因式分解(1)
第二章 2.1.3 因式分解 (1)新

3ab(a + b) − a − b
7c(x − y) − x + y
3
提取公因式法: 提取公因式法: 找准公因式,一次要提尽; 找准公因式,一次要提尽; 全家都搬走,留 1 把门守; 全家都搬走, 把门守; 提负要变号,变形看奇偶。 提负要变号,变形看奇偶。
例2
请把下列各式因式分解
(1)16a 2 − 1
2
(2) 3a + 6a = 3a (a + 2) (3) x 2 − 4 + 3x = ( x + 2)( x − 2) + 3 x (4) x 2 − 4 + 3x = ( x + 4)( x − 1) (5) x − 4 = ( x + 2)( x − 2)
2
(6) x − 4 = ( x + 2)( x − 2) 1 1 2 2 (7 ) x + 2 + 2 = ( x + ) x x
合作学习
把下列各式因式分解
(1)a 4 − 81
(2)4 x y − 9 xy
3 2 3
(3)3ax + 6axy + 3ay
2
注意: 注意:
(1)因式分解要彻底,直到不能分解为止。 因式分解要彻底,直到不能分解为止。 彻底 (2)通常先考虑提取公因式法,然后再考虑公式法。 通常先考虑提取公因式法,然后再考虑公式法。 提取公因式法
2ab
(3a − 2a2b2 −1 )
提取公因式法: 提取公因式法: 找准公因式,一次要提尽; 找准公因式,一次要提尽; 全家都搬走, 把门守。 全家都搬走,留 1 把门守。
例1
将下列各式分解因式: 将下列各式分解因式:
因式分解(一)

练习一 “理解概念”
判断下列各式哪些是整式乘法?哪些是因式分解?
(1) x2-4y2=(x+2y)(x-2y)
因式分解
(2) 2x(x-3y)=2x2-6xy
整式乘法
(3) (5a-1)2=25a2-10a+1
整式乘法
(4) x2+4x+4=(x+2)2 (5) (a-3)(a+3)=a2-9 (6) m2-4=(m+2)(m-2) (7) 2 πR+ 2 πr= 2 π(R+r)
分析:应先找出
与
式进行分解
的公因式,再提公因
例2、把3x2 6xy x分解因式
例3、把 4m3 16m2 26m分解因式
注意:如果多项式的第一项的系数是负的,一般
要提出“-”号,使括号内的第 一项的系数是正的,在提出“-”号时,多项式的 各项都要变号。
例4、把2a(b c) 3(b c)分解因式
路桥实验中学 王万丰 2006.10.25
整式的乘法
计算下列个式: x (x+1)= x2 + x (x+1) (x – 1)= x2 – 1
63能被哪些数整除?
在小学我们知道,要解决这个问题 需要把63分解成质数乘积的形式.
63 3 3 7
类似的,在式的变形中,有时需要将 一个多项式写成几个整式的乘积的形 式.
1、20042+2004能被2005整除吗?
2、先分解因式,再求值 4a2 (x 7) 3(x 7),其中a 5, x 3
今天你有什么收获? 你还有什么疑问吗?
说出下列多项式各项的公因式:
1、ma + mb 2、4kx - 8ky 3、5y3+20y2 4、a2b-2ab2+ab
人教版数学八年级上册《因式分解公式法》(一)课件

(3)0.16x2-0.09y2z2 (4)16(x-1)2-9(x+2)2
(5)–16x4+81y4 (6)3x3y–12xy
(a+b)(a-b)=a2-b2 (整式乘法)
a2-b2 =(a+b)(a-b)ቤተ መጻሕፍቲ ባይዱ因式分解)
想一想
(1)下列多项式中,他们有什么共同特征?
①x2-25 ②9x2-y2
□2 -△2
(2)尝试将它们分别写成两个因式的乘积,并与同伴交流.
①x2-25=(x+5)(x-5)
②9x2-y2=(3x+y)(3x-y)
□2-△2=(□+△)(□-△)
议一议
平方差公式有哪些特点?
a2−b2= (a+b)(a−b)
左边:有两项;每一项都是平方项;两项符号相反 右边:两数的和与差的积
关键:确定公式中的a和b
火眼金睛
下列多项式可不可以用平方差公式因式分解?
①x2+y2
②-x2+y2
③-x2-y2
④x2-(-y)2
例题讲解
公式法因式分解(1)
回顾与思考
1、把下列各式分解因式:
(1)3a3b2-12ab3 关键:确定公因式 =3ab2(a2-4b)
(2)a(m-2)+b(2-m) =(m-2)(a-b)
一 看系数 二 看字母 三 看指数
最大公约数 相同字母最低次幂
回顾与思考
2、填空: ①25x2=(__5_x__)2
名言警句
严谨性之于数学 犹如道德之于人
自我检测
1、判断正误:
(1)x2+y2=(x+y)(x–y) (2)–x2+y2=–(x+y)(x–y) (3)x2–y2=(x+y)(x–y) (4)–x2–y2=–(x+y)(x–y)
初中数学 因式分解(一)

1.定义:把一个多项式化成几个既约整式的乘积的形式,叫做把这个多项式因式分解,也可称为将这个多项式分解因式.2.因式分解结果的要求:因式分解结果的标准形式 常见典型错误或者不规范形式符合定义,结果一定是乘积的形式 ()()()x x x +1+2+3+7既约整式,不能含有中括号 []()()x x +12+3-1 最后的因式的不能再次分解 ()()x x 2-1-1单项式因式写在多项式因式的前面()()x x x -1+1 相同的因式写成幂的形式 ()()()x x x x -1+1-1 每个因式第一项系数一般不为负数 ()()x x x -+1+1 每个因式第一项系数一般不为分数x x x 12⎛⎫⎛⎫-+1+1 ⎪⎪33⎝⎭⎝⎭因式中不能含有分式 x x x 21⎛⎫+ ⎪⎝⎭因式中不能含有无理数()()()x x x +1+2-23.因式分解基本解法:“一提二代三分解”是因式分解的三种常见基本解法,“提”指的是提取公因式法,“代”指的是公式法(完全平方公式,平方差公式,立方差和立方和公式,三项完全平方公式),“分解”指的是分组分解的方法.①提取公因式法几个整式都含有的因式称为它们的公因式. 例如:()ma mb mc m a b c 2+4+6=2+2+3把每项的公因式,包括数和字母全部提出,当然有的时候把一个式子看成一个整体. ②公式法因为因式分解和整式的乘法是互逆的,所以说常见的乘法公式要特别熟悉. 平方差公式()()a b a b a b 22+-=- 完全平方公式:()a b a ab b 222+=+2+()a b a ab b 222-=-2+立方差公式:()()a b a ab b a b 2233-++=- 立方和公式:()()a b a ab b a b 2233+-+=+三项完全平方公式:()a b c a b c ab ac bc 2222++=+++2+2+2 完全立方公式:()a b a a b ab b 33223+=+3+3+()a b a a b ab b 33223-=-3+3-大立方公式:()()a b c abc a b c a b c ab ac bc 333222++-3=++++---(1)下列各式从左边到右边的变形中,是因式分解的是( )A .()ab a b a b ab 223+=3+3B .x x x x 222⎛⎫2+4=21+ ⎪⎝⎭C .()()a b a b a b 22-4=+2-2D .()x xy x x x y 23-6+3=3-2(2)如果下列式子是因式分解的结果,请判断下列式子形式是否正确,如果错误,请说明理由.①()x y x y 224-3+7;②()m m 23-4;③()()a b a b -4+2-2;④()[()]y x 22+1-1-3;⑤x x x 1⎛⎫+ ⎪⎝⎭;⑥()x x x 1⎛⎫+1-2 ⎪2⎝⎭;⑦()()y x x 2-+3-+3;⑧()()()()x y x y x y x y 2244++++.(1)C ;(2)③正确,①②④⑤⑥⑦⑧错误.【教师备课提示】这道题主要讲解因式分解的概念:(1)因式分解是一种恒等变形.(2)因式分解的结果必须是乘积的形式,每一个因式必须是整式,且不可再分解.(1)多项式x y x y x y 3222236-3+12的公因式是___________.(2)多项式()()()x y z a b x y z a b x y z a b 23433232545-24-+20-+8-公因式是_________.(3)观察下列各式:①a b 2+和a b +;②()m a b 5-和a b -+;③()a b 3+和a b --;④x y 22-和x y 22+,其中有公因式的是___________.(1)x y 223;(2)()x y z a b 223-4-;(3)②③.【教师备课提示】这道题主要讲解怎么找公因式,数和式子单独来看,数找公因数,式子找公因式.模块二 提取公因式法模块一 因式分解的概念因式分解:(1)a x abx y acx 232212+6-15(2)()()()()a b x y b c a b x y b c 223322++-6++(3)()()()x y x y x y 322+-2++2+ (4)abx acx ax 43-3+-(5)()()()()x y x y y x x y 2-33-2+2-32+3(6)a b a b ab 3223273-6+4这6道小题反映了提取公因式法的6大原则:(1)一次提净:应当先检查数字系数,然后再一个个字母逐个检查,将各项的公因式提出来,使留下的式子没有公因式可以提取. 原式()ax ax by c 2=34+2-5(2)视“多”为一:把多项式(如x y +,b c +等)分别整个看成是一个字母.原式2322()()(33)a b x y b c x y ab ab c =+++--(3)切勿漏“1”:当多项式的某一项恰好是所提取公因式时,剩下的式子里应当留下“1”,千万不要忽略掉.原式2(2)[(2)(2)1]x y x y x y =++-++22(2)(4421)x y x xy y x y =+++--+ (4)提负数:原式32(31)ax bx cx =--+(5)提相反数:原式(32)[(23)(23)]x y x y x y =---+6(32y x y =--)(6)化“分”为整:在提出一个分数因数(它的分母是各项系数的公分母)后,我们总可以使各项系数都化为整数(这个过程实质上就是通分).并且,还可以假定第一项系数是正整数,否则可用前面说过的方法,把1-作为公因数提出,使第一项系数称为正整数.原式32231(122427)4a b a b ab =-+223(489)4ab a b ab =-+.因式分解(随堂练习):(1)x y xyz xy 25-10+5(2)()()()a x a b a x x a -+--- (3)()()()x x a x x -2+1++1++1(4)()()()()x m x m y m m x m y -----(5)n n b b 3-12-131+26(n 是正整数)(6)()()()p x p x p x 32226-1-8-1-21-(1)=()xy x z 5-2+1原式;(2)=()()()a x a b x a x a -----原式()()x a a b =---1; (3)()()x x a =+1-2++1原式()()x x a =-+12--1;(4)()()m x m y 2=---原式;(5)()n n b b 2-11=9+16原式;(6)()[()]p x x p 2=2-13-1-4-1原式()()p x x p 2=2-13-4-4. 【教师备课提示】例3和例4主要考查提取公因式因式分解.因式分解:(1)()x 2-1-9 (2)()()m n m n 229--4+(3)()()a b a b 22-4-+16+ (4)()()a b a b 222222-3-5+5-3 (5)x xy y 229-24+16 (6)a a 28-4-4 (7)()c a b a b 222222---4(1)()()x x +2-4;(2)[()()][()()]m n m n m n m n =3-+2+3--2+原式()()m n m n m n m n =3-3+2+23-3-2-2 ()()m n m n =5--5;(3)原式()()a b a b 43++3=;(4)()()a b a b a b a b 22222222=5-3+3-55-3-3+5原式()()a b a b 2222=8-82+2 ()()()a b a b a b 22=16+-+;(5)()x y 2=3-4原式;(6)()a a 2=-4-2+1原式()a 2=-4-1;(7)原式()()()()c a b c a b c a b c a b +--+++--=.因式分解(随堂练习):(1)()a b 216-3+2 (2)x y x y 62575-12(3)a b c 444-81+16 (4)()()a b a b 2222223---3(5)()()x y z x y z 22+-6++9 (6)()x y x y 22222+-4(7)m m 4216-72+81模块三 公式法(1)()()a b a b =4+3+24-3-2原式;(2)()x y x y 244=325-4原式()()x y x y x y 22222=35+25-2;(3)()()c a b c a b 222222=4-94+9原式()()()c ab c ab c a b 222=2+32-34+9; (4)()()a b a b a b a b 22222222=3-+-33--+3原式()()a b a b 2222=4-42+2()()()a b a b a b 22=8+-+;(5)原式()x y z 2+-3=; (6)原式()()x y x y 22=+-;(7)()()m m 2222=4-2⋅4⋅9+9原式()m 22=4-9()()m m 22=2-32+3. 【教师备课提示】例5和例6主要考查平方差公式和完全平方公式因式分解.因式分解:(1)x 38+27 (2)y 3-+64(3)x x y 5239-72 (4)a b 66+ (5)a b 66-(1)()()x x x 2=2+34-6+9原式; (2)()()y y y 2=4-+4+16原式;(3)()x x y 233=9-8原式()()x x y x xy y 222=9-2+2+4; (4)()()a b 2323=+原式()()a b a a b b 224224=+-+; (5)()()a b 3232=-原式()()a b a b 3333=+-()()()()a b a b a ab b a ab b 2222=+--+++另解:()()a b 2323=-原式()()a b a a b b 224224=-++()()()a b a b a a b b a b 422422=+-+2+- ()()()()a b a b a ab b a ab b 2222=+--+++;【教师备课提示】这道题主要考查立方差和立方和公式. 因式分解:(1)a b c bc ca ab 2224+9+9-18-12+12(2)x x y xy y 32238-36+54-27(1)()a b c 2=2+3-3原式;(2)()x y 3=2-3原式.【教师备课提示】这道题主要考查三项完全平方和完全立方公式.下列因式分解正确的是( )A .()()()a b a b a b a b 2222-4+4=-4-4=-4+2-2B .()m m m m 323-12=3-4C .()x y x y x y x y 422224-12+7=4-3+7D .()()m m m 24-9=2+32-3D .因式分解:(1)abc a b a b 2336-14+12 (2)a a a 324-6+15-12 (3)()x a x a x 22224+--(4)()()p q p 22-1-4-1(5)()()()(a b m p a b m p 5-22+3-2-72+3) (6)()()()x y x y x y 232++6+-4+(1)()ab a c ab 22=26+3-7原式; (2)()a a a 22-34+2-5=原式; (3)()()a x x 22=+4-1原式; (4)原式()()p p q =2-1-2-1; (5)=()()m p a b 2+33+5原式;(6)()[()()]x y x y x y 2=2+1+3+-2+原式()()x y x y x y xy 22=2+1+3+3-2-2-4.模块二 提取公因式法模块一 因式分解的概念已知b c a +-=-2,求()()a a b c b c a b c b c a 22221⎛⎫--+-++2+2-2 ⎪33333⎝⎭的值.()()a b c a b c 2=----3原式()a b c 22=--3.∵b c a +-=-2,∴a b c --=2,则原式8=3.因式分解:(1)()y z x 224-2-(2)(m x y mn 2232--3)(3)x y 88-(4)x x 516-(5)()()x x x x 22225+2-3--2-3 (6)()()x x x x 2222+4+8+4+16(7)n n n a a a +2-2+8+16(1)=()()y z x y z x 2+2-2-2+原式;(2)原式=()()m x y n x y n 32-+2--;(3)=()()x y x y 4444-+原式()()()x y x y x y 222244=-++()()()()x y x y x y x y 2244=+-++;(4)()()()x x x x x 422=16-1=4-14+1原式()()()x x x x 2=2-12+14+1; (5)()()x x x 22=6-64+4原式()()()x x x x =24+1-1⋅⋅+1()()x x x 2=24-1+1; (6)()x x 22=+4+4原式()x 4=+2;(7)()n a a a -242=+8+16原式()n a a -222=+4.因式分解:(1)a b c 3338-1(2)a b b 33932-4(3)x y y 631564+(1)()()abc a b c abc 222=2-14+2+1原式;(2)=原式()b a b 33648-()()b a b a ab b 32224=42-4+2+; (3)()y x y 3612=64+原式()()y x y x x y y 3244248=4+16-4+.模块三 公式法。
因式分解(1)-提取公因式(1)(1)

──提公因式法
揭标引学
1.了解因式分解的意义,会用提公因式法进 行因式分解(指数是正整数);
2.经历通过整式乘法逆向得出因式分解方法 的过程,发展学生的逆向思考问题的能力和推理 能力.
情境引入
计算:375×2.8+375×5+375×2.2 解:原式=375×(2.8+5+2.2) =375×10 =3750
射阳县实验初中
例题讲解
例2:把下列各式分解因式 (1)12a2bc-6ab (2)-2m3+8m2-12m
♦当多项式的第一项的系数是“−”时,通常 把“−”作为公因式的负号写在括号外,使括 号内第一项的系数化为“+ ”. ♦提公因式法因式分解的关键就是找公因式.
射阳县实验初中
练一练:【自学检查】
射阳县实验初中
拓展延伸
阅读下列因式分解的过程,再回答所提出的问题:
1+x+x(x+1)+x(x+1)2
=(1+x)[1+x+x(1+x)] =(1+x)2(1+x) =(1+x)2 (1)上述分解因式的方法是_提__取_公__因_式___法,共应用 了__2___次; (2)若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2018,则 需要应用上述方法_2_0_1_8_次,分解因式后的结果是 _____; (3)请用以上的方法分解因式: 1+x+x(x+1)+x(x+1)2+…+x(x+1)n (n为正整数),必须 有简要的过程.
因式分解(一)

因式分解(一)撰稿:徐长明审稿:张扬责编:孙景艳一、目标认知学习目标:1. 了解因式分解的意义,以及它与整式乘法的关系;2.能确定多项式各项的公因式,会用提公因式法将多项式分解因式;3.会综合运用提公因式法和公式法把多项式分解因式;4.经历综合利用提公因式法和公式法将多项式因式分解的过程,发展综合运用知识的能力和逆向思维的习惯。
知识结构重点难点:重点:因式分解的概念及各种方法的使用条件。
难点:因式分解方法的综合应用。
二、知识要点梳理知识点一:因式分解的概念把一个多项式化成几个整式的积的形式,这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式,如:,等。
要点诠释:(1)因式分解的实质就是把加减形式化成乘积形式;(2)因式分解的过程和整式乘法的过程正好相反,即因式分解和整式乘法是互逆的,可表示为:多项式几个因式的乘积;(3)分解要彻底:即要使分解后每个因式(在我们所学的范围内)都不能再进行因式分解(不含有因式了).知识点二:公因式的概念1、公因式的定义:在多项式中各项都有的因式叫做这个多项式的公因式.如:多项式中每项都含有因式k,则k就是这个多项式的公因式.2、公因式的特点:a.公因式的系数是原多项式各项系数的最大公约数;b.公因式中的字母是各项中都含有字母;c.公因式字母的次数是相同字母的最低次.也即:知识点三:提公因式法分解因式把多项式分解成两个因式的乘积的形式,其中一个因式是各项的公因式m,另一个因式是,即,而正好是除以m所得的商,这种因式分解的方法叫提取公因式法.要点诠释:(1)提公因式法分解因式实际上是逆用乘法分配律,即(ma+mb+mc)=m(a+b+c);(2)用提公因式法分解因式的关键是准确找出多项式各项的公因式。
(3)当多项式第一项的系数是负数时,通常先提出“—”号,使括号内的第一项的系数变为正数,同时多项式的各项都要变号。
(4)用提公因式法分解因式时,若多项式的某项与公因式相等或它们的和为零,则提取公因式后,该项变为:“+1”或“-1”,不要把该项漏掉,或认为是0而出现错误。
奥数讲座因式分解(1)答案

初一奥数讲座因式分解(1)答案例1.分解因式(提公因式法)(1)4a2 + 6ab + 2a解:原式= 2a(2a + 3b + 1)(2)2a m + 1 + 4a m– 2a m– 1解:原式= 2a m– 1(a2 + 2a– 1)(3)(m–n) – (n–m)2解:原式= (m–n)2 – (m–n)2= (m–n)[1 – (m–n)]= (m–n)(1 –m + n)(4)2a2b(b + c)(x + y)2 – 6a3b2(b + c)2(x + y)解:原式= 2a2b(b + c)(x + y)[(x + y) – 3ab(b + c)]= 2a2b(b + c)(x + y)(x + y– 3ab2– 3abc)例2.分解因式(运用公式法)(1)x2– 81解:原式= x2– 92= (x + 9)(x– 9)(2)4(x + y)2 – 9(x–y)2解:原式= [2(x + y) + 3(x–y)][2(x + y) – 3(x–y)]= (5x–y)(–x + 5y)= – (5x–y)(x– 5y)(3)x2 + 8xy + 16y2解:原式= x2 + 2·x·4y + (4y)2= (x + 4y)2(4)(x2– 2x)2 + 2(x2– 2x) + 1解:原式= (x2– 2x)2 + 2(x2– 2x)·1 + 12= (x2– 2x + 1)2= [(x– 1)2]2= (x– 1)4例3.分解因式(运用公式法)(1)125a3b6 + 8解:原式= (5ab2)3 + 23= (5ab2 + 2)[(5ab2)2– 2×5ab2 + 22]= (5ab2 + 2)(25a2b4– 10ab2 + 4)(2)512x9– 1解:原式= (8x3)3– 13= (8x3– 1)[(8x3)2 + 8x3 + 1]= (2x– 1)(4x2 + 2x + 1)(64x6 + 8x3 + 1)(3)1 – 12x2y2 + 48x4y4– 64x6y6解:原式= 1 – 3×4x2y2 + 3×(4x2y2)2– (4x2y2)3= (1 – 4x2y2)3= (1 + 2xy)3(1 – 2xy)3(4)x3 + 3xy + y3– 1解:原式= x3 + y3 + (– 1)3– 3·x·y(– 1)= (x + y– 1)(x2 + y2 + 1 –xy + y + x)(5)x2 + 9y2 + 4z2– 6xy + 4xz– 12yz解:原式= x2 + (– 3y)2 + (– 2z)2 + 2·x·(– 3y) + 2·x·2z + 2·(– 3y)·(2z) = (x– 3y + 2z)2例4.分解因式(1)12x2–xy +12y2解:原式= 12(x2– 2xy + y2)= 12(x–y)2(2)100 – 25x2解:原式= 25(4 –x2)= 25(2 + x)(2 –x) (3)x4– 2x2y2 + y4解:原式= (x2)2– 2x2y2 + (y2)2= (x2–y2)2= (x + y)2(x–y)2(4)2a6–12a3 +132解:原式= 2(a6–14a3 +164)= 2[(a3)2– 2×18·a3 + (18)2]= 2(a3–18 )2= 2(a–12)2(a2 +12a +14)例5.分解因式(1)– 2x5n– 1y n + 4x3n– 1y n + 2– 2x n– 1y n + 4解:原式= – 2x n– 1y n(x4n– 2x2n y2 + y4)= – 2x n– 1y n[(x2n)2– 2x2n y2 + (y2)2]= – 2x n– 1y n(x2n–y2)2= – 2x n– 1y n(x n + y)(x n–y)(2)(a2 + ab + b2)2 – 4ab(a2 + b2)解:原式= [(a2 + b2) + ab]2– 4ab(a2 + b2)= (a2 + b2)2 + 2ab(a2 + b2) + a2b2– 4ab(a2 + b2)= (a2 + b2)2– 2ab(a2 + b2) + a2b2= (a2b2–ab)2(3)(x2–x) – 4(x– 2)(x + 1) – 4解:原式= (x2–x)2– 4(x2–x– 2) – 4= (x2–x)2– 4(x2–x) + 8 – 4= (x2–x)2– 4(x2–x) + 4= (x2–x– 2)2= (x– 2)2(x + 1)2(4)a7–a5b2 + a2b5–b7解:原式= (a7–a5b2) + (a2b5–b7)= a5(a2–b2) + b5(a2–b2)= (a2–b2)(a5 + b5)= (a + b)(a–b)(a + b)(a4–a3b + a2b2–ab3 + b4)= (a + b)2(a–b)(a4–a3b + a2b2–ab3 + b4)例6.分解因式(1)a3 + b3 + c3– 3abc解:原式= (a + b)3– 3ab(a + b) + c3– 3abc= [(a + b)3 + c3] – 3ab(a + b + c)= (a + b + c)[(a + b)2– (a + b)c + c2] – 3ab(a + b + c)= (a + b + c)(a2 + b2 + c2–ab–bc–ca)(2)(x + y)3 + (z–x)3 – (y + z)3解:原式= [(x + y) + (z–x)][(x + y)2– (x + y)(z–x) + (z–x)2] – (y + z)3 = (y + z)[(x + y)2– (x + y)(z–x) + (z–x)2–(y + z)2]= (y + z)(3x2 + 3xy– 3yz– 3xz)= 3(y + z)[x(x + y) –z(x + y)]= 3(y + z)(x + y)(x–z)(3)x15 + x14 + x13 + …+ x2 + x + 1解:因为x16– 1 = (x15 + x14 + x13 + …+ x2 + x + 1)∴原式= ()()15142111x x x x xx-+++++-=1611xx--=()()()()()842111111x x x x xx++++--= (x8 + 1)(x4 + 1)(x2 + 1)(x + 1)例7.分解因式(分组分解法)(1)a2–b2– 2a– 2b解:原式= (a + b)(a–b) – 2(a + b)= (a + b)(a–b– 2) (2)25a4–x2– 2x– 1解:原式= (5a2)2– (x2 + 2x + 1)= (5a2)2– (x + 1)2= (5a2 + x + 1)(5a2–x– 1)(3)4a2–b2– 2a +1 4解:原式= 4a2– 2a +14–b2= (2a–12)2–b2= (2a–12+ b)( 2a–12–b)(4)(1 –a2)(1 –b2) – 4ab解:原式= 1 –a2–b2 + a2b2– 4ab= a2b2– 2ab + 1 –a2– 2ab–b2= (ab– 1)2– (a + b)2= (ab– 1 + a + b)(ab– 1 –a–b)(5)a4 + a2b2 + b4解:原式= a4 + 2a2b2 + b4–a2b2= (a2 + b2)2–a2b2= (a2 + b2 + ab)( a2 + b2–ab)练习1.证明:817– 279– 913能被45整除证明:∵817– 279– 913 = 328– 327– 326 = 326(32– 3 – 1) = 326×5 = 324×32×5 = 324×45 ∴817– 279– 913能被45整除2.求证:四个连续自然数的积再加上1,一定是一个完全平方数证明:设这四个连续自然数分别为n,n + 1,n + 2,n + 3n(n + 1)(n + 2)(n + 3) + 1= n(n + 3)(n + 1)(n + 2) + 1= (n2 + 3n)(n2 + 3n + 1) + 1= (n2 + 3n)2 + 2(n2 + 3n) + 1= (n2 + 3n + 1)2∴n(n + 1)(n + 2)(n + 3) + 1一定是一个完全平方数。
因式分解全部公式(一)

因式分解全部公式(一)因式分解全部公式一、一元二次方程的因式分解公式1. 公式一元二次方程的因式分解公式如下:ax^2 + bx + c = 02. 解释说明在解一元二次方程时,有时可以通过因式分解的方法来得到解的形式。
根据一元二次方程的因式分解公式,我们可以将方程化简为两个一次因式相乘的形式。
例如,对于方程x^2 + 5x + 6 = 0,我们可以使用因式分解的方法来求解。
通过观察可以发现,方程可简化为(x + 2)(x + 3) = 0。
由此可得出方程的解为x = -2或x = -3。
二、三角函数的因式分解公式1. 公式三角函数的因式分解公式如下:sin^2(x) + cos^2(x) = 12. 解释说明三角函数的因式分解公式是一个重要的恒等式。
根据该公式,三角函数的平方和等于1。
举例来说,对于一个正弦函数sin(x),我们可以将其平方和sin^2(x)和余弦函数的平方和cos^2(x)相加,得到结果为1。
这表明在三角函数中,正弦和余弦函数是互补的,且两者的平方和始终为1。
三、多项式的因式分解公式1. 公式多项式的因式分解公式可以写为:a^n - b^n = (a - b)(a^(n-1) + a^(n-2)b + ... + b^(n -1))2. 解释说明多项式的因式分解公式可以帮助我们将一个多项式分解成更简单的乘积形式。
举例来说,对于多项式x^2 - 4,根据因式分解公式,我们可以将其分解为(x - 2)(x + 2)。
通过这种方法,我们可以将复杂的多项式简化为多个一次因式的乘积。
四、总结这篇文章介绍了因式分解的一些常用公式,并通过例子解释了它们的应用。
通过因式分解,我们可以将复杂的表达式转化为更简单的形式,从而更方便地进行计算和分析。
掌握这些公式对于数学和物理等领域的学习和应用都具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。
因式分解和整式乘法的过程正好相反。
一个多项式中每一项都含有的因式叫做这个多项式的公因式。
如果一个多项式的各项含有公因式,那么可以把该公因式提取出来作为多项式的一个因式,提出公因式后的式子放在括号里,作为另一个因式。
这种分解因式的方法叫做提取公因式法。
提取的公因式应是各项系数的最大公因数(系数都是整数时)与各项都含有的相同字母的最低次幂的积。
公式法:1. 平方差公式 2. 完全平方公式
例1:分解因式
(1)6m 3n-3m 2n 2-15mn 3 (2)6(x-y )3-4(y-x )2
(3)x 3y-xy 3 (4)4x 2-y 2
(5)x 2y 2-2xy+1 (6)-4y 2+4y-1
因式分解(一)
(7)4mx 2-8m 2x+4m 3 (8)a 2m +2a m b n +b 2n
例2. 分解下列因式
(1)-a 2b 2+2abc 2-3ab 2c (2)x 2(m-n )5-xy (n-m )4
(3)a 3-25ab 2
(4)(3m+2n )2-4(m-n )2
(5)2x 2-32
(6)(a+2b )4-(a-2b )4
(7)22
1
39b b --
(
8)2(x+y )2-20(x+y )+50
(9)(a 2+b 2)2-(2ab )2
(10)(ax+by )2-2acxz-2bcyz+c 2z 2
例3. 计算
22
21(999)(1000)33-
拓展练习:1052-2×(1002-52)+952 例4. 利用因式分解求解下面的方程
225
x y2x y+0
4
++-=
例5. 已知a2+b2=4,c2+d2=10,ac+bd=2、求ad-bc的值
拓展练习:若a、b满足a2b2+a2+b2+10ab+16=0,求a2+b2的值
例6. 已知a、b、c、d都是正数,且满足a4+b4+c4+d4=4abcd,试求a、b、c、d之间的大小关系。
1. 36y2-x2
2. 已知x+y=5,x2+y2=13,则xy的值是多少?
3. 若x2y2+kxy+9是一个完全平方公式,则k的值是多少?。