转录与转录后加工
转录后加工名词解释

转录后加工名词解释
转录后加工是指在基因组中进行转录的过程后,对转录产物(RNA分子)进行进一步的修饰和加工的过程。
转录是指在DNA模板上合成RNA分子的过程,而转录后加工则是在RNA分子合成完成后对其进行一系列的修饰和处理。
转录后加工的目的是为了产生成熟的RNA分子,使其能够发挥特定的功能。
在转录后加工过程中,RNA分子经历剪接、修饰和运输等多个步骤,以形成成熟的RNA分子。
剪接是转录后加工中最重要的步骤之一。
在剪接过程中,RNA 分子的内含子(非编码区域)会被剪除,而外显子(编码区域)则会被保留下来。
这样一来,通过剪接,一个基因可以产生多个不同的成熟RNA分子,从而扩大了基因的功能和多样性。
除了剪接,转录后加工还包括其他的修饰过程。
例如,RNA分子可能会经历5'端帽子的添加和3'端的聚腺苷酸尾巴的加入,这些修饰可以保护RNA分子免受降解,并有助于其在细胞内的稳定性和转运过程中的识别。
此外,转录后加工还可以包括RNA编辑、互补RNA合成和核糖体扫描等过程。
RNA编辑是指在转录后,RNA分子中的碱基序列可以发生改变,从而导致RNA分子的信息内容发生变化。
互补RNA合成是指利用RNA分子作为模板合成互补的DNA分子。
核糖体扫描是指RNA分子被核糖体识别并翻译成蛋白质的过程。
总的来说,转录后加工是一系列对转录产物进行修饰和加工的过程,通过这些过程,RNA分子可以获得特定的功能和稳定性,从而发挥其在细胞中的重要作用。
基因的转录、转录后调控

基因的转录、转录后加工及逆转录转录(transcription) 是以DNA单链为模板,NTP为原料,在DNA依赖的RNA 聚合酶催化下合成RNA链的过程。
与DNA勺复制相比,有很多相同或相似之处,亦有其特点,它们之间的异同可简要示于表13-1转录的模板是单链DNA与复制的模板有较多的不同特点,引出了下列相关概念。
转录过程只以基因组DNA中编码RNA(mRNAtRNA rRNA及小RNA 的区段为模板。
把DNA分子中能转录出RNA的区段,称为结构基因(structure gene)。
结构基因的双链中,仅有一股链作为模板转录成RNA称为模板链(template strand),也称作Watson(W链(Watson strand)、负(-)链(minus strand) 或反意义链(antisense strand) 。
与模板链相对应的互补链,其编码区的碱基序列与mRN的密码序列相同(仅T、U互换),称为编码链(coding strand),也称作Crick (0链(Crick strand )、正(+)链(plus strand),或有意义链(sense strand)。
不同基因的模板链与编码链,在DNA分子上并不是固定在某一股链,这种现象称为不对称转录(asymmetric transcription) 。
模板链在相同双链的不同单股时,由于转录方向都从5'f 3',表观上转录方向相反,如图13-1 o与DNA复制类似,转录过程在原核生物和真核生物中所需的酶和相关因子有所不同,转录过程及转录后的加工修饰亦有差异。
下面的讨论中将分别叙述。
? 参与转录的酶转录酶(transcriptase )是依赖DNA的RNA聚合酶(DNA dependent RNA polymerase,DDRP,亦称为DNA指导的RNA聚合酶(DNA directed RNA polymerase ),简称为RNA聚合酶(RNA pol)。
基因的转录、转录后调控

基因的转录、转录后调控基因是遗传信息的基本单位,而基因的转录和转录后调控是生命活动中至关重要的过程。
本文将简要介绍基因的转录和转录后调控的基本概念、重要的调控元件和机制。
基因的转录基因的转录是指DNA到RNA的过程,通过这个过程,基因的遗传信息将被转录为RNA。
在转录的过程中,RNA聚合酶与DNA的双螺旋结构结合,将DNA的碱基序列转化为RNA。
RNA按照DNA的序列从5’端向3’端合成,并且是单链结构。
这个过程在细胞质中进行,并且是一个复杂而精准的过程。
需要注意的是,基因的转录并非所有DNA都能被转录为RNA。
只有具有适当的启动子和主启动子的DNA序列才能在某些细胞类型中进行转录。
有时候还需要一些转录因子才能使启动子更加容易激活转录。
同时,基因的表达也是受到其他生理和环境因素的影响的。
基因的转录后调控转录后调控指的是对基因转录产物的调控,包括RNA的加工、修饰、稳定性及运输等过程。
转录后调控可以通过RNA的可变剪接、RNA的修饰、RNA干涉、RNA稳定性和RNA翻译等方式实现基因表达调控。
RNA的可变剪接RNA的可变剪接是指同一个基因的RNA前体分子(即前mRNA或者pre-mRNA)在不同的生理和生化状态下,会被不同的剪接因子剪切成不同的剪接变体。
这样,通过可变剪接就可以使具有同一基因信息的RNA表现出不同的性质。
例如,神经元特异性剪接因子的存在可以自然选择地使某些mRNA剪接成更具有神经元特异性的形式。
这样可变剪接不仅增加了RNA的多样性,而且还可以通过不同的剪接变体来实现基因的更加复杂的表达调控。
RNA序列的修饰RNA序列的修饰是指RNA分子中某些核苷酸上的化学修饰。
这些化学修饰可能影响RNA的稳定性、局部和全局的折叠以及RNA和其他分子之间的相互作用。
RNA序列修饰对生命活动的影响是多重的,它们可以通过影响转录、翻译和RNA间作用等多个层面来实现基因表达调控的效果。
RNA干涉RNA干涉是一种可以对RNA的表达和功能进行调控的机制。
RNA转录和加工

套索结构的发现使人们认识到, 套索结构的发现使人们认识到,内含子的剪接是通过 两次转酯反应完成的。在第一次转酯反应中, 两次转酯反应完成的。在第一次转酯反应中,分支位 进攻5 剪接位点, 点A的2’-OH进攻5’剪接位点,使其断裂,同时这个A -OH进攻 剪接位点 使其断裂,同时这个A 与内含子的第一个核苷酸( 形成2 与内含子的第一个核苷酸(G)形成2’ , 5’ -磷酸 二酯键,内含子自身成环,形成套索结构。 剪接位 二酯键,内含子自身成环,形成套索结构。3’剪接位 点的断裂依赖于第二次转酯反应。上游外显子的3 - 点的断裂依赖于第二次转酯反应。上游外显子的3’- OH末端攻击3 剪接位点的磷酸二酯键 促使其断裂, OH末端攻击3’剪接位点的磷酸二酯键,促使其断裂, 末端攻击 剪接位点的磷酸二酯键, 使上游外显子的5 -0H和下游外显子的 - 和下游外显子的5 使上游外显子的5’-0H和下游外显子的5’-磷酸基团 连接,并释放出内含子,完成剪接过程。 连接,并释放出内含子,完成剪接过程。被切除的内 含子随后变成线性DNA 随即被降解。 DNA, 含子随后变成线性DNA,随即被降解。
通过分析体外剪接反应中形成的中间体, 通过分析体外剪接反应中形成的中间体,发现内含子 是以一种套索结构( 是以一种套索结构(lariat structure )的形式被切除 即内含子5 端的鸟苷酸依靠 , - 端的鸟苷酸依靠2 的,即内含子5’端的鸟苷酸依靠2’,5’-磷酸二酯键与 靠近内含子3 末端的一个腺苷酸连接在一起 末端的一个腺苷酸连接在一起。 靠近内含子3’末端的一个腺苷酸连接在一起。该腺苷 酸被称作分支位点 分支位点, 酸被称作分支位点,因为在套索结构中它形成了一个 RNA分支 分支。 RNA分支。
在内含子的剪接过程中, 在内含子的剪接过程中,剪接装置必须识别正确的 剪接位点,以保证外显子在剪接的过程中不被丢失, 剪接位点,以保证外显子在剪接的过程中不被丢失, 同时荫蔽的剪接位点要被忽略。 同时荫蔽的剪接位点要被忽略。所谓隐蔽剪接位点 (cryptic splice site )是指与真正的剪接位点 相似的序列。已经知道一类被称为SR蛋白( 相似的序列。已经知道一类被称为SR蛋白(SR SR蛋白 protein)的剪接因子在剪接位点的选择中发挥重要 protein) 作用。 作用。
第五讲--RNA的转录与转录后加工(一)讲课教案

成环假说 扭曲假说 滑动假说 渗流假说
RNA转录的抑制作用
RNA转录的抑制剂
某些核酸代谢的拮抗物和抗生素可抑制核苷酸或 核酸的合成,因而可以用于抗病毒或抗肿瘤药物, 也可以用于核酸的研究。
嘌呤和嘧啶类似物 DNA模板功能的抑制剂 RNA聚合酶的抑制物
真核生物RNA转录的抑制因子
核小体在转录中的抑制作用
操纵子是原核生物转录调控的主要形式,相关的 基因排列成簇,由一个调节蛋白所控制,一开俱开, 一闭俱闭,从而对环境条件的改变作出相应的反应。
环腺苷酸(cAMP)在原核生物的基因表达调控 过程中有重要作用。
噬菌体的时序调控
有关噬菌体的时序调控一般都是通过转录水平来 控制的。不同的噬菌体采的策略不同,常见的有三 类:
由组蛋白封闭有关的DNA序列; 多个调控因子同时与邻近的特异DNA部位结合
转录的调节控制
顺式作用元件与反式作用因子
基因的转录特别是转录起始作用取决于基因组中 顺式调控元件与反式作用因子的相互作用。
顺式作用元件是反式作用因子的结合位点,其调 控基因转录的作用正是通过反式作用的作用来实现 的。
反式作用因子
真核生物启动子
真核生物的三种RNA聚合酶有三类转录起始 所必需的启动子。它们均由转录因子而不是 RNA聚合酶所识别。
➢ Ⅰ型启动子 ➢ Ⅱ型启动子 ➢ Ⅲ型启动子
真核生物启动子
Ⅰ型启动子
Ⅰ型启动子是RNA聚合酶Ⅰ的启动子,它控制 rRNA前体基因转录,其产物经剪接加工后生成各 种成熟rRNA。
Ⅰ型启动子可分核心启动子和上游控制元件 (UCE) 。
转录终止与终止因子
终止子与终止因子 RNA合成的终止发生在转录DNA特殊
的碱基顺序中,能提供转录终止信号的 DNA序列称为终止子,协助RNA聚合酶 识别终止信号的蛋白因子则称为终止因子。
真核生物的转录和后加工

– 隔断基因的线性表达而在剪接过程中被除去的 核酸序列。
鸡
卵
鸡卵清蛋
清
白基因
蛋
白
基
hnRNA
因
及
首、尾修饰
其 转
录
、
hnRNA剪接
转
录
后
成熟的mRNA
修
饰
3. 内含子的分类
I:主要存在于线粒体、叶绿体及某些低等真核生物 的 rRNA基因; II:也发现于线粒体、叶绿体,转录产物是mRNA; III:是常见的形成套索结构后剪接,大多数mRNA基
ppi
mRNA鸟苷酰转移酶 5` GpppN
pppG pi
mRNA
甲基化酶
(S-腺苷甲硫氨酸)CH3
5` m7GpppN
mRNA
注:帽子结构中G未甲基化,翻译效果差,但稳定性不变
帽子结构
3`-末端多聚腺苷酸的合成
• 先于剪接加工 • poly A polymerase 催化,转录后修饰
点序列(AAUAAA)提供信号 • 一般长度为100~200个腺苷酸
1. 转录起始前的上游区段
顺式作用元件(cis-acting element)
• 顺式作用元件是指与结构基因串联的特定DNA序列,是转录因子的结合位点,它们通 过与转录因子结合而调控基因转录的精确起始和转录效率。
AATAAA
OCT-1
翻译起始点
外显子
转录起始点
内
含
TATA盒
子
转录终止点
CAAT盒
GC盒
解聚现象。
•
核小体
转
录
延
RNA-Pol
长 转录方向
中
5第六章转录、转录后加工及逆转录

•
不同的σ因子识别不同的启动子 E.coli 中有五种σ因子(σ70、σ32、σ54、σ28 、 σ24 ) 枯草杆菌中有11种σ因子 (σ因子的更替对转录起始的调控)
(2)α因子 核心酶的组建因子 α+α • • 2α+β α2β+β’
☻ 以上三个保守序列在绝大多数启动子中都存在
(4)
增强子(enhancer):
研究SV40病毒时发现,启动子上游的某些序列若发生变化,则大大 降低转录活性,这些序列对转录起增强作用,故称增强子。 一段能够加速基因转录的调节性序列,通过改变DNA模板的螺旋结 构和顺势调控RNA聚合酶及特异性蛋白。 效率高:是转录频率增加10-200倍。 特点:1.位置不定(5‘端上游,3端下游,甚至于内含子中) 2.序列长,有芯(TGGA/TA/TA/T)
• CTD参与转录 → ⅡB → ⅡA → 使 RNApol易于离开
启动子进入延伸过程(10倍)
二、 真核生物的启动子 三种 RNApol 识别三种启动子 三种聚合酶需要不同的转录因子-TF Ⅰ、 TF Ⅱ、TF Ⅲ等 注:每种转录因子根据发现的先后再分为A\B\C (TF Ⅲ A\ TF Ⅲ B) 三种转录方式 三种产物: RNA聚合酶Ⅱ——mRNA前体; RNA聚合酶Ⅰ——rRNA; RNA聚合酶Ⅲ——tRNA和 5S RNA
记为正值
-10 upstream +1 start point +10 downstream
一、原核生物启动子和终止子 启动子(promoter):RNA聚合酶的结合区域。 启动子的特点: (1)在转录起始点的5’端 (2)TTGACA:Sextama框,RNA聚合的识别部位(酶 靠σ亚基与之结合),在-35区。 (3)TATAAT: Pribnow 框,RNA聚合酶的结合区,在10区。
RNA的转录与转录后加工

RNA的转录与转录后加工一、名词解释1、基因诊断2、RFLP3、启动子 4. 信号肽 5. 核受体 6.hnRNA7、基因治疗8、反义RNA9、核酶10、三链DNA11、SSCP12、管家基因13. 增强子14. 基础转录装置18. 重叠基因19.假基因20.RNA干扰21.酵母双杂交22.转录因子23.转录因子的结构24.衰减子25.内含子27.弱化子28.魔斑29.上游启动子元件30.DNA探针31.SD sequence 32.Ribozyme 33.Terminator二、填空题1、转录是以DNA一条链为模板的RNA的酶促合成。
我们把模板链称为-- --------。
2、数个生化反应可由----- -----------催化,这种具有催化功能的RNA可以剪切自身或其它的RNA分子,或者完成连接或自身剪接反应。
3.RNA酶的剪切分为()、()两种类型。
4.原核生物中有三种起始因子分别是()、()和()。
5.hnRNA与mRNA之间的差别主要有两点:(),()。
6.mRNA在转录开始后不久就与结合,形成颗粒,这种颗粒排列于mRNA 分子上,呈串珠状,就像核小体一样。
7、原始转录物的一些序列被_____________,叫做RNA编辑。
8. 真核生物mRNA的5'-帽子结构是_______,其3'末端有________结构。
9. 原核生物DNA指导的RNA聚合酶的核心酶的组成是___________.10. 真核生物RNA聚合酶III负责转录_________.11. 在转录过程中RNA聚合酶全酶的σ因子负责__________,核心酶负责________.三、选择题1、RNA合成的底物是------ ---------。
A dA TP, dTTP , dGTP , d CTPB A TP, TTP , GTP , CTPC A TP ,GTP, CTP,UTPD GTP, CTP,UTP,TTP2.模板DNA的碱基序列是3′—TGCAGT—5′,其转录出RNA碱基序列是:A.5′—AGGUCA—3′B.5′—ACGUCA—3′C.5′—UCGUCU—3′D.5′—ACGTCA—3′E.5′—ACGUGT—3′3、转录终止必需。