转录与后加工

合集下载

RNA转录与转录后加工

RNA转录与转录后加工
详细描述
在大多数真核生物中,RNA聚合酶在转录终止后,会在3’端加上一段多聚腺苷酸尾巴。这个过程称为加尾。加 尾的主要作用是促进RNA从核内向细胞质转运,并保护RNA免受3’核酸外切酶的降解。此外,多聚腺苷酸尾巴 也是一些RNA结合蛋白的识别位点,参与mRNA的稳定性、定位和翻译调控。
剪接
总结词
剪接是指将转录的RNA中的内含子序列 去除,并将外显子序列连接起来的加工 过程。
详细描述
C-to-U编辑由胞嘧啶脱氨酶催化,将RNA 中的胞嘧啶转变为尿嘧啶,导致RNA序列 发生变化。这种编辑可以影响RNA的翻译 和功能。
其他编辑类型
总结词
除了A-to-I和C-to-U编辑外,还存在其他类型的RNA编辑,如C-to-A编辑、C-to-G编 辑等。
详细描述
这些编辑类型在特定的生物或组织中发生,由不同的酶催化,导致RNA序列发生不同 的变化。这些编辑可以影响RNA的稳定性、翻译和功能。
肽链终止
终止密码子出现时,核糖体 释放合成的多肽链,并回收 mRNA。
蛋白质合成的起始
起始氨基酸的识别
起始密码子(AUG)被识别并结合甲酰蛋氨酸,形成甲酰蛋氨酸-tRNA。
甲酰蛋氨酸-tRNA在核糖体上的定位
甲酰蛋氨酸-tRNA与起始因子结合,定位到核糖体的P位点。
起始复合物的形成
甲酰蛋氨酸-tRNA与mRNA结合,形成起始复合物。
02
翻译水平调控
03
细胞内环境调控
翻译过程中蛋白质的表达水平可 以影响RNA的稳定性。
细胞内的pH值、离子浓度等环境 因素也可以影响RNA的稳定性。
05
RNA的翻译和蛋白质合成
mRNA的翻译
翻译起始
mRNA在核糖体上定位并结 合翻译起始因子,形成起始 复合物。

转录后加工名词解释

转录后加工名词解释

转录后加工名词解释
转录后加工是指在基因组中进行转录的过程后,对转录产物(RNA分子)进行进一步的修饰和加工的过程。

转录是指在DNA模板上合成RNA分子的过程,而转录后加工则是在RNA分子合成完成后对其进行一系列的修饰和处理。

转录后加工的目的是为了产生成熟的RNA分子,使其能够发挥特定的功能。

在转录后加工过程中,RNA分子经历剪接、修饰和运输等多个步骤,以形成成熟的RNA分子。

剪接是转录后加工中最重要的步骤之一。

在剪接过程中,RNA 分子的内含子(非编码区域)会被剪除,而外显子(编码区域)则会被保留下来。

这样一来,通过剪接,一个基因可以产生多个不同的成熟RNA分子,从而扩大了基因的功能和多样性。

除了剪接,转录后加工还包括其他的修饰过程。

例如,RNA分子可能会经历5'端帽子的添加和3'端的聚腺苷酸尾巴的加入,这些修饰可以保护RNA分子免受降解,并有助于其在细胞内的稳定性和转运过程中的识别。

此外,转录后加工还可以包括RNA编辑、互补RNA合成和核糖体扫描等过程。

RNA编辑是指在转录后,RNA分子中的碱基序列可以发生改变,从而导致RNA分子的信息内容发生变化。

互补RNA合成是指利用RNA分子作为模板合成互补的DNA分子。

核糖体扫描是指RNA分子被核糖体识别并翻译成蛋白质的过程。

总的来说,转录后加工是一系列对转录产物进行修饰和加工的过程,通过这些过程,RNA分子可以获得特定的功能和稳定性,从而发挥其在细胞中的重要作用。

RNA转录和加工

RNA转录和加工

套索结构的发现使人们认识到, 套索结构的发现使人们认识到,内含子的剪接是通过 两次转酯反应完成的。在第一次转酯反应中, 两次转酯反应完成的。在第一次转酯反应中,分支位 进攻5 剪接位点, 点A的2’-OH进攻5’剪接位点,使其断裂,同时这个A -OH进攻 剪接位点 使其断裂,同时这个A 与内含子的第一个核苷酸( 形成2 与内含子的第一个核苷酸(G)形成2’ , 5’ -磷酸 二酯键,内含子自身成环,形成套索结构。 剪接位 二酯键,内含子自身成环,形成套索结构。3’剪接位 点的断裂依赖于第二次转酯反应。上游外显子的3 - 点的断裂依赖于第二次转酯反应。上游外显子的3’- OH末端攻击3 剪接位点的磷酸二酯键 促使其断裂, OH末端攻击3’剪接位点的磷酸二酯键,促使其断裂, 末端攻击 剪接位点的磷酸二酯键, 使上游外显子的5 -0H和下游外显子的 - 和下游外显子的5 使上游外显子的5’-0H和下游外显子的5’-磷酸基团 连接,并释放出内含子,完成剪接过程。 连接,并释放出内含子,完成剪接过程。被切除的内 含子随后变成线性DNA 随即被降解。 DNA, 含子随后变成线性DNA,随即被降解。
通过分析体外剪接反应中形成的中间体, 通过分析体外剪接反应中形成的中间体,发现内含子 是以一种套索结构( 是以一种套索结构(lariat structure )的形式被切除 即内含子5 端的鸟苷酸依靠 , - 端的鸟苷酸依靠2 的,即内含子5’端的鸟苷酸依靠2’,5’-磷酸二酯键与 靠近内含子3 末端的一个腺苷酸连接在一起 末端的一个腺苷酸连接在一起。 靠近内含子3’末端的一个腺苷酸连接在一起。该腺苷 酸被称作分支位点 分支位点, 酸被称作分支位点,因为在套索结构中它形成了一个 RNA分支 分支。 RNA分支。
在内含子的剪接过程中, 在内含子的剪接过程中,剪接装置必须识别正确的 剪接位点,以保证外显子在剪接的过程中不被丢失, 剪接位点,以保证外显子在剪接的过程中不被丢失, 同时荫蔽的剪接位点要被忽略。 同时荫蔽的剪接位点要被忽略。所谓隐蔽剪接位点 (cryptic splice site )是指与真正的剪接位点 相似的序列。已经知道一类被称为SR蛋白( 相似的序列。已经知道一类被称为SR蛋白(SR SR蛋白 protein)的剪接因子在剪接位点的选择中发挥重要 protein) 作用。 作用。

第6章 RNA剪切加工

第6章    RNA剪切加工
大多数snRNA转录后在细胞核中接收5’端单甲基m7G加帽,然后 转移到细胞质与snRNP蛋白结合。
在细胞质中snRNA 5‘帽需再修饰成为三甲基带帽结构m2,2,7G, 随后重新返回细胞核参与mRNA的剪接加工。
U6 snRNA由PolIII转录,在其5’端保留的三磷酸基团无帽子结构, 因而不能输出细胞核。某些突变型中被输送到细胞质中的snRNA由于 不能合成三甲基带帽结构,不能返回细胞核。
过甲基化酶,硫醇酶,假尿嘧啶核苷化酶等的作 用进行修饰成为特殊的碱基。
2. rRNA的加工
在E.coli中rRNA有7个转录单位,每个转录单位含
有16S、23S、5S rRNA 及一个或几个tRNA。 rRNA前体的加工由RNase Ⅲ负责。
真核生物 tRNA 和 rRNA的加工
1. tRNA的加工
加尾信号
• 新合成的mRNA的3‘-端含两个明显的加尾信号。
第一个加尾信号位于poly (A)上游约1020个核苷酸处。 其一致顺序为5‘AAUAAA3’。该加尾信号中最多的变异发 生在第二个碱基,其它位置的碱基代换将使Poly (A)加尾效 率急剧下降。
第二个加尾信号位于5'AAUAAA3'顺序下游约15-24 bp位置处,有一段富GU序列,紧随其后通常有一串富T的顺 序:
poly(A)的功能
• 增加mRNA的稳定性
将携带或缺少poly(A)的球蛋白mRNA注入到蛙卵中,结果发现,在6小 时后缺少poly(A)的球蛋白mRNA不再进行翻译,而携带poly(A)的处 理仍然正常合成球蛋白。最简单的解释是,poly(A)有助于增加mRNA的 稳定性
• 提高mRNA翻译效率
1)真核rRNA基因中没有内含子。

rna转录后加工名词解释

rna转录后加工名词解释

rna转录后加工名词解释
RNA转录后加工是指对在转录过程新合成的RNA的前体分子,进行进一步的加工修饰,从而使其成为具有生物学活性的、成熟的RNA 分子的过程,主要包括剪接、化学修饰等方式。

1.可变剪切:通过不同的剪切方式使得同一个基因可以产生多个不同的成熟mRNA,最终产生不同的蛋白质,从而使转录本和蛋白质结构与功能具有多样性。

2.RNA编辑:属于修饰的一种,是指转录后的RNA在编码区发生碱基的加入、丢失或转换等现象,可以在RNA水平上增加一些原来DNA模板上没有编码的碱基,从而扩充遗传信息。

因此,经过剪切或者修饰等加工,遗传信息的含量以及多样性大大增加。

5-转录、转录后加工

5-转录、转录后加工

b’ b
a w eukaryotic
RPB3
The same color indicate the homologous of the two enzymes
RPB2
RPB11
RPB6
RPB1
第三节 启动子和终止子
一、原核生物的启动子和终止子 (一)启动子 promoter
RNA聚合酶识别、结合和开始转录的一段DNA序 列,位于转录起始位点以上,长度20bp-200bp不 等。 启动子的结构影响了它与RNA聚合酶的结合强弱, 进而影响了该启动子所在的转录单位中包含的基 因的表达水平。 启动子(即RNA聚合酶在DNA上的结合位点)可 以用足迹法和硫酸二甲酯法等测得。
位置
核仁
5.8S rRNA, 18S rRNA, 28S rRNA 50%-70%
核质
mRNA, microRNA 20%-40%
核质
tRNA, 5S rRNA 小RNA 10%
转录产物
活性
Eukaryotic RNA polymerase II has >10 subunits.
prokaryotic a
大肠杆菌乳糖启动子的CAP位点:
位点I:-70到-50,强结合位点,含有一个反向 重复序列 位点II:-50到-40,弱结合位点,但复合物结合 于位点I 后,位点II与复合物的结合力显著提高。
乳糖启动子的-10序列为TATGTT,中心的G-C对增加 了双螺旋的稳定性,RNA聚合酶难以使其解链。cAMPCAP复合物与CAP位点的结合,促进了开链式启动子复 合物的形成。
从5’到3’; 3’,5’磷酸二酯键
10-4—10-5 低,中途解离下来的DNA聚 合酶会再次与解离点结合

第三十七章 转录后加工

第三十七章 转录后加工

2. CFI和CFII = “剪切因子”
3. PAP = “poly(A) 聚合酶”
加尾反应由两步组成:
1. 剪切——在3′-UTR一个特定序列上游10-30 核 苷酸序列的位置切开
2. 添加腺苷酸(100-200个)产生多聚A尾巴
加尾信号
真核细胞核mRNA前体的加尾反应
牛的PAP与Mg2+-ATP形成的复合物的三维结构
剪接信号
剪接通过2次转酯反应
在转酯反应中,1个磷酸二酯键被转移到另1个羟基上 没有水解,无能量的损失
参与剪接反应的5种snRNA
snRNA U1 U2 U4
U5 U6
互补性 内含子的5' -端
分支点
U6 snRNA
上游外显子 和下游外显子
U4 (和U2)
功能
识别和结合5'-剪接点
识别和结合分支点。在剪接体组装中,也与 U6 snRNA 配对。
酵母Pre-tRNA的剪接
古菌的转录后加工
古菌的转录后加工在某些方面分别与细菌和真核生物一样,在 某些方面仅类似于细菌或真核生物,还有少数是古菌特有的。
tRNA后加工包括:5′-端和3′-端的剪切和修剪 ;核苷酸的修饰 ; 添加CCA ;含有内含子的还包括剪接,但古菌的tRNA剪接与 真核生物一样,由一系列专门的蛋白质组成的酶按照一定的次 序催化完成的
真核细胞剪接体的装配示意图
次要剪接途径
* GU-AG规则适合绝大多数断裂基因,以此为剪接信号 的剪接途径被称为主要剪接途径。但某些断裂基因的 少数内含子的剪接信号并不遵守GU-AG规则,而是以 AT开头,AC结尾。除此以外,这一类内含子在5'-剪 接点和分支点上具有高度保守的序列,分别是 ATATCCTY和TCCTTRAY。含有与这两段保守序列互 补序列的U11和U12-snRNAs参与AT-AC内含子的剪接, 另外两种snRNAs即U4atac和U6atac分别代替U4和U6 参与这种剪接途径,只有U5被证明同时参与主要剪接 途径和次要剪接途径。

真核生物的转录和后加工

真核生物的转录和后加工
• 内含子
– 隔断基因的线性表达而在剪接过程中被除去的 核酸序列。


鸡卵清蛋

白基因



hnRNA


首、尾修饰
其 转


hnRNA剪接



成熟的mRNA


3. 内含子的分类
I:主要存在于线粒体、叶绿体及某些低等真核生物 的 rRNA基因; II:也发现于线粒体、叶绿体,转录产物是mRNA; III:是常见的形成套索结构后剪接,大多数mRNA基
ppi
mRNA鸟苷酰转移酶 5` GpppN
pppG pi
mRNA
甲基化酶
(S-腺苷甲硫氨酸)CH3
5` m7GpppN
mRNA
注:帽子结构中G未甲基化,翻译效果差,但稳定性不变
帽子结构
3`-末端多聚腺苷酸的合成
• 先于剪接加工 • poly A polymerase 催化,转录后修饰
点序列(AAUAAA)提供信号 • 一般长度为100~200个腺苷酸
1. 转录起始前的上游区段
顺式作用元件(cis-acting element)
• 顺式作用元件是指与结构基因串联的特定DNA序列,是转录因子的结合位点,它们通 过与转录因子结合而调控基因转录的精确起始和转录效率。
AATAAA
OCT-1
翻译起始点
外显子
转录起始点


TATA盒

转录终止点
CAAT盒
GC盒
解聚现象。

核小体



RNA-Pol
长 转录方向
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十四章转录后加工和调节
********真核生物mRNA前体加工
转录起始于第1个外显子(exon)的第一个核苷酸,转录开始不久转录产物的5´端就被加上7-甲基鸟苷酸帽子(Cap)。

转录终止于最后1个外显子3´端下游大约0.5~2.OKb范围内多个可能位点中的1个。

核酸内切酶在polyA位点切除多余序列,并在polyA聚合酶的作用下加上长100~250个A。

接着,通过RNA剪接(splicing)将内含子(intron)切除,并将外显子连接起来。

最后,将成熟的mRNA分子输送到细胞质中。

以上过程称为mRNA前体加工(pre-mRNA processing)。

当RNA聚合酶Ⅱ的转录产物刚合成大约30个核苷酸时,其5´端就加上了1个甲基化鸟苷酸(m7G),甲基供体是S—腺苷蛋氨酸。

mRNA 5´端帽子结构的主要功能有;①在蛋白质合成起始中的重要作用类似于原核生物 mRNA的SD 序列,供核糖体小亚基(40S)识别与结合。

②保护合成中的转录产物免受核酸外切酶的降解。

③在成熟的
mRNA以外,动物所有的mRNA 3´端都有polyA尾。

这些A是初始转录产物经过核酸内切
mRNA的polyA尾上游10—35个核苷酸处都含有序列AAUAAA,在切割位点下游大约50个核苷酸以内还存在第二个加尾信号,其序列特征是富含G/U或U。

PolyA位点切割后,多聚腺苷酸化分为两个阶段进行。

前12个左右的A的多聚腺苷酸化的速度比较慢,而后面则很快,迅速加到200~250个A。

后者需要结合若干含有RNP motif的polyA结合蛋白Ⅱ(PABⅡ)。

------外显子—内含子交界处存在短共有序列 ,其中,出现机率为100%的只有pre-mRNA内含子5´端的GU和3´端的AG,这就是所谓剪接的GU—AG规则。

------ 六种富含U的snRNA大量存在于哺乳动物细胞核中,命名为U1~U6,它们参与RNA剪接。

这些snRNA和6~10种蛋白因子相结合,形成核内RNP小颗粒 (snRNP)。

--------反式剪接(trans—splicing)
产生于两个不同的RNA分子之间发生的剪接作用,这个过程叫作反式剪接。

高等真核生物的转录单位分为简单和复合两种类型。

简单转录单位只有1个polyA位点,其RNA剪
接方式也只有1种,只能产生mRNA 分子,这意味着1
复合转录单位的转录后加工,是高等真核生物基因转录后调节的1种重要途径。

(二)选择性剪接
高等真核生物复合转录单位的。

剪接过程中发生了外显子跳跃(exon skip),使得某些外显子在成熟的mRNA分子中不复存在, 除了外显子跳跃以外,有的选择性剪接通过包含或排除终止密码子来控制功能蛋白的表达。

---------有的复合转录单位含有多个polyA位点,通过选择性调节初始转录产物3´端的切割位点,以改变表达产物C端的氨基酸顺序,产生长短不同的多肽链,这一过程叫作polyA位点选择(polyAsitechoice),或选择性多聚腺苷酸化(alternative polyadenylation)。

,核仁小RNA(snoRNA,即small nucleolar RNA)可能催化pre—rRNA的切割加工,snoRNA和蛋白因子结合形成snoRNP,再与pre—rRNA结合。

snoRNA的还可能在线粒体DNA复制时参与合成RNA引物,它的功能有助于协调细胞生长(或分裂)与线粒体复制的关系。

真核基因内含子主要分为四种类型:①核内含子②I类内含子(Group I)。

⑧Ⅱ类内含子(Group Ⅱ)。

④tRNA基因内含子。

I类内含子具有两个共同特点;①自我剪接能力(self-splicing)。

②特殊的二级结构,包括9个茎环。

rRNA前体分子中,但这种内含子不如I类内含子普遍。

------核酶(ribozyme)泛指具有催化功能的各种RNA分子。

Rnase P,它在tRNA前体加工中起重要作用。

像核酸内切酶一样。

拟病毒(virusoid)和类病毒(viroid)的RNA分子在局部形成特殊的锤头结构(hammer head),具有自我切割能力(autocleavage)。

核糖体大亚基的rRNA具有肽酰转移酶的活性。

指导RNA(gRNA)在RNA编辑中也具有催化活性,并提供插入的核苷酸单位U。

--------- 所谓RNA编辑(editing),是在RNA水平上改变遗传信息的加工过程,导致成熟的RNA (主要是mRNA)编码序列和它的转录模板DNA序列之间不相匹配。

RNA编辑加工的方式有碱基插入、缺失和取代等。

内含子序列参与哺乳动物RNA编辑过程,RNA编辑加工过程可能出现于RNA剪接加工之前。

锥虫线粒体的RNA编辑其主要形式是插入或缺失U,在锥虫线粒体基因组中散布着一些独立的转录单位,它们编码1种小分子指导RNA(guide RNA,即gRNA)。

----- gRNA的5´端和未经编辑的mRNA的一小段锚定序列(anchor)互补, gRNA的3´端则作为编辑加工的模板,决定插入或去除U的部位和数目。

gRNA序列和经过编辑的 RNA正好互补,
polyA尾的主要功能:①是成熟的mRNA的标志之一。

只有成熟的mRNA才能从核内输送到胞质。

②影响mRNA在核内及胞质中的稳定性。

③在消耗能量和前体进行翻译之前,polyA尾和5´端帽子结构是核糖体判断mRNA是否完整的识别信号。

某些mRNA(如逆转录病毒基因组)的特征性分子结构可能形成再编码信号(recoding signal),使正常的翻译过程中止,并发生翻译移码(translationalframeshift),导致1个mRNA分子合成一种以上的蛋白。

此外,终止密码子周围特异的核苷酸序列还可能造成终止密码子渗漏 (1eaky),以至在多肽链末端插入若干额外的氨基酸。

再编码是转录后基因表达调控的一种方式。

除了翻译移码和天然校正(利用校正tRNA)以外,蛋白质合成支路也是再编码途径之一。

--------核糖体能够跳过一个终止密码子继续合成。

在多肽链合成过程中核糖体可以通过支路(非正常途径)移位,故称之为蛋白质合成支路或核糖体跳跃(ribosome jumping)或tRNA跳跃(hopping)。

相关文档
最新文档