转录后加工详解

合集下载

第十三章基因的转录、转录后加工及逆转录ppt课件

第十三章基因的转录、转录后加工及逆转录ppt课件

◆真核生物启动子 (1)DNA序列在转录起始点的5’端区(上游 区)(2)-25bp :TATA盒(Hogness box) (3)-90bp :GC盒 (4)-70bp :CAAT盒
-90
-70
GC
CAAT
RNA聚合酶Ⅱ催化的转录起始
RNA聚合酶Ⅱ催化各种前体mRNA的合 成
需要多种TF参与:TFⅡA-J
第一节 参与转录的酶
RNA聚合酶——依赖DNA的RNA聚合酶 (DNA-dependent RNA polymerase,DDRP)
以DNA为模板,催化2个游离的NTP 形成3’,5’-磷酸二酯键
一、原核生物RNA聚合酶
1、大肠埃希菌RNA聚合酶的组成 (1)全酶(holoenzyme)
由4种(5个)亚基α2ββ’σ组成 (2)核心酶(core enzyme)
作用位置
步骤1 步骤2
200~250
(3)真核生物mRNA转录后加工—剪接
内含子
外显子
DNA
hnRNA
●剪接所需条件
snRNA (U1-U6) + 蛋白质 (核内小分子核酸)
多种snRNP (核内小核蛋白颗粒)
多种snRNPs装配成
剪接体 (参与剪接过程)
4、RNA编辑(RNA editing)
二.真核生物RNA转录后的加工 1、rRNA转录后的加工
真核生物rRNA 的基因
(rDNA)
转录产物
成簇纵列串联排列
高度重复序列DNA
核质:(Ⅲ)--不需加 工
5s rRNA
核仁:(Ⅰ)--加工
5.8s rRNA 28s rRNA 18s rRNA
rDNA 内含子
基因间隔

简述rna转录后加工过程

简述rna转录后加工过程

简述rna转录后加工过程摘要:1.RNA转录后加工过程的概述2.RNA转录后加工的主要步骤a.剪接b.剪切c.RNA编辑d.RNA降解3.各步骤的功能和意义4.实例分析5.RNA转录后加工在生物体中的作用6.研究RNA转录后加工的意义和前景正文:在我们生物体内,基因通过转录过程将DNA信息转化为RNA,但这只是RNA生命历程中的第一步。

接下来,RNA要经历一系列复杂的加工过程,才能最终发挥其生物学功能。

这个过程被称为RNA转录后加工。

RNA转录后加工的主要步骤包括剪接、剪切、RNA编辑和RNA降解。

剪接是指将RNA前体分子中的内含子去除,并将外显子连接成成熟的RNA分子。

这一过程通过特定的酶家族,如剪接酶,来实现。

剪切是指在RNA分子的3"端添加poly(A)尾巴,这是几乎所有真核生物RNA的共同特征。

RNA编辑则是指在RNA分子上发生碱基改变,这一过程依赖于特定的编辑酶和相应的底物。

最后,RNA降解是指RNA分子在细胞内的分解过程,这对于调控RNA水平和维持细胞内稳态至关重要。

这些加工过程对于RNA最终的生物学功能具有重要意义。

以剪接为例,它能消除RNA前体中无功能的RNA片段,使成熟的RNA更具特异性和高效性。

同时,RNA编辑能够改变RNA的序列,从而影响其翻译效率和稳定性。

在生物体中,RNA转录后加工涉及多种生物过程,如基因表达调控、病毒复制和免疫反应等。

对RNA转录后加工的研究,有助于我们深入了解生命过程中的基因表达调控机制,为治疗疾病和开发新型药物提供理论依据。

随着生物科学技术的不断发展,对RNA转录后加工的研究将越来越深入。

转录后加工名词解释

转录后加工名词解释

转录后加工名词解释
转录后加工是指在基因组中进行转录的过程后,对转录产物(RNA分子)进行进一步的修饰和加工的过程。

转录是指在DNA模板上合成RNA分子的过程,而转录后加工则是在RNA分子合成完成后对其进行一系列的修饰和处理。

转录后加工的目的是为了产生成熟的RNA分子,使其能够发挥特定的功能。

在转录后加工过程中,RNA分子经历剪接、修饰和运输等多个步骤,以形成成熟的RNA分子。

剪接是转录后加工中最重要的步骤之一。

在剪接过程中,RNA 分子的内含子(非编码区域)会被剪除,而外显子(编码区域)则会被保留下来。

这样一来,通过剪接,一个基因可以产生多个不同的成熟RNA分子,从而扩大了基因的功能和多样性。

除了剪接,转录后加工还包括其他的修饰过程。

例如,RNA分子可能会经历5'端帽子的添加和3'端的聚腺苷酸尾巴的加入,这些修饰可以保护RNA分子免受降解,并有助于其在细胞内的稳定性和转运过程中的识别。

此外,转录后加工还可以包括RNA编辑、互补RNA合成和核糖体扫描等过程。

RNA编辑是指在转录后,RNA分子中的碱基序列可以发生改变,从而导致RNA分子的信息内容发生变化。

互补RNA合成是指利用RNA分子作为模板合成互补的DNA分子。

核糖体扫描是指RNA分子被核糖体识别并翻译成蛋白质的过程。

总的来说,转录后加工是一系列对转录产物进行修饰和加工的过程,通过这些过程,RNA分子可以获得特定的功能和稳定性,从而发挥其在细胞中的重要作用。

第六讲:转录后的加工

第六讲:转录后的加工

进行多次RNA-RNA重组,U4/U6发生拆 分,U6取代U1结合在5’端剪接位点并形成 活性位点并进行第二次转酯反应.
去除内含子完成剪接,snRNP被重复利用。
I 型内含子的自我剪接
I 型内含子的自我剪接主要是转酯反 应,即两次磷酸二酯键的转移。
第一次转酯反应是由内含子中鸟苷酸上
的3’-OH作为亲核基团攻击内含子5’端的
较典型的是锥虫表面糖蛋白基因VSG(variable surface glycoprotein),线虫的肌动蛋白基因(actin genes)。
锥虫表面糖蛋白mRNA的反式剪接
SV4基因初级转录产物通过选择性剪接,产 生两种不同的mRNA,一种编码 t 抗原,一种编码 T 抗原。
mRNA的反式剪接(Trans splicing)
顺式剪接(cis-splicing):同一RNA分子的内含子被除 去,外显子连接在一起的剪接方式。 反式剪接(trans-splicing):不同RNA分子上的两个外显 子剪接在一起的剪接方式。
GU-AG内含子的剪接
比较cDNA和基因组DNA序列,在前体mRNA内含 子的边界存在一些保守的序列,它们因此可以用于确定 前体mRNA分子中外显子和内含子的边界以及进行剪 接的信号。 在比较大量的真核生物的内含子序列后,发现大多 数内含子的5’端的两个核苷酸是GU,3’端的两个核苷 酸为AG,这类内含子也被称为“GU-AG”内含子,它们 都以相同的机制进行剪接。
mRNA的5’端“帽子”的类型
2型帽子:当第一个核苷酸是腺嘌呤核苷酸时,在1型帽子的基础上,
在腺嘌呤核苷酸的N6位上发生甲基化。在有些真核生物中,在第二个 核苷酸的2’-OH位上还可以再进行甲基化,其符号为m7GpppXmpYm。 2型帽子一般只占有帽mRNA总量的10%~15%。

真核mrna转录后加工的主要内容

真核mrna转录后加工的主要内容

真核mrna转录后加工的主要内容正文真核mrna转录后加工是真核基因表达中重要的一步,它决定了细胞活性和特性的复杂性。

最近,随着互联网等领域不断发展,对真核mrna转录后加工的研究也有了更深入的认识。

简言之,真核mrna转录后加工涉及一系列复杂的信号传导途径,从mrna翻译前处理,到mRNA翻译后修饰,再到mRNA特异性稳定性等。

据观察,它主要包括六个过程:加诊断分子、合成多肽链、催化翻译、质粒复制、密码子变换以及微核糖体处理等。

首先,加诊断分子,是在mrna翻译前处理的,它将一个或多个小分子吸附在mrna分子上,形成新的结构,如sno酶、cap酶等,来完成翻译活动的结构修饰。

其次,合成多肽链,就是以ribosomal rna为骨干合成新的肽链,以辅助mrna翻译,它能把酶和遗传信息连接起来,同时还能对mrna及翻译中间体进行结构表征,进而影响翻译活性。

再次,催化翻译,指的是发挥调控蛋白作用的翻译系统,它可以加速á-不义核苷的结合,其作用是通过修饰ribosomal rna来提高翻译的效率,减少mrna的能量开销。

此外,质粒复制也是很重要的,它可以对mrna的表达和翻译进行调控,同时又可以影响mrna的稳定性。

另外,密码子变换指的是核苷酸序列发生变异,使其适应不同的环境条件和其他一些外界因素。

最后,微核糖体处理,是指特异性翻译反应过程中微核糖体(ribonucleoprotein)的处理,它包括一系列步骤,如分级、修饰等,可以把翻译产物(蛋白质)和信使分子(mrna)联系起来。

总之,真核mrna转录后加工包含丰富的调控机制,起重要作用,在细胞表达过程中影响最终的细胞活性和特性,而随着互联网的发展,一系列研究也使其进一步提升,研究人员也有了更深入的认识。

rna转录后加工方式

rna转录后加工方式

rna转录后加工方式
RNA转录后加工(RNA post-transcriptional processing)是指在RNA分子合成之后,在细胞中对其进行修饰和修剪的过程。

这些加工方式可以使原始RNA分子成熟,并使其具有功能性。

以下是几种常见的RNA转录后加工方式:
剪接(Splicing):在真核生物中,基因的转录产物(前体mRNA)经过剪接过程,去除其中的内含子(intron),保留外显子(exon),从而形成成熟的mRNA分子。

剪接是通过剪接体(spliceosome)来完成的,其中包括snRNPs等辅助因子。

5'端修饰:RNA的5'端通常经过加上7-甲基鸟苷(7-methylguanosine)和三磷酸核苷酸链(PPP 链)的修饰,形成5'甲基鸟苷帽(5' cap)。

这个帽子在RNA稳定性、转运和翻译起重要作用。

3'端修饰:RNA的3'端通常经过加上聚腺苷酸(polyadenylation)的修饰。

这个poly(A)尾巴有助于RNA的稳定性、转运和翻译,并参与转录终止的过程。

RNA编辑:在一些生物体中,RNA的序列可以通过RNA编辑(RNA editing)进行改变。

这种编辑通常涉及碱基的替换、插入或删除,从而改变RNA的编码能力和功能。

RNA修饰:RNA分子可能会经历各种修饰,如甲基化、脱氨基、糖基化等。

这些修饰可以增强RNA的稳定性、调节翻译和识别,以及影响RNA的功能。

RNA转录后加工是一个复杂而精确的过程,它可以使原始的转录产物转化为功能性的RNA 分子。

这些加工方式对于基因表达调控和细胞功能起着重要的作用。

真核生物转录后的加工

真核生物转录后的加工

1、核mRNA内含子剪接位点特征
内含子总是由GU开始,以AG结束,其规律称为GU-AG法则 (GU-AG rule) 或Chambon法则。
5´端剪接位点(供位)相邻的保守序列:5´-AG↓GUPuAGU-3´
分枝点保守序列:Py80NPy87Pu75APy95,其中A为百分之百保 守,且具有2′-OH。 3´端剪接位点(纳位)相邻的保守序列:5´-(Py)nNCAG-3´ mRNA前体正确剪接所必需的
剪接体解体与套索降解同步
4、具体的剪接机制
U1通过与 5´剪接点互补而结合
U2AF与 3´剪接点内含子结合
U2 识别并结合分支点 A ,并在 SF1 和 BBP 帮 助 下 使 内 含 子 的 5´端和 3´端带到一起
U4/U5/U6复合物与U1/U2结合
续上页
U1脱离
U4脱离,U6与U2间发生第一 次转酯反应,套索结构形成
第二次转酯反应,U2/U5/U6 与套索结构结合
成熟的mRNA释放
四、其他的内含子剪接方式
1、内含子的分类
根据基因的类型和剪接的方式,通常把内含子分为 四类。
I类:线粒体、叶绿体及低等真核生物细胞核的rRNA基因; II类:线粒体、叶绿体的mRNA基因; III类:大多数真核生物核mRNA的基因; tRNA内含子: tRNA基因。
第四节 真核生物转录后的加工
(Pre-RNA processing in Eukaryotes)
多数转录的初始产物无生物活性,在生物体内 进行加工处理后才具有生物活性。
转录后加工( post-transcriptional processing):
是指将各种前体RNA(Pre-RNA)分子加工 转变成有功能的、成熟的各种 RNA (mRNA , rRNA或tRNA等) 的过程。

《现代分子生物学》第五章 3 真核生物的转录后加工

《现代分子生物学》第五章  3   真核生物的转录后加工

各种参与剪接的成分形成一个剪接体系, 称为剪接体(spliceosome)。该体系由 几种snRNP和大量的其他的蛋白质分子 组成,这些蛋白质分子称为剪接因子, 估计有40多种。 剪接点和分支点序列由剪接体识别, snRNA和蛋白质都参与了识别,特别是 snRNA之间以及与mRNA间的碱基配对 起重要作用。
RNA印迹法(RNA blotting)可用于分析核 RNA剪接过程中的中间体,从而确定内含 子的去除顺序。 实验中可以发现含有不同内含子的中间产 物,因此内含子的去除似乎没有特定的顺 序,但也发现有一定的规律,说明剪接有 特定的途径。
剪接反应并不是按内含子在RNA前体上 的顺序进行的。 RNA的构象影响剪接点的选择。在去除 特定的内含子后,RNA的构象发生一定 的变化,再选择新的剪接点。
剪接体Splicesome: snRNA:U1, U2, U4, U5, U6 snRNP:U+蛋白 质
剪接体按一定的顺序组装,已分离到一些 组装的中间体。只有组装完整的剪接体才 有功能。在剪接反应中,剪接体还会释放 和添加某些成分。 转酯反应只是磷酸酯键的直接转移,没有 水解反应的出现,因此不需要外部的能量, 也不需要供能物质如ATP或GTP的参与。 剪接体中起催化转酯反应的成分尚未弄清 楚,也不知道是蛋白质还是RNA在起作用。
一、核基因mRNA的剪接 一、核基因mRNA的剪接
mRNA的基因在低等真核生物中只有少数含 有内含子,为不连续基因。随着进化程度的 增高,不连续基因的数目不断增加。 细胞核中有一类RNA,十分不稳定,平均长 度比mRNA要长,序列的复杂程度非常高, 称为核内不均一RNA( heterogeneous nuclear RNA,hnRNA )。
RNA processing 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
转录后加工
转录后加工
基因转录的直接产物被称为初级转录物。初 级转录物一般是无功能的,它们在细胞内必 须经历一些结构和化→学的变化即所谓的转录 后加工以后才会有功能。转录后加工可能是 RNA的功能所必需的,也可能提供基因表达 调控的一种手段。
RNA所能经历的后加工方式可达10种以上, 但后加工反应的本质要么是增减一些核苷酸 序列,要么是修饰某些特定的核苷酸。
AAUAAA
mRNA
* mRNA前体在AAUAAA序列下游10-30个核苷酸的位 置被CFI/II切开 * 产生的3′-OH被PAP作为添加腺苷酸的位点。PAP不 需要模板,只对ATP有亲和性 * Poly(A)尾巴被 poly(A)-结合蛋白结合(PABP)
AAUAAA
AAAAAAAAAAAAA100-200
* 后加工机制
加帽和甲基化
* 帽子结构和类型 0、I和 II型
* 加帽反应:共转录 1) 酶 磷酸水解酶;mRNA鸟苷酸转移酶;鸟嘌呤-7-甲基转移 酶 2) 步骤
* 为什么只有mRNA才会加帽? * 功能
加帽反应
开始于mRNA 5′-三磷酸的 γ 磷酸根的水解
-
-
g ba
O O O 5’
O-P-O-P-O-P-OCH2 碱基
为什么只有mRNA才会加尾?
* 与加帽反应一样,只有mRNA才会加 尾,也是因为聚合酶II最大亚基上的 CTD重复序列被TFIIH磷酸化,但是 磷酸化位点为Ser2。Ser2的磷酸化将 加尾因子招募到mRNA 前体上进行加 尾反应。
mRNA前体的剪接
剪接这种后加工方式是在发现基因断裂的现象后确定 的。1977年,由Phillip Sharp和Richard Roberts领导两个 实验小组几乎同时在腺病毒的晚期表达基因中发现蛋 白质基因断裂现象。
进一步研究表明,基因断裂是真核细胞及其病毒的基 因组中的普遍现象,在高等生物的基因组中,只有很 少的蛋白质基因是连续的(如组蛋白和干扰素),但 在低等的真核生物,断裂基因却不多见。
不同断裂基因含有的内含子数目不一定相同,同样内 含子大小也会有差别。一般说来,一个典型的真核生 物蛋白质的基因由10% 的外显子序列和90%的内含子 序列组成。
3′-加尾
25-30 bp
TATA box
ATG +1
5′-UTR
基因的编码序列
翻译区域
mRNA
终止密码子
3′-UTR
加尾反应由两步组成:
1) 剪切——在3′-UTR一个特定序列上游10-30 核苷 酸序列的位置切开
2) 添加腺苷酸(100-200个)产生多聚腺苷酸尾巴
5’ CAP
CPSF
CFI CFII PAP
AAUAAA
mRNA
核糖核酸蛋白复合物
1) CPSF = “剪切/多聚腺苷酸化特异性因子(3个亚基) 识别mRNA前体 3′-UTR上的 AAUAAA 一致序列,并与 此结合。
2) 招募CFI和CFII = “剪切因子”
3) 招募PAP = “poly(A)聚合酶”
5’ 帽子
CPSF
CFI CFII PAP
R-环技术:真核基因内含子数目与结构分析
变性
与成熟的mRNA杂交; 在电镜下观察
DNA 模板链 成熟的mRNA
R环实验的结果及其对结果的解释
鸡卵清蛋白基因结构及其Pre-mRNA的后加工
mRNA前体的剪接机制
* mRNA前体的剪接是高度精确的。其精确性一方 面取决于位于外显子和内含子交界处的剪接信号 (可以将其视为内因),另外一方面取决于5种 被称为snRNP的核糖核酸蛋白质复合物(可以将 其视为外因)。
OO O
O
O O 5’ O-P-O-P-OCH2
碱基
OO
O
磷酸水解酶
Pi
O
OH
RNA 链
O OH
RNA 链
留下的5′-二磷酸进攻GTP,与GMP形成共价交联,同 时释放出PPi.
O O 5’ O-P-O-P-OCH2
碱基
OO
O
OH OH
不同寻常的 5′-5′ 三磷酸 连接
-
-
-
O O O 5’
O-P-O-P-O-P-OCH2
加尾信号
为什么必须有尾巴?
保护mRNA免受3′-外切核酸酶的消化,提高 mRNA的稳定性。
PABP能够与帽子相互作用增强mRNA的可翻 译性,提高其翻译的效率;
影响最后一个内含子的剪接; 某些本来缺乏终止密码子的mRNA通过加尾
反应创造终止密码子。在UG后加尾可产生 UGA,在UA后加尾产生UAA; 通过选择性加尾调节基因的表达。
-
-P-OCH2
G
OH OH
O
-
-
RNA链
O OH 甲基转移酶
G
O
CH3
-P-OCH2
O
O
OO
O-P-O-P-OCH2 碱基
OO
O
RNA 链
O OHБайду номын сангаас
0型帽子
1型帽子 2型帽子
可能 的甲 基化 修饰
为什么要有帽子?
提高mRNA的稳定性 参与识别起始密码子的过程,提高mRNA的可翻
译性 有助于mRNA通过核孔从细胞核运输到细胞质 提高剪接反应的效率。
原核细胞mRNA前体的后加工
在细菌,mRNA很少有后加工。但某些噬菌体 mRNA会发生最简单的剪切反应,将一个多顺 反子切割成单顺反子,也有某些噬菌体的 mRNA需要经过相对复杂的剪接反应才能成熟 (如T4噬菌体编码的胸苷酸合酶)。
真核细胞mRNA前体的后加工
* 加工形式 1) 5′-端 = 加帽 2) 3′-端 = 加尾 3) 内部 = 剪接 4) 内部=甲基化 5) 编码区=编辑
OO O
O
O
G
OH
RNA链
mRNA鸟苷酸转移酶
G
O
PPi
OH OH
5’ -P-OCH2
-
O
O
O O 5’ O-P-O-P-OCH2
碱基
OO
O
RNA 链
O OH
鸟嘌呤随后在N7位置被甲基化,甲基供体为S腺苷甲硫氨酸
OH OH
O
O
OO
O-P-O-P-OCH2 碱基
OO
O
5‘ m(7)GpppN 帽子
为什么只有mRNA加帽?
* 之所以只有mRNA和某些snRNA才有帽子结 构,是因为它们都由聚合酶II催化,当 TFIIH磷酸化CTD重复序列中的Ser5以后, 它即可以将转录因子DSIF 招募到转录复合 物,而新加入到复合物之中,DSIF随后将另 外一种转录因子NELF招募进来,以阻滞转 录。上述暂停允许加帽酶进入,来修饰转录 物的5'-端。第三种转录因子P-TEFb是一种 激酶,在帽子结构形成不久也被招募到复合 物,然后磷酸化CTD的Ser2和NELF,NELF 随之失活,聚合酶II继续延伸。
相关文档
最新文档