多边形的内角和.1多边形及其内角和(习题课件)

合集下载

多边形多边形的内角和ppt课件

多边形多边形的内角和ppt课件
解: 设这个多边形的边数为n (n-2) × 180° =1260 °
n=9 答:这个多边形的边数是9.
19
例3.已知一个多边形的每个内角都是160°, 请问它是几边形?
解:设这个多边形的边数为n
(n-2) × 180 =160 n
n=18
答:这个多边形的边数是18.
20
1.一个多边形的一个顶点处共有4条对角线,则 它是几边形? 2.一个多边形一共有35条对角线,则它是几边形?
B
D
B
C
C
12ADEFAEA D
B C
B
B
C
D
C
多边形的 3
4
5
6
7…
n
边数
分成的三 角形的
个数
多边形的 内角和
1 180°
2 360 °
n边形的内角和为
3
4
5…
540 ° 720 ° 900 ° …
(n-2)×180 °
n-2
(n-2)×180 °
13
.
A
D
E
F
A
E
A D
B C
B
D
B
C
C
14
A
定义
多边形的边,顶点,内角
多边形的对角线
结论 n边形的内角和为(n-2)× 180º
24
1、一课一练22.1(1)
25
课件部分内容来源于网络,如对内容有 异议或侵权的请及时联系删除! 此课件可编辑版,请放心使用!
B
C
D
E
A
B
B D
C C
A F
E D
这种分割方式,将多边形分成(n-1)个三角形, 故所有三角形的内角和为(n-1)×180 °,边 上一点周围所形成的平角不是多边形的内角, 因此n边形的内角和为

多边形及其内角和ppt课件

多边形及其内角和ppt课件
∵ ∠7+∠ 8+∠9+ ∠10 +∠11+ ∠12 =(6-2)×180 °= 720°, ∴ ∠1+∠ 2+∠3+ ∠4 +∠5+ ∠6 = 6×180 °-720 ° = 360°.
对于 n 边形,结论仍然成立!
结论: 多边形的外角和等于
360°.
探索与思考
探索多边形的外角和
多边形边 数
多边形的 内角和
4、正方形的内角和是 3600 度,长方形的内 角和是 3600 度。
学习目标
1.掌握多边形的定义及有关概念,能区分凹凸多边形. 2.掌握正多边形的概念.(重点) 3.会求多边形的对角线的条数.(难点)
情境引入
导入新课
在实际生活当中,除了三角形,还有许多由线段围成的图形.观察图片,你 能找到由一些线段围成的图形吗?
5.若两个多边形的比是1:2,内角和的度数比是1:3,求这 两个多边形的边数。
课堂小结
(1)本节课学习了哪些主要内容? (2)我们是怎样得到多边形内角和公式的? (3)在探究多边形内角和公式的过程中, 连接对角线起到什么作用?
∠C=108°,∠D=144° A
B
例题讲解
3、过某个多边形一个顶点的所有对角线,将这 个多边形分成5个三角形。这个多边形是几边形 ?它的内角和是多少? 解:设这个多边形的边数为n,由题意得:
n-2=5 n=7 内角和=(n-2)x180°
=(5-2)x180° =900°
答:这个多边形是七边形,它的内角和是900°
从n边形的一个顶点可以引__n_-3__对角线,把 多边形分成__n-_2_个三角形.
n边形的内角和等于_(n_-2_) ×_1_8_00

《多边形及其内角和》ppt课件

《多边形及其内角和》ppt课件
证明过程
详细展示多边形内角和定理的证明过 程,帮助学习者深入理解定理的证明 思路。
03 多边形内角和的计算方法
公式法计算内角和
01
公式法是计算多边形内角和最常用的方法,通过公式可 以直接计算出多边形的内角和。
02
对于一个n边形,其内角和S可以通过公式计算:S = (n 2) * 180°。
03
这个公式基于多边形的定义和性质,通过数学推导得出 ,适用于任何凸多边形和凹多边形。
举例说明
通过具体实例,如四边形、五边形等,演示如何运用三角形内角和推导多边形内 角和。
内角和定理的应用
解决实际问题
多边形内角和定理可以应用于解 决实际问题,如计算多边形面积 、解决几何问题等。
拓展知识
介绍多边形内角和定理在其他领 域的应用,如建筑设计、计算机 图形学等。
内角和定理的证明
证明方法
介绍多边形内角和定理的证明方法, 包括几何证明、代数证明等。
多边形的分类
总结词
根据边的数量和形状,可以将多边形分为三角形、四边形、 五边形等。
详细描述
三角形是多边形中最简单的形式,由三条边组成。四边形由 四条边组成,五边形由五条边组成,以此类推。此外,根据 边的形状,多边形还可以分为凸多边形和凹多边形。
多边形的性质
总结词
多边形具有一些基本的几何性质,如内角和、外角和等。
建筑设计中的应用
建筑设计中的角度计算
多边形内角和在建筑设计中有广泛的应用,如角度计算、空间布局等。通过利用多边形 内角和的知识,设计师可以更加精确地计算出建筑物的角度和方向,从而更好地进行空
间布局和设计。
建筑光学与视觉效果
多边形内角和的知识还可以应用于建筑光学和视觉效果的设计。利用多边形的内角和性 质,可以调整建筑物的窗户、镜面等元素的角度,创造出更加舒适和美观的视觉效果。

多边形的内角和ppt课件

多边形的内角和ppt课件

三.归纳总结
一般地,从n边形的一个顶点出发,可以作个 三角形,n边形的内角和等于180°×(n-2). 这样就得出了多边形内角和公式: (n-3)条对角线,它们将n边形分为(n-2)
n边形的内角和等于 (n-2)·180°
注意:n指多边形的边数,且n为大于
等于3的正整数。
例题讲解
例1 已知四边形ABCD,∠A+∠C=180°,求∠B+∠D.
D
A
C D C C
B
二.探究新知 问题4 : 你能用什么方法解决这个问题?
探究新知
五边形的其他分割方法
二.探究新知
问题5: 类比求四边形内角和的方法,你能求出五
边形、六边形的内角和各多少度吗?
E
A
A
F
B
DB
E
C
C
D
内角和为180° ×3 = 540°.内角和为180° ×4 = 720°.
三.归纳总结
11.3.2 多边形的内角和
学习目标
情境引入
1.能通过不同方法探索多边形的内角和与外角和公式;
(重点)
2.学会运用多边形的内角和与外角和公式解决问题.
(难点)
一.创设情境
二.探究新知
问题1: 三角形内角和是多少度?
A
B
问题2: 长方形的内角和是多少度?
A
B
问题3: 任意一个四边形的内角和是多少度?
边数
三角形 四边形 五边形 六边形
······
n 边形
图形
从多边形的一个顶点 分割出三角 引出的对角线条数 形的个数
多边形内角和
0
1
1×180°=180°
1

多边形内角各和ppt

多边形内角各和ppt

THANKS
感谢观看
05
多边形内角和定理的扩展思考
如何推广多边形内角和定理?
从三角形开始,每增加一个边,增加180度,以此类推,可以 推断出任意n边形的内角和为(n-2)x180度。
另一种推广方法是利用分割法,将多边形分割成若干个三角 形,通过计算每个三角形的内角和,再相加得到多边形的内 角和。
如何证明多边形的外角和为360度?
内角和定理的应用
平面几何问题
利用多边形内角和定理可以解决平面几何中的一些问题,例 如判断多边形的形状、计算多边形的面积等。
建筑设计
在建筑设计中,可以利用多边形内角和定理来计算建筑物各 个面的角度和形状,以达到美观和功能性的要求。
内角和定理的推广
凹多边形内角和定理
对于凹多边形,可以利用三角形内角和定理和多边形内角和定理推导出凹多 边形内角和定理。
在几何作图中的应用
1 2 3
定理的证明
多边形内角和定理是几何学中的基本定理之一 ,对于证明其他几何命题和解决几何问题有重 要作用。
作图辅助
在几何作图中,多边形内角和定理可以用于确 定多边形的形状和大小,以及用于作图的辅助 工具。
简化作图
通过利用多边形内角和定理,可以将一些复杂 的作图问题转化为简单的作图问题,从而简化 了作图的过程。
将多边形分割成若干个三角形,每个三角形的外角和为 360度,因此多边形的外角和为360度。
也可以利用圆周角的性质证明,因为多边形的外角和等于 圆周角,而圆周角为360度。
如何利用多边形内角和定理解决实际问题?
在几何学中,多边形内角和定理可以用于计算多边形的内角大小,从而判断多边 形的形状。
在建筑设计、城市规划、交通运输等领域中,多边形内角和定理也可以用于计算 角度大小、优化路径等方面的问题。

多边形的内角和 (优质课)获奖课件

多边形的内角和 (优质课)获奖课件

四、练习与小结 练习:教材练习. 教师布置练习,学生举手回答. 小结:谈谈你对三角形外角的认识. 教师引导学生谈谈对三角形外角的认识.主要从定义和 性质两个方面入手. 五、布置作业 习题11.2第5,6,8题,选做题:第11题.
通过三角形的内角和回顾引入,然后通过学生的预习,在 他们的理解基础上,去学习三角形的外角的定义,这样能 够加深他们对外角定义的理解,在探索三角形外角定理的 时候,我也是采取了学生去探索的思想,让他们自己大胆 猜想,然后同学们在老师的引导下去证明自己的猜想,这 样以后才能运用自如.
(二)五边形的内角和 问题1:你知道任意一个五边形的内角和是多少度吗?
问题2:你知道任意一个n边形的内角和是多少度吗? (n-2)×180° 180°n-360° 180°(n-1)-180° 板书: 多边形内角和公式:n边形的内角和等于(n-2)×180°
补充例题:求十五边形内角和的度数. 1.教师提出问题,学生思考后分组活动. 2.教师深入小组,参与小组活动,及时了解学生探索的 情况. 3.让学生归纳借助辅助线将五边形分割成三角形的不同 分法. 4.探究五边形的边数与所分割的三角形个数间的关系, 进而得出五边形内角和与边数的关系. 5.根据以上分割三角形的方法,引导学生归纳n边形内 角和公式及不同公式间的联系,指明为了书写整齐,便 于记忆,我们选择(n-2)×180°这个公式. 6.通过计算,让学生巩固并掌握n边形内角和公式.
三、练习应用 1.教材练习. 补充: 2.问题:一个多边形的内角和与外角和相等,它是几边 形? 四、小结与作业 问题:谈谈本节课你有哪些收获? 1.学生反思学习和解决问题的过程. 2.鼓励学生大胆表达,并对学生的进步给予肯定,树立 学生学好数学的自信心. 作业:习题11.3第2,4,5,6,7,8题,选做题:第9,10 题.

多边形的内角和ppt课件

多边形的内角和ppt课件

∵∠2+∠ FAD +∠ F +∠ E =360°,
∴∠2=360°-∠ FAD -∠ F -∠ E =48°.
1
2
3
4
5
6
7
8
9
10
11
12
11.3.2
多边形的内角和
课堂学练
4. 如图,五边形 ABCDE 的每个内角都相等,且∠1=∠2=∠3=∠4.求
∠ CAD 的度数.
解:∵五边形 ABCDE 的每个内角都相等,
1
2
3
4
5
6
7
8
9
10
11
12
11.3.2
多边形的内角和
分层检测
12. 如图,四边形ABCD的内角∠DCB与外角∠ABE的平分线相交于
点F.
(1)若 BF ∥ CD ,∠ ABC =80°,求∠ DCB 的度数;
解:(1)∵∠ ABC =80°,
∴∠ ABE =180°-∠ ABC =100°,
∵ BF 平分∠ ABE ,
360°
.

.

11.3.2
多边形的内角和
课堂学练
知识点1:多边形的内角和
1. 【例】(1)五边形的内角和为
°;
540
(2)一个多边形的内角和是1260°,求这个多边形的边数.
解:设边数为 n ,由题意,得(n-2)×180°=1 260°,
解得 n =9.∴这个多边形的边数为9.
1
2
3
4
5
6
7
8
(−)×°
∴∠ B =∠ BAE =∠ E =
=108°,

∵∠1=∠2=∠3=∠4,

11.3.2多边形的内角和 课件(共21张PPT)

11.3.2多边形的内角和  课件(共21张PPT)

知识点二:多边形的外角和
如图,在五边形的每个顶点处各 取一个外角,这些外角的和叫做五边 形的外角和.
1A
B
5
2
E
C3
4 D
问题1:任意一个外角和它相邻的内角有什么关系?
互补
问题2:五个外角加上它们分别相邻的五个内角和是多少?
5×180°=900°
问题3:这五个平角和与五边形的内角和、外角和有什么关系?
方法1:如图,连接AC,
A
D
所以四边形被分为两个三角形,
所以四边形ABCD内角和为
180°×2=360°.
B C
方法2:如图,在CD边上任取一点E,连接AE,DE, 所以该四边形被分成三个三角形, 所以四边形ABCD的内角和为 180°×3-(∠AEB+∠AED+∠CED)=180°×3-180°=360°.
1
2
3
计算规律
1
1 ×180°
2
2 ×180°
3
3 ×180°
4
4 ×180°

… …
… … …
n边形
n
n-3
n-2 (n-2) ·180°
总结归纳 一般地,从n边形的一个顶点出发,可以作_(_n__-___3_)_
条对角线,它们将n边形分为_(__n__-___2_)_个三角形,n边形 的内角和等于_(_n__-___2_)_×_1__8_0_°.
解:设这个多边形的内角为7x °,外角为2x°, 根据题意得 7x+2x=180,
解得x=20. 即每个内角是140 °,每个外角是40 °.
360° ÷40 °=9. 答:这个多边形是九边形.
课堂小结
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档