第1课时图形的变换

合集下载

图形的变换

图形的变换

《图形的变换》教学设计教学内容:北师大版数学六年级上册第三单元《图形的变换》第一课时《图形的变换》教学目标:1、通过观察、操作、想象,经历一个简单图形经过平移或旋转制作复杂图形的过程,体验图形的变换,发展空间观念。

2、借助方格纸上的操作和分析,有条理地表达图形的平移或旋转的变换过程。

培养学生观察、思考、动手操作、表达能力和合作交流能力。

3、利用七巧板在方格纸上变换各种图形,进一步提高学生的想象能力。

让学生体验成功的喜悦,体现数学在生活中的应用价值,激发学生爱数学、学数学的情感。

教学重、难点:通过观察、操作活动,有条理地说出图形的平移或旋转的变换过程。

教学方法:演示法、操作法、讨论法、讲授法教具学具:教师准备课件、方格纸;学生准备方格纸、四个相同的等腰直角三角形、七巧板教学过程:一、创设情境、复习旧知1、欣赏图片,激发兴趣师:我们一起来欣赏一些美丽的图案,同学们看到这些图案有什么感受?你发现了哪些数学知识?师:游戏先玩到这儿,在这个游戏中,你发现了哪些数学知识?生:平移、旋转。

师:你们观察得真仔细。

(师在黑板上板书:平移旋转)2、复习旧知(1)课件出示游乐园图片师:游乐园里各种游乐项目的运动变化相同吗?你们能根据它们不同的运动变化分类吗?(2)平移和旋转时应注意什么呢?生:平移时应说清平移的方向和平移的距离。

师:概括的很准确。

(板书:平移:方向、距离)让学生用准备好的方格纸和三角形动手练习平移。

师:再来复习一下旋转的有关知识。

(课件出示钟面)旋转时应说清中心点及旋转时的方向和度数。

(师相应板书:旋转:中心点、方向、度数)(3)欣赏一些轴对称图形,复习相关知识。

(4)引入新课师:说的真不错。

今天我们用平移、旋转和对称的知识来进一步探索“图形的变换”。

(板书:图形的变换)二、自主探究、获取新知1、活动一:动手摆一摆,说一说(1)师:观察下面各图是如何进行变换的?(课件出示)师:请同学们拿出课前准备好的方格纸和三角形,自己动手移一移、转一转,然后按照下面提出的四个问题与小组同学进行交流。

《图形的变换》教案

《图形的变换》教案

《图形的变换》教案第一章:引言1.1 课程目标让学生了解图形的变换概念及其在实际生活中的应用。

培养学生观察、分析、解决问题的能力。

1.2 教学内容图形变换的定义及分类。

图形变换在日常生活中的应用。

1.3 教学方法采用讲授法、案例分析法、讨论法等。

1.4 教学准备教学PPT、案例素材、讨论题目等。

第二章:图形变换的分类及特点2.1 课程目标让学生掌握图形变换的几种常见类型(平移、旋转、缩放等)。

使学生了解各种变换的特点及应用场景。

2.2 教学内容几种常见的图形变换:平移、旋转、缩放、翻转等。

各种变换的特点、应用场景及实例。

2.3 教学方法采用讲授法、案例分析法、实践活动等。

2.4 教学准备教学PPT、案例素材、实践活动素材等。

第三章:图形变换的数学原理3.1 课程目标让学生了解图形变换的数学原理,为后续的实际应用打下基础。

3.2 教学内容坐标系中图形变换的数学表达。

变换矩阵及其在图形变换中的应用。

3.3 教学方法采用讲授法、实践活动、小组讨论等。

3.4 教学准备教学PPT、实践活动素材、讨论题目等。

第四章:图形变换在实际应用中的案例分析4.1 课程目标让学生了解图形变换在实际生活中的应用,提高其解决实际问题的能力。

4.2 教学内容图形变换在艺术设计、计算机图形学、工程制图等领域的应用案例。

4.3 教学方法采用案例分析法、小组讨论法等。

4.4 教学准备教学PPT、案例素材、讨论题目等。

5.1 课程目标使学生对图形变换有一个全面、深入的理解。

激发学生对图形变换相关领域的研究兴趣。

5.2 教学内容回顾本课程的主要知识点。

介绍图形变换在相关领域的拓展应用。

5.3 教学方法采用讲授法、讨论法等。

5.4 教学准备教学PPT、拓展素材、讨论题目等。

第六章:图形变换的计算机实现6.1 课程目标让学生了解如何在计算机中实现图形变换。

培养学生利用计算机技术解决图形变换相关问题的能力。

6.2 教学内容计算机中图形变换的原理及方法。

第1单元图形的变换

第1单元图形的变换

第一单元图形的变换第二单元因数和倍数从12的因数可以看得出,一个数的因数还不止一个,那我们一起找找看18的因数有哪些?学生尝试完成:汇报(18的因数有: 1,2,3,6,9,18)师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。

2、用这样的方法,请你再找一找36的因数有那些?汇报36的因数有: 1,2,3,4,6,9,12,18,36师:你是怎么找的?举错例(1,2,3,4,6,6,9,12,18,36)师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)仔细看看,36的因数中,最小的是几,最大的是几?看来,任何一个数的因数,最小的一定是(),而最大的一定是()。

3、你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自练本上写一写,然后汇报。

4、其实写一个数的因数除了这样写以外,还可以用集合表示:如18的因数小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。

(二)找倍数:1、我们一起找到了18的因数,那2的倍数你能找出来吗?汇报:2、4、6、8、10、16、……师:为什么找不完?你是怎么找到这些倍数的? (生:只要用2去乘1、乘2、乘3、乘4、…)那么2的倍数最小是几?最大的你能找到吗?2、让学生完成做一做1、2小题:找3和5的倍数。

汇报 3的倍数有:3,6,9,12 一做1、2小题:找3和5的倍数。

一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数学生汇报这节课的学习所得③ 26 的最小因数是几?最大因数是几?最小的倍数是几? 2、按要求在集合圈里填上数。

第一单元图形的变换(老师).

第一单元图形的变换(老师).

第一单元 图形的变换第一课时轴对称 我们在二年级已经初步感知了生活中的对称、平移和旋转现象,在此基础上,我们要进一步探索图形成轴对称的特征和性质,学习在方格纸上画出教师活动1、生活中有各种精美的自学内容:教材第2―― 4页,例1、例2 O 图案,装点着我们的生自学要求:请独立完成“合作探究”;在方格纸上认真画轴对活。

请同学们欣赏教材第称图形。

2页的图形,这些图形有课标解读 一个图形的轴对称图形和画出一个简单图形旋转 90度后的图形,发展空间观 教学目标 ^念O知识与技能:让学生掌握已学过的平面图形的轴对称情况,能正确地找出其对称轴;过程与方法:通过画、剪、观察、想象、分类、找对称轴等系列活动,正确认识轴对称图形的特征和性质;情感态度与价值观:培养和发展学生的实验操作能力、发现美和创造美的能教学重点 掌握轴对称图形的特征和性质。

教学难点 学会画出轴对称图形。

学具准备 铅笔、直尺、剪刀、纸学法指导小组合作 讨论交流(观察、想象、分析和推理)一、情境引入:一、自主学习2、揭示课题1、学生相互交流:还见过哪些轴对称图2、认识轴对称图形的特征和性质。

(学习例1)什么特征?你能找出其中轴对称图形的对称轴我的疑问 吗?在学习过程中,我的疑问有: (板书:轴对称) 二、合作探究 二、引导学生探究新知1、 观察教材第2页的图形,说说它们有什么特征? 什么叫轴对称图形?你2、 请画出教材第 3页上面6个图形的对称轴。

(画在教材上) 形?3、 什么叫轴对称图形?你还见过哪些轴对称图形? (1 )学生合作探究,教4、 看一看,数一数、教材第 3页例1的“小树”和“小草” 师巡视指导。

图案中每个轴对称图形左右两侧相对的点到对称轴的距离,你 (2 )组织学生汇报合作发现了什么?学习的结果。

5、画出教材第4页例2图形的轴对称图形。

(想一想:怎样(3 )组与组之间互评,画得又快又好?)提出疑问。

归纳整理:3 .教师组织学生归纳整1、一个图形沿着一条直线折叠,两边的图形可以理,引导建构。

第1课时1 图形的变换

第1课时1  图形的变换

图形的变换教学内容:北师大版小学数学六年级上册35-36页内容第1课时教学目标1、通过观察、操作、想象,经历一个简单图形经过平移或旋转制作复杂图形的过程,体验图形的变换,发展空间观念,提高学生的空间想象能力。

2、借助方格纸上的操作和分析,有条理地表达图形平移或旋转的变换过程。

3、利用七巧板等图形变换,进一步感悟运动变化的数学思想,体验图形变换的实用价值。

教学重点:经历一个简单图形经过平移或旋转制作复杂图形的过程。

教学难点:,有条理地表达图形的平移或旋转的变换过程。

教具、学具教师准备:课件学生准备:每人准备一张方格纸,一张答题纸,4张大小相等的等腰直角三角形(硬纸)、一副七巧板教学过程一、创设情境,提出问题第一关:忆旧迎新师:以前学习过的知识里有关图形变换的现象有哪些?(预设:有平移、旋转、轴对称图形等图形变换现象)师:同学们观察课件中图形的变换属于什么现象?现象,其中甲图向右平移2格,乙图绕直角顶点顺时针旋转90度)(个别学生回答)师:同学们回答得很正确,你们对有关图形变换的知识也回忆得很好。

为了加深同学们对图形变换的知识有更深的了解,今天让我们一起来深入探索有关图形变换的知识。

(出课题课:图形的变换)第二关:探索新知,提出问题师:接下来,请同学们思考:二、自主学习,小组探究(建议;教师按照先想象、然后操作与表述同步,最后再回想的方式安排学生开展学习活动。

因为学生已有简单的平移、旋转的初步知识,所以要求学生在操作的过程中,尝试用语言逐步完善表述变换的过程,教师随机跟进巡视修正指导操作和表述)1.呈现问题:四个三角形A、B、C、D如何变换得到“风车”图形?2.学生思考:让学生充分的观察、想象。

(要保证学生独立思考的时间,这一点很关键))3.初步操作:学生借助学具在方格纸上摆一摆,并说一说变换过程。

友情提示:(1)请先试一试只用平移变换可以得到“风车”图形吗?(2)请用旋转与平移相结合的变换方法试一试。

图形的变换

图形的变换

1.图形的平移(1)平移:在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。

平移可以不是水平的。

①经过平移,对应线段,对应角分别相等, 对应点所连的线段平行且相等(或共线且相等)。

②平移变换不改变图形的形状、大小和方向..,平移前后的两个图形是全等形。

2.图形的旋转(1)旋转:在平面内,把一个图形绕点O旋转一个角度的图形变换叫做旋转,点O叫做旋转中心,旋转的角叫做旋转角。

①对应点到旋转中心的距离相等。

②对应点与旋转中心所连线段的夹角等于旋转角。

③旋转前、后的图形全等。

③旋转三要素:旋转的中心、方向、角度。

(3)中心对称:把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形的对应点叫做关于中心的对称点。

(4)中心对称图形:把一个平面图形绕某一点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形。

这个点就是它的对称中心。

①中心对称图形中对应点的连线经过对称中心,且被对称中心平分。

②成中心对称的两个图形是全等图形。

3.图形的轴对称(1)轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做关于这条直线的对称点,这条直线叫做对称轴,两个图形关于直线对称也称轴对称。

(2)轴对称图形:如果一个图形沿着一条直线对折,直线两侧的图形能够完全重合,这个图形就是轴对称图形。

对称轴:折痕所在的这条直线叫做对称轴。

①对应点的连线被对称轴垂直平分②成轴对称的两个图形全等。

4.位似图形:如果两个图形不仅是相似图形,且对应点连线相交于一点,对应线段相互平行,那么这样的两个图形叫做位似图形,位似图形对应点连线的交点是位似中心。

①位似图形对应点连线的交点是位似中心;②两个图形是相似图形。

《图形的变换》教学设计(精选3篇)

《图形的变换》教学设计《图形的变换》教学设计(精选3篇)作为一位优秀的人民教师,常常要根据教学需要编写教学设计,教学设计是实现教学目标的计划性和决策性活动。

优秀的教学设计都具备一些什么特点呢?以下是小编精心整理的《图形的变换》教学设计(精选3篇),供大家参考借鉴,希望可以帮助到有需要的朋友。

《图形的变换》教学设计1学习内容:人教版小学数学五年级下册教材第2—4页。

学习目标:1、我能认识图形的轴对称,掌握轴对称图形的特征和性质。

2、我能在方格纸上画出一个图形的轴对称图形。

3、我能运用对称的方法设计美丽的图案。

学习重点:掌握轴对称图形的特征及画轴对称图形的方法。

学习难点:能利用轴对称的知识画轴对称图形。

教学过程:一、激情导入新课二、独学检测1、互动分享收获。

2、质疑探讨。

三、合作探究(一)轴对称图形的特征和性质。

1、自主学习课本第3页例1。

根据自学内容,我发现:(1)A点与()点重合,B点与()点重合,C点与()点重合。

A点与()点,B点与()点,C点与()点,是轴对称图形的对称点。

(2)每组对称点到对称轴的距离()。

2、小组交流后,代表汇报交流。

3、师生小结归纳。

轴对称图形沿对称轴对折后,互相重合的点叫做________点;轴对称图形,沿对称轴对折,两侧的图形完全________,对称点到对称轴的距离________。

(二)根据要求在方格纸上画出轴对称图形另一半的方法。

1、自主学习课本第4页例2,并与组内同学交流自己的画法。

2、小组合作,讨论:怎样画得又快又好?我的想法________________________________3、小组代表展示汇报。

4、总结归纳。

画轴对称图形另一半的方法是:(1)找出所给图形的________点。

(2)数出或量出图形的关键点到对称轴的________。

(3)在对称轴的另一侧找出关键点的________点。

(4)按所给图形的________连接各点,画出所给图形的另一半。

《图形的变换》教案

《图形的变换》教案
《图形的变换》教案
一、教学目标
1.了解图形的变换包括平移、旋转和放缩。

2.能够识别和描述图形的变换。

3.能够进行简单的图形变换操作。

二、教学内容
1.平移是将图形在平面上沿着某个方向移动一定的距离,保持图形的形状和
大小不变。

平移操作可以用向量来表示,即将图形上的每个点都按照相同
的向量进行移动。

2.旋转是将图形围绕某个固定点进行旋转,旋转操作也可以用角度和旋转方
向来表示。

3.放缩是将图形的大小进行缩放,放缩操作可以用比例来表示,即将图形上
的每个点都按照相同的比例进行缩放。

三、教学步骤
1.导入新课:通过欣赏一些图案,让学生观察这些图案的特点,并思考这些
图案是如何形成的。

2.学习新课:
a. 平移:通过实例演示平移操作,让学生观察平移的特点,并尝试进行平
移操作。

b. 旋转:通过实例演示旋转操作,让学生观察旋转的特点,并尝试进行旋
转操作。

c. 放缩:通过实例演示放缩操作,让学生观察放缩的特点,并尝试进行放
缩操作。

3.实践练习:让学生自己设计一些图案,通过平移、旋转和放缩等操作,形
成美丽的图案。

4.归纳小结:让学生总结图形的三种变换方法的特点和应用。

四、教学反思
通过本节课的教学,学生基本掌握了图形的三种变换方法,能够进行简单的操作和应用。

但是,有些学生对于旋转和放缩的操作掌握不够熟练,需要加强练习。

同时,在设计中,应该更加注重图形的实际应用,让学生能够将所学知识应用到实际生活中。

北师大数学第十一册图形的变换word版教案1

图形的变换第一课时教学内容:第三单元第35页“图形的变换”。

教学目标:1.知识目标:通过观察、操作、想象,经历一个简单图形通过平移或旋转制作复杂图形的进程,体验图形的变换,进展空间观念。

2.能力目标:借助方格纸上的操作和分析,有层次地表达图形的平移或旋转的变换进程。

3.情感目标:利用七巧板在方格纸上变换各类图形,进一步提高学生的想象能力。

教学重、难点:通过观察、操作活动,说出图形的平移或旋转的变换进程。

教学进程:一、创设情境。

师:在以前的学习中咱们已初步熟悉了平移和旋转,下面请同窗们用一个三角形在方格纸上边摆边说,说说什么是平移、什么是旋转。

学生在自己的方格纸上操作交流,然后请几位学生展示。

师:同窗们咱们在分析图形的变换时,不仅要说出它的平移或旋转情形,还要说清楚是如何平移或旋转的,如此就可以清楚地明白它的变换进程。

师:同窗们的交流专门好,下面请同桌的两个同窗彼此合作,用两个三角形自己设计一个图形,然后进行变换,并说一说它的变换进程。

(学生进行自己的设计与操作,师巡视指导)师:同窗们做得专门好。

下面请几个同窗上来演示他们设计的图形,并说一说它是如何变换图形的。

若是是通过旋转组成的图案,每旋转一次,都应说一说是什么图形绕者哪一点旋转的?二、尝试练习:师:接下来,请同窗们观察下图,边观察边试探,并拿出课前预备好的方格纸和三角形,别离给四个三角形标上A、B、C、D,自己摆一摆,移一移,转一转,进行图形的变换,然后依照下面老师提出的四个问题,与同桌同窗进行交流。

(1)四个三角形A、B、C、D如何变换取得“风车”图形?(2)“风车”图形中的四个三角形如何变换取得长方形?(3)长方形中的四个三角形如何变换取得正方形?(4)正方形中的四个三角形如何变换回到最初的图形?学生自己操作,同桌交流图形变换的方式,教师巡视指导。

三、拓展练习。

师:同窗们,这节课咱们学了哪些知识?(图形的变换)。

适才你们都用了哪些学具来摆图形呢?(三角形)。

(北师大版)六年级数学上册课件_图形的变换


D
A
B
C
D
A
B
C
D
A
B
(1)
C
D
(4)
(2)
(3)

“风车”图形中的四个三角形如何变换得到长方形?

长方形中的四个三角形如何变换得到正方形?

正方形中的四个三角形如何变换到最初的图形?
A
B
(1)
C
D
(4)
(2)
(3)
你能用手中的基本图形通过平移或 旋转设计出美丽的图案吗?
图形的变换
教学目标
1.能正确判断简单图形在方格纸上平移的方 向和距离,初步建立图形的位置关系及其 变化的表象。
2.通过观察、操作等活动,使大家能在方格 纸上画出一个简单图形沿水平方向、竖直 方向平移后的图形。
3.使大家体会到生活中处处有数学。
1
2
o·3
A
B
C
D
A
B
C
D
A
B
CDΒιβλιοθήκη ABCD
A
B
C
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一课时图形的变换
1、轴对称——对称轴
⏹特点——对称轴两侧的图形完全一样
到对称轴的距离相同
⏹画法——画对称图形------找到关于对称轴对称的顶点,再顺次连接
画对称轴
⏹镜面对称问题
练习:
(1)、让学生在黑板上画出有一条对称轴,两条对称轴,三条对称轴,四条对称轴和无数条对称轴的图形,并画出其对称轴。

(2)、画出一半的图形,让学生画出另一半。

(3)、镜子中看到的是10点钟,实际是几点;如果是3点20呢?再如果是1点40呢?
(4)、数字在镜中的投影。

1058实际是多少?2505呢?
2、旋转——旋转中心
●特点——图形没有变化
图形到旋转中心的线段长度没有变化
旋转角度
●画法——先画旋转角度、再画线段、顺次连接各端点
●时钟的旋转
一圈360度
12小时格,每格360/12=30度
每分格,30/5=6度
时针每分格需要12分钟,分针需要1分钟,时针和分针的速度比即为1:12
●时钟的镜对对称问题
练习:
(1)、画出三角形ABO绕点O顺时针旋转90度后的图形。

再画出三角形ABO绕点B逆时针旋转90度的图形。

(2)、画出下面两个图形绕点O顺时针旋转150度后的图形。

(3)、画出下面图形绕点B逆时针旋转90度的图形。

3、三种图形变换
●旋转、平移、对称
●画法、辨别
练习:
(1)、画出长方形向右平移2格后的图形,画出平形四边形向上平移2格和向左平移2格后的图形(2)、画出图形向左平移3格后的图形。

第1题第2题。

相关文档
最新文档