+⋅∂⎰⎰D H l J S l S t ∂∇⨯=+∂DH J t 位移电流: d =DJ d dt6. Maxwell Equationsd ()d d d d d 0∂⎧⋅=+⋅⎪∂⎪∂⎪⋅=-⋅⎪∂⎨⎪⋅=⎪⎪⋅=⎪⎩⎰⎰⎰⎰⎰⎰⎰D H J S B E S D S B S l S l SSV Sl t l t V d ρ 0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩D H J B E D B t t ρ ()() ()()0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩E H E H E E H t t εσμερμ 二、电与磁的对偶性e m e m e m e e m m e e m mm e 00∂∂⎫⎧∇⨯=-∇⨯=⎪⎪∂∂⎪⎪∂∂⎪⎪∇⨯=+∇⨯=--⎬⎨∂∂⎪⎪∇=∇=⎪⎪⎪⎪∇=∇=⎩⎭⋅⋅⋅⋅B D E H D B H J E J D B D B t t &t t ρρ m e e m ∂⎧∇⨯=--⎪∂⎪∂⎪∇⨯=+⇒⎨∂⎪∇=⎪⎪∇=⎩⋅⋅B E J D H J D B tt ρρ 三、边界条件 1. 一般形式12121212()0()()()0⨯-=⨯-=⋅-=⋅-=e E E e H H J e D D e B B n n S n Sn ρ2. 理想导体界面 和 理想介质界面111100⨯=⎧⎪⨯=⎪⎨⋅=⎪⎪⋅=⎩e E e H J e D e B n n Sn S n ρ 12121212()0()0()0()0⨯-=⎧⎪⨯-=⎪⎨⋅-=⎪⎪⋅-=⎩e E E e H H e D D e B B n n n n 第3章 静态场分析一、静电场分析1. 位函数方程与边界条件位函数方程: 220∇=-∇=ρφφε电位的边界条件:121212=⎧⎪⎨∂∂-=-⎪∂∂⎩s nn φφφφεερ 111=⎧⎪⎨∂=-⎪∂⎩s const nφφερ(媒质2为导体) 2. 电容定义:=qC φ两导体间的电容:=C q /U任意双导体系统电容求解方法:2211⋅⋅===⋅⋅⎰⎰⎰⎰D S E S E lE lS S d d qC Ud d ε 3. 静电场的能量N 个导体: 112==∑ne i i i W q φ 连续分布: 12=⎰e VW dV φρ 电场能量密度:12D E ω=⋅e二、恒定电场分析1. 位函数微分方程与边界条件位函数微分方程:20∇=φ边界条件:121212=⎧⎪⎨∂∂=⎪∂∂⎩nn φφφφεε 12()0⋅-=e J J n 1212[]0⨯-=J J e n σσ 2. 欧姆定律与焦耳定律欧姆定律的微分形式: =J E σ 焦耳定律的微分形式: =⋅⎰E J VP dV3. 任意电阻的计算2211d d 1⋅⋅====⋅⋅⎰⎰⎰⎰E l E l J SE SSSU R G Id d σ (L R =σS )4. 静电比拟法:C —— G ,ε —— σ2211⋅⋅===⋅⋅⎰⎰⎰⎰D S E S E lE lS S d d qC Ud d ε 2211d d d ⋅⋅===⋅⋅⎰⎰⎰⎰J S E SE lE lS S d I G Uσ三、恒定磁场分析1. 位函数微分方程与边界条件矢量位:2∇=-A J μ 12121211⨯⨯⨯A A e A A J n s μμ()=∇-∇=标量位:20m φ∇= 211221∂∂==∂∂m m m m n nφφφφμμ 2. 电感定义:d d ⋅⋅===⎰⎰B S A l SlL IIIψ=+i L L L3. 恒定磁场的能量 N 个线圈:112==∑Nm j j j W I ψ 连续分布:m 1d 2A J =⋅⎰V W V 磁场能量密度:m 12H B ω=⋅ 第4章 静电场边值问题的解一、边值问题的类型● 狄利克利问题:给定整个场域边界上的位函数值()=f s φ ● 纽曼问题:给定待求位函数在边界上的法向导数值()∂=∂f s nφ● 混合问题:给定边界上的位函数及其向导数的线性组合:2112()()∂==∂f s f s nφφ ● 自然边界:lim r r φ→∞=有限值二、唯一性定理静电场的惟一性定理:在给定边界条件(边界上的电位或边界上的法向导数或导体表面电荷分布)下,空间静电场被唯一确定。
电磁场理论期末复习总结PPT课件

v
dS
4 S r r
(r , t) 1
4
l
r r
l r, t
v
dl
r
r
r r
A(r ,t)
I r,t
v
4 l r
dl
r
能量密度与能流密度矢量
电场能量密度 损耗功率密度
we (r,t)
1 2
E2
(r,t)
pl (r,t) E2 (r,t)
磁场能量密度
wm(r,
l
J dl 0
J1t J2t 1
E1t E2t
2
J dS 0 S J1t J2t 1 2
J1n J2n
J1nJ2n
1E1n 2 E2n
J1n1 J2n 2
J1t
J2t
分界面上的自由电荷面密度为
s en • (1 E1 2 E2 ) en •
(
1
J1
1
2
J2
2
)
J
US
U
2, 2
d2 电容器漏电导
G I2σ 1 1 1 2 S U d1 2
若d1=d2=d/2则 计算平板电容器在静电场中的电容:
d21
G 121 2S2 d
C q
q
q
1 2
U E1d1 E2 d2 D d D d (12q
1 2 2 2 2 )Dd
存在比拟关系:
1 2 (12q
0 dWm Fdl
由于各个回路的磁通未变,因此,各个回路位移过 程中不会产生新的电动势,因而外源
作的功为零。即
求得常磁通系统中广义力为
FWm l
常数
12 12
电磁场理论课程总结

电磁场总结各章内容总结如下:第一章矢量分析与场论基础主要内容:矢量;场的概念及分类;矢量线;方向导数、梯度的概念及计算;哈密尔顿算子;通量、散度;高斯定理(散度定理);环量、旋度;斯托克斯定理(旋度定理);矢量场的分类及表示;标量格林定理;矢量格林定理;亥姆霍兹定理;常用正交曲线坐标系及其梯度、散度、旋度的计算公式;第二章静态场主要内容:真空、介质中的静电场;静电场中的导体;静电场的能量;静电场的边界条件;静电场的解法;真空中恒定电流的静磁场;媒质中的静磁场;静磁场的能量;静磁场的边界条件;第三章时变电磁场主要内容:法拉第电磁感应定律、感应电场;位移电流与全电流定律;Maxwell 方程组及其物理意义;时谐电磁场:时变场的边界条件;时变电磁场的能量与能流;坡印廷矢量(能流密度矢量),平均坡印廷矢量;时变电磁场的波动性;位函数;对偶性原理;唯一性定理;第四章平面电磁波主要内容:无界均匀理想媒质中的平面电磁波的表示式、传播参数、传播特性;电磁波的极化;无界均匀导电媒质中的平面电磁波的表示式、传播参数、传播特性;第五章电磁场在分区均匀媒质中的传播主要内容:反射折射定律和菲涅尔(Fresnel)公式;向导电媒质的垂直入射;向理想导体的垂直入射;向理想媒质的垂直入射;向理想导体的斜入射;向理想媒质的斜入射(全透射、全反射现象);向有耗媒质的斜入射;第六章导行电磁波主要内容:导行波的一般分析方法;导行波的波型(模式)分类;TEM波、TE波、TM波;矩形波导中的导行波;圆波导中的导行波;同轴线中的导行波;平面传输线;各章作用及相互关系第一章数学工具矢量;场论(散度旋度)第二章静态场分析第三章时变场分析;Maxwell方程组的种种变换及推论第四章最简单的波动电磁场——平面电磁波的传播特性分析第五章电磁波在不同媒质交界面的传播特性分析第六章有界区域(特指传输线)中的电磁波传播特性分析第一章介绍电磁场的数学基础,其中有关矢量及场论的部分是基础之基础;第二章介绍比较熟悉的静态场知识,逐渐导出初始的并不完备的Maxwell方程;第三章在此基础上,通过引入法拉第电磁感应定律和全电流概念建立起了完备的Maxwell方程组,并以此为基础推导出了时谐场的Maxwell 方程组以及边界条件、坡印廷定理、波动方程、位函数方程、对偶性定理、唯一性定理等。
电磁场理论前六章总结

en
(H 1
H
2
)
JS
en (E1 E2 ) 0
en en
( (
B1 D1
B2 ) 0
D2 )
S
理想导体
en
D
S
en
B
0
en en
E H
0
JS
第三章 静态电磁场及边值问题的解
(微分形式)
(积分形式)
H
(r)
B(r )
0
J(r)
C
H
(r )
dl
S
J (r )
dS
S B(r ) dS 0
传导:
J E
电磁感应定律:感应电动势与位移电流
感应电动势
in
dl
B dS S t
t
位移电流:全电流定律
H
J
D
—— 微分形式
t
H dl
(J
D
)
dS
C
s
t
—— 积分形式
位移电流密度:
Jd
D t
麦克斯韦方程组
C
H
dl
S (J
D ) dS t
S
0I
媒质的电磁特性:媒质对电磁场的响应可分为三种 情况:极化、磁化和传导。描述媒质电磁特性的参 数为:介电常数、磁导率和电导率。
电磁场理论课程归纳总结

电磁场课程总结本课程主要介绍了电磁场与电磁波的相关基本理论。
先后分别介绍了场论,静态场,时变场及它们的边界条件;然后是电磁波的传播理论,分别是无界区域,分区均匀媒质中和在波导中的传播。
场论中,介绍了概念主要有标量场,矢量场,场源,梯度,散度,通量,旋度,环量,正交曲线坐标系,哈密尔顿算子,以及几个重要的定理和公式,及常用的矢量恒等式。
通量描述场内有无源,是正源还是负源,而散度描述了源在场中的分布情况以及场中每一点处的源的强弱程度。
环量反映了场矢量的环流与产生这种环流的源之间的关系。
而旋度表明了环流源的分布,场是由场源激发的,场源有散度源和旋涡源,故场基本上有散度场和漩涡场。
亥姆霍兹定理给了我们唯一确定一个矢量场的方法,即对于有限区域V内任何一个单值、导数连续有界的矢量场,若给定其散度和旋度,则该矢量场就被确定,最多只相差一个常矢量;若同时还给出该矢量场的边值条件,即该矢量在边界S上的切向分量(或法向分量),则这个矢量场就被唯一确定了。
并且该矢量场可以表示成一个无散场和一个无旋场的和。
矢量场中梯度、散度、旋度的概念和意义本身与坐标系无关,但它们的具体计算公式与坐标系密切相关。
在很多情况下,直角坐标系不太方便,例如有关球体、圆柱体的问题,采用球坐标、圆柱坐标就比较方便,最根本的区别在于:直角坐标系中的单位矢量是常矢量,其他正交坐标系中的单位矢量一般是变矢量,它们的方向随空间位置不同而变化,因此其他正交坐标系中梯度、散度、旋度的计算公式比直角坐标系中的要复杂得多。
静态场中,主要介绍了静电场(电量不随时间变化的、静止不动的电荷在周围空间产生的电场)和静磁场(静止的恒定电流产生的磁场)。
静电场以库仑定律及其推论(高斯定理,静电场环路定理)为基础理论,得到了静电场理论的很多结论,如安培定律(磁感应强度的旋度等于电流密度的倍),引入了电位,电势能,电壁,电容,极化,电位移矢量,恒定电流场(电流密度仅是的函数而不随时间变化而形成的矢量场),恒定电场(恒定电流回路中,电源两极及导体上各点的电荷密度保持恒定,这种恒定的电荷分布在电源内外、导体内外产生的电场),泊松方程和拉普拉斯方程(若已知电荷分布可用于求电位),静磁场中还引入了磁化,磁矢位,磁标位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
R
H 0e jk R
jan k
R
H e0
,
平面电磁波的极化:线极化波——电场强度沿某一固定的方向,不随时间变化的电磁波。椭圆极化波——两个空间相互垂直,
相位差 的线极化波的叠加,振幅相等则合成为圆极化波,根据相位超前情况可分为右旋(正)圆极化波,左旋(负)圆极化波。
2
任意一个线极化波可分解为两个振幅相等、旋向相反的圆极化波,即 E 任意一个椭圆极化波可分解为两个振幅不等、旋向相反的圆极化波,即
axkx
ayky
azkz
ank
,电场强度 E
R
E0e jk R
E0
e
jan
k
R
,则等相位面方程为
an
R
0
,磁场强度
则电场强度 E R
H H0
R
an
1 e
an
E0
e
jan
k
R
,媒质的本征阻抗
jan
k
R
。均匀平面电磁波是
TEM
波。
k
;若磁场强度 H
2V
I
0 ,静磁场是有旋无散场。
we
1 2
DE
。
磁位方程:磁通量密度 B A ,矢量磁位 A 满足泊松方程 2 A J 。
磁偶极子:半径很小的圆形载流回路。磁偶极矩 m
az
Ib
2
,空间一点的磁位
A
a
0Ib2 sin 4R 2
0
m
aR
,磁通量密度
4R 2
B
A
0 Ib 2 4R3
aR
2cos
a
sin
。当有磁介质存在时,磁化磁介质的作用可用磁化面电流和极化体电流等效代替,极化
面电流密度
,磁化强度
J ms M
M mH
an
,极化体电流密度
J mV
M
,即
B
0
1
m
H
0rH
H
0
1
H
,磁化率 m
, M 为磁化强度矢量。磁通量密度 B 0 H M
时谐电磁场:麦克斯韦方程组的时谐形式:
E jB D H J jD B 0
,根据物质本构关系即可写为
EEjH
H
J H
jE 0
。
在简单非导电 0 无源 0 媒质中,时谐麦克斯韦方程组可简化为: EHHEjj00EH ,得到均匀平面电磁波的齐次波
第2页共6页
Ei
(x,
z)
a
y
Ei
0e
j1 xsini
z cosi
(x, z)
ax
cosi
az
sin
i
E e i0 j1 xsini z cosi ,则反射 1
sini z cosi
Ei 0 1
e j1 xsini z cosi
,叠加总电场强度及磁场强度表达式为
Ei0 e j1xsini 。合成电磁波在媒质 1 的 z 方向上形成驻波, 1
E
jEE0j
j
E
,定义复介
H 0
电常数 c
j
j
,则传输常数
jkc
j
c j
1
j
j
,其中
为衰减常数,
为相
位常数,媒质的特征阻抗c
cቤተ መጻሕፍቲ ባይዱ
。若电场强度的瞬时表达式为
E z,
t
ax
Emez
cost
z
0
,则磁场强度的瞬时表达
式为
H
z,
t
ay
Em c
e z
cost
z 0 ,电场和磁场之间存在相位差。定义损耗角正切 tan c
金属的电导率和材料厚度的平方成正比。为了减小涡流损耗,金属板的厚度应较小,故铁芯多采用叠片的形式,并可在钢片中掺
杂硅或使用铁的氧化物,以减小材料的电导率。
集肤效应:在导体中传导的变化电流产生的变化磁场在导体中产生感应电流,使导体中的电流趋向于导体的表面,且越趋近导体
表面,电流密度越大。随着电流频率的增加,电流越趋近导体表面,当频率很高时,导体有效横截面积减小,电阻增大。故在高
电场强度和磁场强度在时间上相位差 ,在空间上错开 。在理想导体分界面上,电场强度为零,磁场强度最大,存在面电流
2
密度
Js
(
x)
ax
2
Ei 0 1
。
4
均匀平面电磁波在理想导体平面边界上的倾斜入射:
垂波H电直1场(极x强,化z度)平及面磁波a场入x c强射oEs1度:(x表i设,cz达o入)s式射为1波zacy电ojHs2场rE(i强ix0,s度zian)及zjE磁s1riz(n场caxo,强xiszcs)度oinis表ei达1ajzy1式cxaEsoizin为0sseiinijH12ixi
r 1,磁介质的绝对磁导率 0r 。对于抗磁
质 m 0,r略 1 ;对于顺磁质 m略 0,r略 1 ;对于铁磁质 m 1。
磁场的能量:磁场储存的能量Wm
1 2
n k 1
Ik k
电流连续分布
1 2
V
A JdV
1
2
V
H
BdV
,磁场能量密度
we
1 2
BH
。
第四章 平面电磁波
,其与电磁波频率有关,
表示了传导电流与位移电流幅度之比,即反映了媒质的欧姆损耗。在理想导体中有
,在理想介质中有
0。
在低损耗电介质中,
1,传播常数
j
2
j
1
1 8
2
,本征阻抗c
c
(1
j
2
),
相速度 vp
1
1
1 8
2
;在良导体中,
1,传播常数
z
1 T
时变电磁场位函数:引入矢量磁位
T
0
A
Sx, y, z,tdt
和标量电位
,复数形式下 Sav
,满足 B A
1
Re
E
H
2
, E
,其与空间位置有关,与时间无关。
A
,则在洛伦兹规范
A
d
0
下,
矢量磁位
A
和标量电位
满足的非齐次波动方程(达朗贝尔方程)为:
2
A
2
B dS ,电荷守恒原理: I
J dS
dq
d
dV ,电流连续性方程
dt (根据电荷守恒原理得到):
J
dt
S
,即单位时间内流出曲面
S
S
dt dt V
的电流等于其包围的体积内电荷的减少量。
麦克斯韦方程组:微分形式:
t HEDBJ0BtDt
,积分形式:
l
l
E
dl
S
B t
t 2A t 2 2 t 2
J
。
dt
第1页共6页
第三章 静态场
静电场:基本方程:微分形式:
D DEE0
,积分形式:
S
E dl 0
l D dS dV
V D E
,静电场是无旋有源场。
电位方程:电场强度
E
,标量电位
满足泊松方程 2
;若
0
,则
满足拉普拉斯方程 2
合曲面的功率等于从该闭合曲面所包围体积内电场和磁场所存储的能量的增加率与欧姆损耗功率之和,即 E H dS
S
t
V
1 E 2 1 H 2 dV
2
2
V
E 2dV
,其中电磁场能量密度 w
we
wm
1 E 2 2
1 2
H 2
,欧姆功率密度
p
E 2 。
平均坡印廷矢量:
S av
x,
y,
V
S
S
零恒等式:标量场的梯度的旋度恒为零即 0 ,矢量场的旋度的散度恒为零即
A
l
0。
亥姆霍兹定理:在空间区域上的任意矢量场,如果其散度、旋度和边界条件已知,则该矢量场唯一并且可以表示为一无旋矢量场
和一无散矢量场的叠加。
第二章 麦克斯韦方程组与时变电磁场
法拉第电磁感应定律: d d
0
。
理想导体:理想导体的电导率 ,内部电场强度和电荷密度均为零。在静态平衡条件下,理想导体表面处的电场强度垂直
于电E 导偶 体极表子面:,相4即距理p一0R想小3导段a体R距2表c离o面sd是的一一a个 对s等in等位值面 。异,在理号外想电场导荷的体。作是电用一偶下个极,等矩无位p极体分。q在d子 自,形由空成空间位间一移,极点理化的想,电导有位体极表分面子q4电d形场c0o成R强s取2度向的极4法p化向 0a,R分R合2量,成E电的n 场电 偶强0s极度。
第3页共6页
无色散时, dv p d
0 , vg
vp ,正常色散时,
dv p d
0 , vg
v
p
,异常色散时,
dv p d
0 , vg
vp 。
均设度入匀表射达平波式面电电HE场磁rr强波((zz度)在) 及理a磁想ayx场E导Ei1i0强体0ee度平jj11表z面z ,达边总式界电上场H的E强ii(垂(度zz)直)及入磁aa射yx场EE:强ii100e度ej表j1z1达z ,式则由EH电1(1场(zz)强)度aa边yx2j界2E条Ei10i0件csoi及sn麦11z克z 。斯即韦合方成程电得磁反波射在波媒电质场1强中度形及成磁驻场波强,
矩不再为零,从而影响原来的电场分布。当有电介质存在时,极化电介质的作用可用极化面电荷和极化体电荷等效代替,极化面