中考专题解析—切线证明

合集下载

2023年中考九年级数学高频考点拔高训练-- 切线的证明

2023年中考九年级数学高频考点拔高训练-- 切线的证明

2023年中考九年级数学高频考点拔高训练-- 切线的证明一、综合题1.如图,AB为半圆的直径,点C是弧AD的中点,过点C作BD延长线的垂线交于点E.(1)求证:CE是半圆的切线;(2)若OB=5,BC=8,求CE的长.2.如图,在⊙ O中,AB是直径,BC是弦,BC=BD,连接CD交⊙ O于点E,⊙BCD=⊙DBE.(1)求证:BD是⊙ O的切线.(2)过点E作EF⊙AB于F,交BC于G,已知DE= 2√10,EG=3,求BG的长.3.如图,⊙E的圆心E(3,0),半径为5,⊙E与y轴相交于A,B两点(点A在点B的上方),与x轴的正半轴交于点C,直线l的解析式为y= 34x+4,与x轴相交于点D.(1)求抛物线的解析式;(2)判断直线l与⊙E的位置关系,并说明理由;(3)动点P在抛物线上,当点P到直线l的距离最小时,求出点P的坐标及最小距离.4.如图①,AB为⊙O的直径,AD与⊙O相切于点A,DE与⊙O相切于点E,点C为DE延长线上一点,且CE=CB.(1)求证:BC 为⊙O 的切线;(2)连接AE 并延长与BC 的延长线交于点G (如图②所示).若AB= 4√5 ,CD=9,求线段BC 和EG 的长.5.设C 为线段AB 的中点,四边形BCDE 是以BC 为一边的正方形.以B 为圆心,BD 长为半径的⊙B 与AB 相交于F 点,延长EB 交⊙B 于G 点,连接DG 交于AB 于Q 点,连接AD .求证:(1)AD 是⊙B 的切线; (2)AD=AQ ; (3)BC 2=CF•EG .6.如图,D 是以AB 为直径的⊙O 上一点,过点D 的切线DE 交AB 的延长线于点E ,过点B 作BC⊙DE 交AD 的延长线于点C ,垂足为点F.(1)求证:AB=CB ;(2)若AB=18,sinA=13,求EF 的长.7.如图,已知⊙C 过菱形ABCD 的三个顶点B ,A ,D ,连结BD ,过点A 作AE⊙BD 交射线CB 于点E.(1)求证:AE是⊙C的切线.⌢围成的部分的面积.(2)若半径为2,求图中线段AE、线段BE和AB(3)在(2)的条件下,在⊙C上取点F,连结AF,使⊙DAF=15°,求点F到直线AD的距离. 8.如图,以⊙ABC的边AB为直径的⊙O与边AC相交于点D,BC是⊙O的切线,E为BC的中点,连接AE、DE.(1)求证:DE是⊙O的切线;(2)设⊙CDE的面积为S1,四边形ABED的面积为S2.若S2=5S1,求tan⊙BAC的值;(3)在(2)的条件下,若AE=3 √2,求⊙O的半径长.9.如图,已知△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E作EG⊥AC于G,交BC的延长线于点F.(1)求证:FE是⊙O的切线;(2)若∠F=30°,求证:4FG2=FC⋅FB;(3)当BC=6,EF=4时,求AG的长.10.如图,⊙ABC为⊙O的内接三角形,AB为⊙O的直径,将⊙ABC沿直线AB折叠得到⊙ABD,交⊙O于点D.连接CD交AB于点E,延长BD和CA相交于点P,过点A作AG⊙CD交BP于点G.(1)求证:直线GA是⊙O的切线.(2)求证:AG•AD=GD•AB.(3)若tan⊙AGB=√2,PG=6,求sinP的值.11.如图,AB是⊙O的直径,点D、E在⊙O上,连接AE、ED、DA,连接BD并延长至点C,使得∠DAC=∠AED.(1)求证:AC是⊙O的切线;⌢中点,AE与BC交于点F,(2)若点E是的BD①求证:CA=CF;②若⊙O的半径为3,BF=2,求AC的长.12.在RtΔABC中,∠ACB=90°,以直角边BC为直径作⊙O,交AB于点D,E为AC 的中点,连接OD、DE.(1)求证:DE为⊙O切线.(2)若BC=4,填空:①当DE=时,四边形DOCE为正方形;②当DE=时,ΔBOD为等边三角形.⌢的长为π,点P是BC上一动13.如图,A为⊙O外一点,AO⊙BC,直径BC=12,AO=10,BD点,⊙DPM =90°,点M 在⊙O 上,且⊙DPM 在DP 的下方.(1)当sinA =35时,求证:AM 是⊙O 的切线;(2)求AM 的最大长度.14.如图,AB 是⊙O 的直径,弦AC 与BD 交于点E ,且AC =BD ,连接AD ,BC.(1)求证:⊙ADB⊙⊙BCA ;(2)若OD⊙AC ,AB =4,求弦AC 的长;(3)在(2)的条件下,延长AB 至点P ,使BP =2,连接PC.求证:PC 是⊙O 的切线.15.如图,在⊙ABC 中,⊙C =90°,⊙ABC 的平分线交AC 于点E ,过点E 作BE 的垂线交AB 于点F ,⊙O 是⊙BEF 的外接圆.(1)求证:AC 是⊙O 的切线;(2)过点E 作EH⊙AB ,垂足为H ,求证:CD =HF ; (3)若CD =1,EH =3,求BF 及AF 长.16.如图,AB 是⊙O 的直径,点P 是⊙O 外一点,PA 切⊙O 于点A ,连接OP ,过点B 作BC // OP 交⊙O 于点C ,点E 是 AB⌢ 的中点.(1)求证:PC是⊙O的切线;(2)若AB=10,BC=6,求CE的长.答案解析部分1.【答案】(1)证明:如图,连接AD、OC,OC交AD于F.∵= ,∴OC⊙AD,∴AF=FD,∵OA=OB,∴OF⊙BD,即OC⊙BE,∵EC⊙EB,∴EC⊙OC,∴EC是⊙O的切线.(2)解:连接AC,作OH⊙AC于H.∵AB是直径,∴⊙ACB=90°,∴AC= = =6,∵OH⊙AC,∴AH=CH=3,OH= =4,∵S⊙AOC= •AC•OH= •CO•AF,∴AF= = ,∴DF=AF= ,∵⊙E=⊙ECF=⊙CFD=90°,∴四边形ECFD是矩形,∴EC=DF= .2.【答案】(1)证明:如图,连接AE,则⊙BAE=⊙BCE,∵AB是直径,∴⊙AEB=90°,∴⊙BAE+⊙ABE=90°,∴⊙ABE+⊙BCE=90°,∵⊙BCE=⊙DBE,∴⊙ABE+⊙DBE=90°,即⊙ABD=90°,∴BD是⊙O的切线.(2)解:如图,延长EF交⊙O于H,∵EF⊙AB,AB是直径,∴BE⌢=BH⌢,∴⊙ECB=⊙BEH,∵⊙EBC=⊙GBE,∴⊙EBC⊙⊙GBE,∴BEBG=BCBE,∵BC=BD,∴⊙D=⊙BCE,∵⊙BCE=⊙DBE,∴⊙D=⊙DBE,∴BE=DE= 2√10,∵⊙AFE=⊙ABD=90°,∴BD⊙EF,∴⊙D=⊙CEF,∴⊙BCE=⊙CEF,∴CG=GE=3,∴BC=BG+CG=BG+3,∴2√10BG=BG+32√10,∴BG=-8(舍)或BG=5,即BG的长为5.3.【答案】(1)解:如图1,连接AE,由已知得:AE=CE=5,OE=3,在Rt⊙AOE中,由勾股定理得:OA= √AE2−OE2= √52−32=4,∵OC⊙AB,∴由垂径定理得:OB=OA=4,OC=OE+CE=3+5=8,∴A(0,4),B(0,﹣4),C(8,0),∵抛物线的顶点为C,∴设抛物线的解析式为:y=a(x﹣8)2,将点B的坐标代入得:64a=﹣4,a=﹣116,∴y=﹣116(x﹣8)2,∴抛物线的解析式为:y=﹣116x2+x﹣4;(2)解:直线l与⊙E相切;理由是:在直线l的解析式y= 34x+4中,当y=0时,即34x+4=0,x=﹣163,∴D(﹣163,0),当x=0时,y=4,∴点A在直线l上,在Rt⊙AOE和Rt⊙DOA中,∵OEOA=34,OAOD=34,∴OEOA=OAOD,∵⊙AOE=⊙DOA=90°,∴⊙AOE⊙⊙DOA,∴⊙AEO=⊙DAO,∵⊙AEO+⊙EAO=90°,∴⊙DAO+⊙EAO=90°,即⊙DAE=90°,∴直线l与⊙E相切;(3)解:如图2,过点P作直线l的垂线PQ,过点P作直线PM⊙x轴,交直线l于点M,设M(m,34m+4),P(m,﹣116m2+m﹣4),则PM= 34m+4﹣(﹣116m2+m﹣4)= 116m2﹣14m+8=116(m−2)2+ 314,当m=2时,PM取最小值是31 4,此时,P(2,﹣9 4),对于⊙PQM,∵PM⊙x轴,∴⊙QMP=⊙DAO=⊙AEO,又⊙PQM=90°,∴⊙PQM的三个内角固定不变,∴在动点P运动过程中,⊙PQM的三边的比例关系不变,∴当PM取得最小值时,PQ也取得最小值,PQ最小=PM最小•sin⊙QMP=PM最小•sin⊙AEO= 314×45= 315,∴当抛物线上的动点P(2,﹣94)时,点P到直线l的距离最小,其最小距离为315.4.【答案】(1)证明:如图1,连接OE,OC;∵CB=CE,OB=OE,OC=OC∴⊙OEC⊙⊙OBC(SSS)∴⊙OBC=⊙OEC又∵DE与⊙O相切于点E∴⊙OEC=90°∴⊙OBC=90°∴BC为⊙O的切线.(2)解:解:如图2,过点D作DF⊙BC于点F,则四边形ABFD是矩形,∵AD,DC,BG分别切⊙O于点A,E,B∴DA=DE,CE=CB,在Rt⊙DFC中,CF= √92−(4√5)2=1,设AD=DE=BF=x,则x+x+1=9,x=4,∵AD⊙BG,∴⊙DAE=⊙EGC,∵DA=DE,∴⊙DAE=⊙AED;∵⊙AED=⊙CEG,∴⊙EGC=⊙CEG,∴CG=CE=CB=5,∴BG=10,在Rt⊙ABG中,AG= √AB2+BG2=6 √5,∵AD⊙CG,∴⊙CEG⊙⊙DEA,∴ADCG=AEEG=45,∴EG= 59×6 √5= 10√53.5.【答案】(1)证明:连接BD,∵四边形BCDE是正方形,∴⊙DBA=45°,⊙DCB=90°,即DC⊙AB,∵C为AB的中点,∴CD是线段AB的垂直平分线,∴AD=BD,∴⊙DAB=⊙DBA=45°,∴⊙ADB=90°,即BD⊙AD,∵BD为半径,∴AD是⊙B的切线(2)证明:∵BD=BG,∴⊙BDG=⊙G,∵CD⊙BE,∴⊙CDG=⊙G,∴⊙G=⊙CDG=⊙BDG= 12⊙BCD=22.5°,∴⊙ADQ=90°﹣⊙BDG=67.5°,⊙AQB=⊙BQG=90°﹣⊙G=67.5°,∴⊙ADQ=⊙AQD,∴AD=AQ(3)证明:连接DF,在⊙BDF中,BD=BF,∴⊙BFD=⊙BDF,又∵⊙DBF=45°,∴⊙BFD=⊙BDF=67.5°,∵⊙GDB=22.5°,在Rt⊙DEF与Rt⊙GCD中,∵⊙GDE=⊙GDB+⊙BDE=67.5°=⊙DFE ,⊙DCF=⊙E=90°, ∴Rt⊙DCF⊙Rt⊙GED , ∴CF ED =CD EG , 又∵CD=DE=BC , ∴BC 2=CF•EG .6.【答案】(1)证明:连接OD ,如图1,∵DE 是⊙O 的切线, ∴OD⊙DE. ∵BC⊙DE , ∴OD⊙BC. ∴⊙ODA=⊙C. ∵OA=OD , ∴⊙ODA=⊙A. ∴⊙A=⊙C. ∴AB=BC ;(2)解:连接BD ,则⊙ADB=90°,如图2,在Rt⊙ABD 中, ∵sinA=BD AB =13,AB=18,∴BD=6.∵OB=OD , ∴⊙ODB=⊙OBD.∵⊙OBD+⊙A=⊙FDB+⊙ODB=90°, ∴⊙A=⊙FDB. ∴sin⊙A=sin⊙FDB. 在Rt⊙BDF 中, ∵sin⊙BDF=BF BD =13,∴BF=2.由(1)知:OD⊙BF , ∴⊙EBF⊙⊙EOD. ∴BE OE =BF OD.即:BE BE+9=29. 解得:BE=187. ∴EF=√BE 2−BF 2=8√27.7.【答案】(1)证明:如图1中,连结AC ,∵四边形ABCD 是菱形, ∴AC⊙BD , 又∵BD⊙AE , ∴AC⊙AE , ∴AE 是⊙O 的切线.(2)解:如图1中,∵四边形ABCD 是菱形, ∴AB =BC , 又∵AC =BC ,∴⊙ABC 是等边三角形,∴⊙ACB=60°,∵AC=2,∴AE=AC•tan60°=2 √3,∴S阴=S⊙AEC﹣S扇形ACB=12×2×2 √3﹣60⋅π⋅22360=2 √3﹣23π.(3)解:①如图2中,当点F在AD⌢上时,∵⊙DAF=15°,∴⊙DCF=30°,∵⊙ACD=60°,∴⊙ACF=⊙FCD,∴点F是弧AD的中点,∴CF⊙AD,∴点F到直线AD的距离=CF﹣CA•cos30°=2﹣√3.②如图3中,当点F在优弧BD⌢上时,∵⊙DAF=15°,∴⊙DCF=30°,过点C作CG⊙AD于D,过点F作FH⊙CG于H,可得⊙AFH=15°,⊙HFC=30°,∴CH=1,∴点F到直线AD的距离=CG﹣CH=AC•cos30°﹣CH=√3﹣1.综上所述,满足条件的点F到直线AD的距离为2﹣√3或√3﹣1. 8.【答案】(1)证明:连接OD,∴OD=OB∴⊙ODB=⊙OBD.∵AB是直径,∴⊙ADB=90°,∴⊙CDB=90°.∵E为BC的中点,∴DE=BE,∴⊙EDB=⊙EBD,∴⊙ODB+⊙EDB=⊙OBD+⊙EBD,即⊙EDO=⊙EBO.∵BC是以AB为直径的⊙O的切线,∴AB⊙BC,∴⊙EBO=90°,∴⊙ODE=90°,∴DE是⊙O的切线(2)解:∵S2=5 S1∴S⊙ADB=2S⊙CDB∴AD DC=21∵⊙BDC⊙⊙ADB∴⋅ADDB=DBDC∴DB2=AD•DC∴DB AD =√22∴tan⊙BAC == √22(3)解:∵tan⊙BAC = DB AD =√22∴BC AB =√22 ,得BC = √22AB ∵E 为BC 的中点∴BE = √24AB∵AE =3 √2 ,∴在Rt⊙AEB 中,由勾股定理得 (3√2)2=(√24AB)2+AB 2 ,解得AB =4 故⊙O 的半径R = 12AB =2.9.【答案】(1)证明:连接 EC , OE ,∵BC 为 ⊙O 的直径, ∴∠BEC =90° , ∴CE ⊥AB , 又∵AC =BC , ∴E 为 AB 中点, 又∵O 为 BC 中点, ∴OE⊙AC , 又∵EG ⊥AC , ∴OE ⊥EG ,又 OE 为 ⊙O 的半径, ∴FE 是 ⊙O 的切线. (2)证明:∵OE =OC ,∴∠OEC=∠OCE,∵EF为圆的切线,∴∠FEC+∠OEC=90°,∵∠BEC=90°∴∠B+∠BCE=90°,∴∠FEC=∠B,又∵∠F=∠F,∴△FEC∽△FBE,∴FEFB=FCFE,∴FE2=FC⋅FB,当∠F=30°时,∠FOE=60°,又OE=OC,∴△OEC为等边三角形,∴∠OEC=60°,∴∠FEC=30°=∠F,∴CE=CF,又CG⊥FE,∴FE=2FG,∴(2FG)2=FC⋅FB,即4FG2=FC⋅FB(3)解:由(2)得FE2=FC⋅FB,又BC=6,FE=4,FB=BC+FC=6+FC,∴42=FC⋅(FC+6),因式分解得(FC+8)(FC-2)=0,解得FC=2或FC=-8舍去,∵BC=6,∴OE=OC=12BC=3,AC=BC=6,∴FO=FC+CO=2+3=5,∵CG⊙OE,∴⊙GCF=⊙EOF,⊙FGC=⊙FEO,∴△FCG∽△FOE,∴FCFO=CGOE,即25=CG3,∴CG=6 5,∴AG=AC−CG=6−65=24510.【答案】(1)证明:∵将⊙ABC沿直线AB折叠得到⊙ABD,∴BC=BD.∴点B在CD的垂直平分线上.同理得:点A在CD的垂直平分线上.∴AB⊙CD即OA⊙CD,∵AG∥CD.∴OA⊙GA.∵OA是⊙O的半径,∴直线GA是⊙O的切线;(2)证明:∵AB为⊙O的直径,∴⊙ACB=⊙ADB=90°.∴⊙ABD+⊙BAD=90°.∵⊙GAB=90°,∴⊙GAD+⊙BAD=90°.∴⊙ABD=⊙GAD.∵⊙ADB=⊙ADG=90°,∴⊙BAD⊙⊙AGD.∴ABAG=ADGD.∴AG•AD=GD•AB;(3)解:∵tan⊙AGB=√2,⊙ADG=90°,∴ADGD=√2.∴AD=√2GD.由(2)知,⊙BAD⊙⊙AGD,∴ADGD=BDAD,∴AD 2=GD•BD ,∴BD =2GD .∵AD⌢=AD ⌢, ∴⊙GAD =⊙GBA =⊙PCD .∵AG ∥CD ,∴⊙PAG =⊙PCD .∴⊙PAG =⊙PBA .∵⊙P =⊙P ,∴⊙PAG⊙⊙PBA .∴PA 2=PG•PB∵PG =6,BD =2GD ,∴PA 2=6(6+3GD ).∵⊙ADP =90°,∴PA 2=AD 2+PD 2.∴6(6+3GD )=(√2GD )2+(6+GD )2.解得:GD =2或GD =0(舍去).∴AD =2√2,AP =6√2,∴sinP =AD AP =2√26√2=13. 11.【答案】(1)证明:∵AB 是 ⊙O 的直径,∴⊙ADB=90°,∴⊙DBA+⊙DAB=90°,∵⊙DEA=⊙DBA ,⊙DAC=⊙DEA ,∴⊙DBA=⊙DAC ,∴⊙BAC=⊙DAC+⊙DAB=90°,∵AB 是 ⊙O 的直径,⊙BAC=90°,∴AC 是 ⊙O 的切线;(2)解:①∵点E 是 BD⌢ 的中点, ∴⊙BAE=⊙DAE ,∵⊙CFA=⊙DBA+⊙BAE ,⊙CAF=⊙DAC+⊙DAE ,⊙DBA=⊙DAC ,∴⊙CFA=⊙CAF ,∴CA=CF;②设CA=CF=x,则BC=CF+BF=x+2,∵⊙O的半径为3,∴AB=6,在Rt⊙ABC中,CA2+AB2=BC2,即:x2+62=(x+2)2,解得:x=8,∴AC=8.12.【答案】(1)证明:如图,连接CD,OE.∵BC为⊙O直径∴∠BDC=∠CDA=90°∵DE为Rt△ADC斜边AC的中线∴DE=CE∵OD=OC,OE=OE∴△COE≌△DOE(SSS)∴∠OCE=∠ODE=90°∴DE为⊙O的切线.(2)2;DE=2√313.【答案】(1)证明:如图①,过点O作OE⊙AM于点E,∵在Rt⊙AOE中,当sinA=35,OA=10,∴OE=6∵直径BC=12,∴OM=6=OE,∴点E与点M重合,OM⊙AM,∴AM是⊙O的切线.(2)解:如图②,当点P与点B重合时,AM取得最大值.AM的最大长度可以通过勾股定理求得.延长AO交⊙O于点F,作MG⊙AF于点G,连接OD、OM,DM,∵BD的长为π,∴π=∠BOD⋅π⋅6180,∴⊙BOD=30°,∵⊙DBM=90°,∴DM是⊙O的直径,即DM过点O,∴⊙COM=30°,∵AO⊙BC,∴⊙MOG=60°,在Rt⊙GOM中,⊙MOG=60°,OM=6,∴OG=3,GM=3√3,在Rt⊙GAM中,AM=√AG2+GM2=14,∴AM的最大长度:14.14.【答案】(1)证明:∵AB是⊙O的直径,∴⊙ACB=⊙ADB=90°,∵AB=AB,∴⊙ADB⊙⊙BCA(HL)(2)解:如图,连接DC,∵OD⊙AC,⌢=DC⌢,∴AD∴AD=DC,∵⊙ADB⊙⊙BCA,∴AD=BC,∴AD=DC=BC,∴⊙AOD=⊙ABC=60°,∵AB=4,∴AC=AB⋅sin60°=4×√32=2√3(3)证明:如图,连接OC,由(1)和(2)可知BC= √AB2−AC2=2∵BP=2∴BC=BP=2∴⊙BCP=⊙P,∵⊙ABC=60°,∴⊙BCP=30°,∵OC=OB,⊙ABC=60°,∴⊙OBC是等边三角形,∴⊙OCB=60°,∴⊙OCP=⊙OCB+⊙BCP=60°+30°=90°,∴OC⊙PC,∴PC是⊙O的切线.15.【答案】(1)证明:如图,连接OE.∵BE平分⊙ABC,∴⊙CBE=⊙OBE,∵OB=OE,∴⊙OBE=⊙OEB,∴⊙OEB=⊙CBE,∴OE⊙BC,∴⊙AEO=⊙C=90°,∴AC是⊙O的切线;(2)证明:如图,连结DE.∵⊙CBE=⊙OBE,EC⊙BC于C,EH⊙AB于H,∴EC=EH.∵⊙CDE+⊙BDE=180°,⊙HFE+⊙BDE=180°,∴⊙CDE=⊙HFE.在⊙CDE与⊙HFE中,{∠CDE=∠HFE∠C=∠EHF=900EC=EH,∴⊙CDE⊙⊙HFE(AAS),∴CD=HF.(3)解:由(2)得,CD=HF.又CD=1 ∴HF=1在Rt⊙HFE中,EF= √32+12=√10∵EF⊙BE∴⊙BEF=90°∴⊙EHF=⊙BEF=90°∵⊙EFH=⊙BFE∴⊙EHF⊙⊙BEF∴EFBF=HFEF,即√10BF=1√10∴BF=10∴OE=12BF=5, OH=5−1=4,∴在Rt⊙OHE中,cos∠EOA=4 5 ,∴在Rt⊙EOA中,cos∠EOA=OEOA=45,∴5OA=45∴OA=25 4∴AF=254−5=54.16.【答案】(1)证明:如图,连接OC ,∵PA切⊙O于A∴∠PAO=90∘∵OP⊙BC∴⊙AOP=⊙OBC,⊙COP=⊙OCB∵OC=OB∴⊙OBC=⊙OCB∴⊙AOP=⊙COP又∵OA=OC,OP=OP∴⊙PAO⊙⊙PCO∴⊙PAO=⊙PCO=90 º又∵OC是⊙O的半径∴PC是⊙O的切线(2)解:连接AE,BE,AC过点B作BM⊙CE于点M∴⊙CMB=⊙EMB=⊙AEB=90º∵AB是直径,∴∠ACB=90°,∵AB=10,BC=6∴AC=√AB2−BC2=8,∴cos∠CAB=ACAB=810=45又∵点E是AB⌢的中点∴⊙ECB=⊙CBM=⊙ABE=45º,∴BE=AB ×cos45 °=5√2CM=BC×cos45°=6×√22=3√2∵CB⌢=CB⌢∴∠CAB=∠CEB∴cos∠CEB=cos∠CAB=4 5∴EM= BE×cos∠CEB=5√2×45=4√2∴CE=CM+EM= 3√2+4√2=7√2∴CE的长为7√2.。

中考专题复习[33]ZZzzl圆的切线的证明

中考专题复习[33]ZZzzl圆的切线的证明

证明:作CE⊥AB于E,
连接AC、OC、BC, ∵ AB是⊙O的直径,
D
C
1 3 2
A E
O
B
∴ ∠ACB = 90°,∴ ∠2 + ∠ACO = 90°,
又∵ CD是⊙O的切线,∴ OC⊥DC, ∴ ∠1 + ∠ACO = ∠DCO = 90°, ∴ ∠1 = ∠2, 又∵ OC = OB,∴ ∠2 = ∠B,∴ ∠1 = ∠B,
A O C E B D
∵ ∠B = ∠D, ∠CAE = ∠B,
∴ ∠D = ∠CAE,
∴ ∠CAE + ∠DAC = ∠D + ∠DAC = 90°, 即∠DAE = 90°, ∴ OA⊥AE, ∴ AE是⊙O的切线.
3
二、例题讲解 2. 如图,AB是半圆⊙O的直径,C为半圆上的一点,CD切⊙O 于点C,AD⊥CD于D,以C为圆心CD为半径作圆C, 求证:AB是⊙C的切线.
又AC = AC, ∠CDA = ∠CEA = 90°,
∴ △ACD≌△ACE,
∴ CE = CD, ∴ AB是⊙C的切线.
5
三、巩固练习 1. 如图,已知∠AOB = 30°,M是OA边上任意一点,以M为 圆心,2 cm为半径作⊙M,当OM = ____ 4 cm时,⊙M与OB
相切.
分析:作MC⊥OB于C, 当MC = 2 cm时,⊙M与OB相切, ∵ ∠O = 30°, ∴ OM = 2MC = 2×2 = 4(cm)
O M
)30°
A
C
B
6
三、巩固练习 2. 如图AB是⊙O的直径,OD⊥BC与弦BC于点F,交⊙O于E, ∠AEC = ∠ODB, (1)判断直线BD与⊙O的位置关系,并给出证明;

中考复习证明圆的切线的两种方法

中考复习证明圆的切线的两种方法

中考复习证明圆的切线的两种方法证明圆的切线有两种方法,其中一种是通过切线与半径的关系来证明,另一种是通过圆的切线与半径的垂直关系来证明。

首先,我们来看第一种方法。

1.通过切线与半径的关系证明:设圆的圆心为O,半径为r,切线与圆的切点为A。

由圆的性质可知,半径与切线在切点处垂直,因此OA⊥TA。

又因为同一条直线上的两个垂直角相等,所以∠OTA=90°。

设切线与半径的交点为B,连接OB。

由于切线只有一个触点,所以TA=TB=r,且AB为直径。

在△OAB中,∠OAB=90°,所以角OAB也是直角,即AB垂直于OA。

综上所述,切线与半径在切点处垂直,即切线是与半径垂直的直线。

接下来,我们来看第二种方法。

2.通过圆的切线与半径的垂直关系证明:设圆的圆心为O,半径为r,切线与圆的切点为A。

由圆的性质可知,切线与半径在切点处垂直,即OA⊥AT。

在△OAT中,角AOT是圆心角,它对应的弧AT是它所对的弧,所以∠AOT=1/2arc(AT)。

而角AOT是直角,所以∠AOT=90°。

所以1/2arc(AT)=90°,即arc(AT)=180°,即AT是整个圆的弧。

同理可知切线与半径相交于切点处的弧也是整个圆的弧。

所以切点处的弧为整个圆的弧,即切线与半径相交于切点处的弧都是整个圆的弧。

综上所述,切线与半径在切点处相交的弧都是整个圆的弧,即切线与半径在切点处垂直。

综合两种方法的证明,我们可以得出圆的切线与半径在切点处垂直,并且切线与半径相交于切点处的弧都是整个圆的弧。

这就是证明圆的切线的两种方法的过程。

注:以上只是两种常用的证明方法,实际上还有其他一些方法来证明圆的切线的性质。

中考切线题目中证垂直的四种方法

中考切线题目中证垂直的四种方法

中考切线题目中证垂直的四种方法在中学数学中,切线是一种与曲线相切、且仅与曲线相切于一个点的直线。

在中考数学中,经常会出现求切线的题目,其中有一类题目是要求证明切线与另一条直线垂直。

下面将介绍四种常用的方法来证明切线与直线垂直的情况。

一、直线与切线的斜率互为相反数假设直线的方程为y = kx + b,曲线的方程为f(x) = g(x),则切线的斜率为f'(a),其中a为曲线上的某一点。

如果要证明切线与直线垂直,就需要证明斜率k与f'(a)为互为相反数。

证明:由于切线与曲线相切于点(a, f(a)),所以切线的方程为y - f(a) = f'(a)(x - a)。

将直线方程代入切线方程,得到kx + b - f(a) = f'(a)(x - a)。

整理得(k - f'(a))x = b - f(a) + af'(a)。

由于x的系数为0,所以k - f'(a) = 0,即k = -f'(a)。

因此,当直线的斜率k与切线的斜率f'(a)互为相反数时,直线与切线垂直。

二、直线与曲线的切点的斜率之和为0假设直线的方程为y = kx + b,曲线的方程为f(x) = g(x),则直线与曲线的交点坐标为(x1, f(x1))。

如果要证明切线与直线垂直,就需要证明切线的斜率f'(x1)与直线的斜率k之和为0。

证明:由于切线与曲线相切于点(x1, f(x1)),所以切线的方程为y - f(x1) = f'(x1)(x - x1)。

将直线方程代入切线方程,得到kx +b - f(x1) = f'(x1)(x - x1)。

整理得(k - f'(x1))x = b - f(x1) + x1f'(x1)。

由于x的系数为0,所以k - f'(x1) = 0,即k = f'(x1)。

因此,当直线的斜率k与切线的斜率f'(x1)之和为0时,直线与切线垂直。

切线的证明

切线的证明

中考切线分析证明切线的方法:1.(已知一条切线证明另一条也是切线)通用的方法是三角形全等如果这两条切线相等可以运用两个等腰三角形进行证明,此种方法为等量代换法。

2.(已知中弦长和半径相等或者根据条件可以找到特殊角)通用的方法就是将要证明的角分为两部分去寻找特殊角的度数,然后证明相加为90°3.(已知角之间的相等关系)通用的方法就是在已知条件中寻找直角三角形,将角之间的相等关系转移到要证明的位置,进而得出90°这是切线证明中的三种类型,具体哪种要根据已知条件具体分析。

学会运用上面几种方法,切忌随便乱找关系导致题的分析思路不到位。

步骤方面需注意:经过半径的外端并且垂直与半径的直线是圆的切线。

因此写过程的时候最终要说明谁是半径,要证明的线与半径垂直。

切线中求长度的方法:(1)勾股定理。

直接由线段长度运用勾股定理和间接设未知数的方式运用勾股定理。

在圆中经常体现在垂径定理的运用中。

(2)相似三角形。

可以已知两条线段或三条线段就能求长度。

已知两条线段是在两个三角形有公共的一条边(不是对应边)的情况下,或者类似摄影定理的模型下就用到相似三角形。

(3)锐角三角函数。

已知中有角之间的相等关系,并且此角能够转移到直角三角形中才能运用。

备注:锐角三角函数和相似可以通用的情况是在直角三角形中,锐角三角函数更不容易出错,建议用三角函数去解决问题。

有时候在解决切线的题时,以上方法综合运用才能将问题解决。

切线的证明(09石景山一模)1.已知:如图,点A 是⊙O 上一点,半径OC 的延长线与过点A 的直线交于点B ,BC OC =,OB AC 21=. (1)求证:AB 是⊙O 的切线;(2)若︒=∠45ACD ,2=OC ,求弦CD 的长.(09西城一摸)2.已知:如图,AB 为⊙O 的弦,过点O 作AB 的平行线,交⊙O 于点C ,直线OC 上一点D 满足∠D =∠ACB .(1)判断直线BD 与⊙O 的位置关系,并证明你的结论;(2)若⊙O 的半径等于4,4tan 3ACB ∠=,求CD 的长.(09昌平一摸) 3.如图,点A B F 、、在O 上,30AFB ∠=︒,OB 的延长线交直线AD 于点D ,过点B 作BC AD ⊥于C ,60CBD ∠=︒,连接AB . (1)求证:AD 是O 的切线; (2)若6AB =,求阴影部分的面积.A第19题AA4.(本小题满分5分)如图,以等腰ABC∆中的腰AB为直径作⊙O,交底边BC于点D.过点D作DE AC⊥,垂足为E.(I)求证:DE为⊙O的切线;(II)若⊙O的半径为5,60BAC∠=,求DE的长.(09房山一摸)5、(本小题满分5分)已知:如图,在△ABC中,90ACB∠=,∠ABC的平分线BD交AC于点D,DE⊥DB交AB于点E,过B、D、E三点作⊙O.(1)求证:AC是⊙O的切线;(2)设⊙O交BC于点F,连结EF,若BC=9, CA=12.求EFAC的值.(09门头沟一摸)6.(本小题满分5分)已知:如图,AB是⊙O的直径,E是AB延长线上的一点,D是⊙O上的一点,且AD 平分∠FAE,ED⊥AF交AF的延长线于点C.(1)判断直线CE与⊙O的位置关系,并证明你的结论;(2)若AF∶FC=5∶3,AE=16,求⊙O的直径ABO·ADC B7.(本小题满分5分)如图,点D 是⊙O 直径CA 的延长线上一点,点B 在⊙O 上,且AB =AD =AO . (1)求证:BD 是⊙O 的切线;(2)若点E 是劣弧BC 上一点,弦AE 与BC 相交于点F ,且CF =9,cos ∠BFA =32,求EF 的长.(09顺义一摸)8、 已知:如图,⊙O 的直径AB =8cm ,P 是AB 延长线上的一点,过点P 作⊙O 的切线,切点为C ,连接AC . (1) 若120ACP ∠=︒,求阴影部分的面积;(2)若点P 在AB 的延长线上运动,CPA ∠的平分线交AC 于点M ,∠CMP 的大小是否发生变化?若变化,请说明理由;若不变,求出∠CMP 的度数.(09东城一摸)9.已知:如图,在△ABC 中,AB = AC ,点D 是边BC 的中点.以BD 为直径作圆O ,交边AB 于点P ,联结PC ,交AD 于点E . (1)求证:AD 是圆O 的切线;(2)若PC 是圆O 的切线,BC = 8,求DE 的长.(09怀柔一摸) 10.(本小题满分5分)如图,ΔABC 中,AC=BC ,以BC 上一点O 为圆心、OB 为半径作⊙O 交AB 于点D ,已知经过点D 的⊙O 切线恰好经过点C .(1)试判断CD 与AC 的位置关系,并证明;(2)若ΔACB ∽ΔCDB ,且AC=3,求圆心O 到直线AB 的距离.AAB CD PE .O (第21题)DCE CB11.已知:如图,△ABC 内接于⊙O ,点D 是AB 边的中点,且∠BAC +∠DCB=90°. 试判断△ABC 的形状并证明.(09延庆一摸)12.(本题满分5分)在Rt △ABC 中,∠C=90, BC =9, CA =12,∠ABC 的平分线BD 交AC 于点D ,DE ⊥DB 交AB 于点E ,⊙O 是△BDE 的外接圆,交BC 于点F (1)求证:AC 是⊙O 的切线;(2)联结EF ,求EFAC的值.(09密云一摸)13.(本小题满分5分)如图,四边形ABCD 内接于O ,BD 是O 的直径,AE CD ⊥于E ,DA 平分∠BDE .(1)求证:AE 是O 的切线;(2)若30,1,DBC DE cm ∠=︒=求BD 的长.(09平谷一摸)14. 如图,AB 是⊙O 的直径,⊙O 交BC 的中点 于D ,DE AC ⊥,E 是垂足. (1)求证:DE 是⊙O 的切线; (2)如果AB=5,tan ∠B=21,求CE 的长.A (第19题)A15.如图,△ABC 中,AB =AE ,以AB 为直径作⊙O 交BE 于C ,过C 作CD ⊥AE 于D , DC 的延长线与AB 的延长线交于点P . (1)求证:PD 是⊙O 的切线; (2)若AE =5,BE =6,求DC 的长.(09通州二模)16. 如图:AB 是⊙O 的直径,AD 是弦,22.5DAB ∠=,延长AB 到点C , 使得2ACD DAB ∠=∠.(1)求证:CD 是⊙O的切线; (2)若AB =,求BC 的长.(09房山二模)17.(本小题满分5分)已知:如图,AB 为⊙O 的直径,AD 为弦,∠DBC =∠A . (1)求证: BC 是⊙O 的切线;(2)若OC ∥AD ,OC 交BD 于E ,BD=6,CE=4,求AD 的长.(09大兴二模)18.如图,点C 在以AB 为直径的⊙O 上,CD AB ⊥于P ,设AP a PB b ==,.(1)求弦CD 的长;(2)如果10a b +=,求ab 的最大值,并求出此时a b ,的值.(09东城二模)19. 如图,已知⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,D 是AB 延长线的一点,AE ⊥CD 交DC 的延长线于E ,CF ⊥AB 于F ,且CE =CF . (1) 求证:DE 是⊙O 的切线;(2) 若AB =6,BD =3,求AE 和BC 的长.A BADA20.如图,⊙O 的直径4=AB ,点P 是AB 延长线上的一点,过P 点作⊙O 的切线,切点为C ,联结AC .(1)若︒=∠30CPA ,求PC 的长;(2)若点P 在AB 的延长线上运动,CPA ∠的平分线交AC 于点M .你认为CMP ∠的大小是否发生变化?若变化,请说明理由;若不变化,求出CMP ∠的大小.(09昌平二模) 21.如图,点P 在半O 的直径BA 的延长线上,2AB PA =,PC 切半O 于点C ,连结BC .(1)求P ∠的正弦值;(2)若半O 的半径为2,求BC 的长度.(09门头沟二模)22. (本小题满分5分)已知:如图,AB 是⊙O 的直径,C 是⊙O 上的一点,且∠BCE =∠CAB ,CE 交AB 的延长线于点E ,AD ⊥AB ,交EC 的延长线于点D . (1)判断直线DE 与⊙O 的位置关系,并证明你的结论; (2)若CE =3,BE =2,求CD 的长.(09延庆二模)23. 点D 是⊙O 的直径CA 延长线上一点,点B 在⊙O 上,且AB =AD =AO . ⑴求证:BD 是⊙O 的切线.⑵若点E 是劣弧BC 上一点,AE 与BC 相交于点F ,且△BEF 的面积为8,cos ∠BFA =32,求△ACF 的面积.第19题(第19题)24. (本小题7分)已知:在⊙O 中,AB 是直径,AC 是弦,OE ⊥AC 于点E ,过点C 作直线FC ,使∠FCA =∠AOE ,交 AB 的延长线于点D.(1)求证:FD 是⊙O 的切线;(2)设OC 与BE 相交于点G ,若OG =2,求⊙O半径的长;(3)在(2)的条件下,当OE =3时,求图中阴影部分的面积.(09崇文二模)25.如图, AB 是⊙O 的直径,M 是线段OA 上一点,过M 作AB 的垂线交AC 于点N ,交BC 的延长线于点E ,直线CF 交EN 于点F ,且∠ECF =∠E . (1)证明CF 是⊙O 的切线;(2)设⊙O 的半径为1,且AC =CE AM 的长.(09西城二模)26.如图,等腰△ABC 中,AC=BC ,⊙O 为△ABC 的外接圆,D 为BC 上一点, CE ⊥AD 于E . 求证:AE= BD +DE .A27.如图,△ABC 中,AB =10,BC =8,AC =6,AD 是∠BAC 的角平分线,以AB 上一点O 为圆心,AD 为弦作⊙O . (1)求证:BC 是⊙O 的切线; (2)求⊙O 的半径.(08丰台一摸)28.已知:如图,以ABC △的边AB 为直径的O 交边AC 于点D ,且过点D 的切线DE平分边BC .(1)求证:BC 是O 的切线;(2)当ABC △满足什么条件时,以点O 、B 、E 、D 为顶点的四边形是正方形?请说明理由.(08大兴二模) 29.(本题满分5分)如图,AB 是半⊙O 的直径,弦AC 与AB 成30°的角,. (1)求证:CD 是半⊙O 的切线; (2)若2=OA ,求AC 的长.(08朝阳一摸)30.(本小题满分5分)已知:如图,在⊙O 中,弦CD 垂直直径AB ,垂足为M ,AB=4,CD=E 在AB 的延长线上,且tan 3E =. (1)求证:DE 是⊙O 的切线;(2)将△ODE 平移,平移后所得的三角形记为△O D E '''.求当点E '与点C 重合时,△O D E '''与⊙O 重合部分的面积.30.(本小题满分5分)已知:如图,AB 为⊙O 的直径,AC 、BC 为弦,点P 为 上一点,AB=10,AC ∶BC=3∶4. (1)当点P 与点C 关于直线AB 对称时(如图①),求PC 的长; (2)当点P 为 的中点时(如图②),求PC 的长. 解:(1) (2)(08石景山一摸) 31.(本小题满分5分)已知:如图,AB 是⊙O 的直径,D 是BC 的中点,DE ⊥AC 交AC 的延长线于E , (1)求证:DE 是⊙O 的切线;(2)若∠BAE =60°,⊙O 的半径为5,求DE 的长.(08顺义一摸)32.已知:如图,AB 为⊙O 的直径,D 是弧BC 的中点,DE ⊥AC 交AC 的延长线于点E ,⊙O 的切线BF 交AD 的延长线于点F .(1)求证:DE 是⊙O 的切线;(2)若DE =3,⊙O 的半径为5,求BF 的长.(第19题)ACBACA(08延庆二模)33. (本题满分6分)已知:如图6,以一底角为67.5°的等腰梯形ABCD 的一腰BC 为直径做⊙O ,交底AB 于E ,且恰与另一腰AD 相切于M; (1)求证:△EOM 为等腰直角三角形;(2)求AEBE 的值.(08昌平二模) 34. 如图,⊙O 的直径AB 交弦CD 于点M ,且M 是CD 的中点.过点B 作BE ∥ CD ,交AC的延长线于点E .连接BC . (1)求证:BE 为⊙O 的切线; (2)如果CD =6,tan ∠BCD=21,求⊙O 的直径的长.(08崇文一摸)35.如图1,在Rt △ABC 中,∠ACB =90°,∠A =30°,BC =动点O 在AC 边上,以点O 为圆心,OA 长为半径的⊙O 分别交AB 、AC 于点D 、E ,连结CD .(1)若点D 为AB 边的中点(如图2),请你判断直线CD 与⊙O 的位置关系,并证明你的结论; (2)当∠ACD =15°时,请你求出此时弦AD 的长.BA(08大兴一摸)36.(本小题满分5分)如图,AB 是⊙O 的弦,OA OC ⊥交AB 于点C ,过B 的直线交OC 的延长线于点E ,当BECE =时,直线BE 与⊙O 有怎样的位置关系?请说明理由.第18题图 (08东城二模)37. 如图,已知等边△ABC ,以边BC 为直径的半圆与边AB 、AC 分别交于点D 、点E 。

中考总复习圆切线专题

中考总复习圆切线专题

题型专项( 八)与切线有关的证明与计算种类 1 与全等三角形相关1.(2016·梧州)如图,过⊙O上的两点连结 CD ,交⊙ O 于点 E ,F,过圆心A ,B 分别作切线,交于O 作 OM ⊥ CD ,垂足为点BO,AO M.的延伸线于点C, D ,求证:(1) △ ACO ≌△ BDO ;(2)CE = DF.证明:(1) ∵ AC , BD 分别是⊙O 的切线,∴∠ A=∠ B = 90° .又∵ AO = BO ,∠ AOC =∠ BOD ,∴△ ACO ≌△ BDO.(2) ∵△ ACO ≌△ BDO ,∴OC = OD.又∵ OM ⊥ CD ,∴ CM = DM.又∵ OM ⊥EF ,点 O 是圆心,∴EM = FM.∴CM - EM = DM - FM.∴CE =DF.2.(2016·玉林模拟)如图,AB是⊙O的直径,∠BAC=60°,P是OB上一点,过P作AB的垂线与 AC 的延伸线交于点 Q,过点 C 的切线 CD 交 PQ 于点 D,连结 OC.(1)求证:△ CDQ 是等腰三角形;(2)假如△ CDQ ≌△ COB ,求 BP∶ PO 的值.解: (1) 证明:由已知得∠ACB = 90°,∠ ABC = 30° .∴∠ Q= 30°,∠ BCO =∠ ABC = 30 ° .∵CD 是⊙ O 的切线, CO 是半径,∴CD ⊥ CO.∴∠ DCQ =∠ BCO = 30° .∴∠ DCQ =∠ Q.故△ CDQ 是等腰三角形.(2)设⊙ O 的半径为 1,则 AB = 2, OC= 1, BC = .∵等腰三角形CDQ 与等腰三角形COB 全等,∴CQ = CB = .∴AQ = AC + CQ= 1+ .∴AP = AQ = .∴B P = AB - AP = .∴PO = AP- AO = .∴B P ∶ PO= .3.(2016·柳州)如图,AB为△ABC外接圆⊙O的直径,点P是线段CA的延伸线上一点,点 E 在弧上且知足 PE2= PA· PC,连结 CE , AE , OE 交 CA 于点 D.(1) 求证:△ PAE ∽△ PEC;(2) 求证: PE 为⊙ O 的切线;(3) 若∠ B= 30°, AP= AC ,求证: DO =DP.证明: (1) ∵ PE2= PA·PC ,∴= .又∵∠ APE =∠ EPC,∴△ PAE ∽△ PEC.(2) ∵△ PAE ∽△ PEC,∴∠ PEA =∠ PCE.∵∠ PCE=∠ AOE ,∴∠ PEA =∠ AOE. ∵ OA = OE,∴∠ OAE =∠ OEA.∵∠ AOE +∠ OEA +∠ OAE = 180°,∴∠ AOE + 2∠ OEA = 180°,即2∠ PEA + 2∠OEA = 180 ° .∴∠ PEA +∠ OEA =90 ° .∴PE 为⊙ O 的切线.(3)设⊙ O 的半径为 r,则 AB = 2r.∵∠ B = 30 °,∠ PCB = 90°,∴ AC = r, BC = r. 过点 O 作 OF ⊥ AC 于点 F,∴O F = r.∵ AP = AC ,∴AP = .∵ PE2= PA·PC,∴ PE= r.在△ ODF 与△ PDE 中,∴△ ODF ≌△ PDE. ∴ DO = DP.种类 2与相像三角形相关4.(2016·泰州)如图,在△ABC中,∠ACB BC 于点 E,连结 AE 交 CD 于点 P,交⊙ O =90°,在 D 为 AB 上一点,以 CD 为直径的⊙ O 交于点 F ,连结 DF,∠ CAE =∠ ADF.(1)判断 AB 与⊙ O 的地点关系,并说明原因;(2)若 PF∶ PC= 1∶ 2, AF = 5,求 CP 的长.解: (1)AB 是⊙ O 切线.原因:∵∠ ACB = 90°,∴∠ CAE +∠ CEA = 90 °.∵∠ CAE =∠ ADF ,∠ CDF =∠ CEA ,∴∠ ADF +∠ CDF = 90° .∴ AB 是⊙ O 切线.(2) 连结 CF.∵∠ ADF +∠ CDF = 90°,∠ PCF+∠ CDF = 90°,∴∠ ADF =∠ PCF.∴∠ PCF=∠ PAC.又∵∠ CPF=∠ APC ,∴△ PCF∽△ PAC. ∴= .∴P C 2= PF·PA. 设 PF= a,则 PC= 2a.∴4a2=a(a+ 5).∴a= .∴P C = 2a= .5.(2015·北海)如图,AB,CD为⊙O的直径,弦AE∥CD,连结BE交CD于点F,过点E作直线 EP 与 CD 的延伸线交于点 P,使∠ PED=∠ C.(1)求证: PE 是⊙ O 的切线;(2)求证: ED 均分∠ BEP;(3)若⊙ O 的半径为 5, CF= 2EF,求 PD 的长.解: (1) 证明:连结OE.∵CD 是圆 O 的直径,∴∠ CED = 90 °.∵OC = OE,∴∠ C=∠ OEC.又∵∠ PED =∠ C,∴∠ PED =∠ OEC.∴∠ PED +∠ OED =∠ OEC +∠ OED = 90°,即∠ OEP = 90 ° .∴OE ⊥ EP.又∵点 E 在圆上,∴PE 是⊙ O 的切线.(2)证明:∵ AB , CD 为⊙ O 的直径,∴∠ AEB =∠ CED = 90 °.∴∠ AEC =∠ DEB( 同角的余角相等).又∵∠ PED =∠ C, AE ∥ CD ,∴∠ PED =∠ DEB ,即ED 均分∠ BEP.(3) 设 EF= x ,则 CF= 2x.∵⊙ O 的半径为5,∴O F =2x - 5.在Rt△ OEF 中, OE 2= EF2+ OF2,即 52= x2+ (2x - 5) 2,解得 x=4,∴EF = 4.∴B E = 2EF= 8, CF= 2EF = 8.∴D F = CD- CF = 10- 8= 2.∵AB 为⊙ O 的直径,∴∠ AEB = 90 °.∵AB = 10, BE =8,∴ AE = 6.∵∠ BEP =∠ A ,∠ EFP=∠ AEB = 90°,∴△ EFP∽△ AEB.∴=,即= .∴P F= .∴P D = PF- DF =- 2= .6.(2014·桂林)如图,△ABC为⊙O的内接三角形,P为BC延伸线上一点,∠PAC=∠B,AD为⊙ O 的直径,过点 C 作 CG⊥ AD 于点 E,交 AB 于点 F,交⊙ O 于点 G.(1)判断直线 PA 与⊙ O 的地点关系,并说明原因;(2)求证: AG 2= AF·AB ;(3)若⊙ O 的直径为 10 , AC = 2, AB = 4,求△ AFG 的面积.解: (1)PA 与⊙ O 相切.原因:连结CD.∵AD 为⊙ O 的直径,∴∠ ACD = 90 ° .∴∠ D +∠ CAD = 90 °.∵∠ B =∠ D ,∠ PAC =∠ B ,∴∠ PAC =∠ D.∴∠ PAC +∠ CAD = 90°,即 DA ⊥ PA.∵点 A 在圆上,∴ PA 与⊙ O 相切.(2)证明:连结 BG.∵AD 为⊙ O 的直径, CG⊥ AD ,∴= .∴∠ AGF =∠ ABG.∵∠ GAF =∠ BAG ,∴△ AGF ∽△ ABG.∴AG ∶ AB = AF ∶ AG. ∴ AG 2= AF·AB.(3) 连结 BD.∵AD 是直径,∴∠ ABD = 90° .∵AG 2= AF·AB , AG = AC = 2, AB = 4,∴AF == .∵CG ⊥ AD ,∴∠ AEF =∠ ABD = 90 ° .∵∠ EAF =∠ BAD ,∴△ AEF ∽△ ABD.∴=,即=,解得 AE = 2.∴E F == 1.∵EG == 4,∴F G =EG - EF= 4-1= 3.∴S△AFG= FG·AE =× 3× 2= 3.种类 3与锐角三角函数相关7.(2014·梧州)如图,已知⊙O是以BC为直径的△ABC的外接圆,OP∥AC,且与BC的垂线交于点 P, OP 交 AB 于点 D , BC , PA 的延伸线交于点 E.(1)求证: PA 是⊙ O 的切线;(2)若 sin∠ E=, PA = 6,求 AC 的长.解: (1) 证明:连结OA.∵AC ∥ OP,∴∠ AOP =∠ OAC ,∠ BOP =∠ OCA.∵OA = OC ,∴∠ OCA =∠ OAC. ∴∠ AOP =∠ BOP.又∵ OA = OB , OP= OP,∴△ AOP ≌△ BOP. ∴∠ OAP =∠ OBP.∵B P ⊥ CB ,∴∠ OAP =∠ OBP = 90° .∴ OA ⊥ PA.∴PA 是⊙ O 的切线.(2)∵ PB⊥ CB ,∴ PB 是⊙ O 的切线.又∵ PA 是⊙ O 的切线,∴PA =PB= 6.又∵ sin E===,∴ AO = 3.在Rt△ OPB 中, OP== 3.∵B C 为⊙ O 直径,∴∠ CAB = 90° .∴∠ CAB =∠ OBP = 90°,∠ OCA =∠ BOP.∴△ ACB ∽△ BOP. ∴= .∴AC === .8.(2015·贵宾)已知⊙O是以AB为直径的△ABC的外接圆,OD∥BC交⊙O于点D,交AC于点E,连结 AD , BD , BD 交 AC 于点 F.(1)求证: BD 均分∠ ABC ;(2)延伸 AC 到点 P,使 PF= PB,求证: PB 是⊙ O 的切线;(3)假如 AB =10 , cos∠ ABC =,求 AD.解: (1) 证明:∵ OD ∥ BC ,∴∠ ODB =∠ CBD.∵OB = OD ,∴∠ OBD =∠ ODB.∴∠ CBD =∠ OBD.∴B D 均分∠ ABC.(2)证明:∵⊙ O 是以 AB 为直径的△ ABC 的外接圆,∴∠ ACB = 90° .∴∠ CFB +∠ CBF = 90° .∵P F= PB,∴∠ PBF=∠ CFB.由(1) 知∠ OBD =∠ CBF ,∴∠ PBF +∠ OBD = 90° .∴∠ OBP = 90° .∴PB 是⊙ O 的切线.(3)∵在 Rt△ ABC 中,∠ ACB = 90°, AB =10,∴cos∠ ABC === .∴B C = 6, AC == 8.∵OD ∥ BC ,∴△ AOE ∽△ ABC ,∠ AED =∠ OEC = 180 °-∠ ACB = 90 °.∴==,== .∴AE = 4, OE= 3.∴D E = OD - OE= 5- 3= 2.∴AD === 2.9.(2016·柳州模拟)如图,已知:AC是⊙O的直径,PA⊥AC,连结OP,弦CB∥OP,直线PB 交直线 AC 于点 D , BD = 2PA.(1)证明:直线 PB 是⊙ O 的切线;(2)研究线段 PO 与线段 BC 之间的数目关系,并加以证明;(3)求 sin∠ OPA 的值.解: (1) 证明:连结OB.∵B C ∥ OP, OB =OC ,∴∠ BCO =∠POA ,∠CBO =∠ POB ,∠ BCO =∠ CBO.∴∠ POA =∠ POB. 又∵ PO = PO, OB = OA ,∴△ POB ≌△ POA. ∴∠ PBO =∠ PAO = 90° .∴PB 是⊙ O 的切线.(2)2PO = 3BC.( 写 PO= BC 亦可 )证明:∵△ POB ≌△ POA ,∴ PB= PA.∵B D = 2PA ,∴ BD = 2PB.∵B C ∥ PO,∴△ DBC ∽△ DPO.∴== .∴ 2PO= 3BC.(3) ∵ CB ∥ OP,∴△ DBC ∽△ DPO.∴==,即 DC = OD.∴OC = OD. ∴ DC= 2OC.设OA = x, PA = y.则 OD= 3x, OB = x , BD = 2y.在Rt△ OBD 中,由勾股定理得 (3x) 2= x2+ (2y) 2,即 2x2= y2.∵x> 0, y> 0,∴ y= x,OP == x.∴s in ∠ OPA ==== .种类 4与特别四边形相关10.(2016·玉林)如图,AB是⊙O的直径,点C,D在圆上,且四边形AOCD是平行四边形,过点D 作⊙ O 的切线,分别交 OA 延伸线与 OC 延伸线于点 E, F,连结 BF.(1)求证: BF 是⊙ O 的切线;(2)已知圆的半径为 1,求 EF 的长.解: (1) 证明:连结OD.∵E F 为⊙ O 的切线,∴∠ ODF = 90 °.∵四边形AOCD 为平行四边形,∴AO = DC , AO ∥ DC.又∵ DO = OC = OA ,∴DO = OC = DC.∴△ DOC 为等边三角形.∴∠ DOC =∠ ODC = 60° .∵DC ∥ AO ,∴∠ AOD =∠ ODC =60 ° .∴∠ BOF = 180°-∠ COD -∠ AOD = 60° .在△ DOF 和△ BCF 中,∴△ DOF ≌△ BOF.∴∠ ODF =∠ OBF = 90° .∴BF 是⊙ O 的切线.(2)∵∠ DOF = 60°,∠ ODF =90°,∴∠ OFD = 30 °.∵∠ BOF = 60°,∠ BOF =∠ CFD +∠ E,∴∠ E =∠ OFD =30 ° .∴O F =OE.又∵ OD ⊥ EF,∴D E = DF.在Rt△ ODF 中,∠ OFD = 30 °.∴O F =2OD.∴D F === .∴E F = 2DF =2.11.(2016·宁波)如图,已知⊙O的直径AB = 10,弦 AC = 6,∠ BAC 的均分线交⊙O 于点 D ,过点D 作 DE ⊥ AC 交 AC 的延伸线于点 E.(1)求证: DE 是⊙ O 的切线;(2)求 DE 的长.解: (1) 证明:连结OD.∵AD 均分∠ BAC ,∴∠ DAE =∠ DAB.∵OA = OD ,∴∠ ODA =∠ DAO.∴∠ ODA =∠ DAE.∴OD ∥ AE.∵DE ⊥ AC ,∴OD ⊥ DE.∴DE 是⊙ O 切线.(2) 过点 O 作 OF ⊥ AC 于点 F.∴AF = CF= 3.∴O F === 4.∵∠ OFE =∠ DEF =∠ ODE = 90°,∴四边形OFED 是矩形.∴D E = OF = 4.12.(2015·桂林)如图,四边形ABCD是⊙O的内接正方形,AB=4,PC,PD是⊙O的两条切线,C, D 为切点.(1)如图 1,求⊙ O 的半径;(2)如图 1,若点 E 是 BC 的中点,连结 PE,求 PE 的长度;(3)如图 2,若点 M 是 BC 边上随意一点 (不含 B ,C),以点 M 为直角极点,在 BC 的上方作∠ AMN=90 °,交直线 CP 于点 N ,求证: AM = MN.解: (1) 连结 OD , OC.∵P C , PD 是⊙ O 的两条切线, C, D 为切点,∴∠ ODP =∠ OCP = 90° .∵四边形ABCD 是⊙ O 的内接正方形,∴∠ DOC = 90°, OD = OC.∴四边形DOCP 是正方形.∵AB = 4,∠ ODC =∠ OCD = 45°,∴DO = CO = DC·sin45°= 4×= 2.(2) 连结 EO, OP.∵点 E 是 BC 的中点,∴OE ⊥ BC ,∠ OCE = 45 °,则∠ EOP = 90° .∴EO = EC = 2, OP= CO= 4.∴P E== 2.(3)证明:在 AB 上截取 BF =BM.∵AB = BC , BF = BM ,∴AF =MC ,∠ BFM =∠ BMF = 45° .∵∠ AMN = 90°,∴∠ AMF +∠ NMC = 45°,∠ FAM +∠ AMF = 45° .∴∠ FAM =∠ NMC.∵由 (1) 得 PD = PC,∠ DPC = 90°,∴∠ DCP = 45° .∴∠ MCN = 135° .∵∠ AFM = 180 °-∠ BFM = 135 °,在△ AFM 和△ MCN 中,∴△ AFM ≌△ MCN( ASA).∴AM = MN.。

专题09 类比归纳专题:切线证明的常用方法压轴题二种模型全攻略(解析版)

专题09 类比归纳专题:切线证明的常用方法压轴题二种模型全攻略(解析版)
RtCBE RtHBE HL,
CB HB 8, 设 OE=OB=r, HO BH OB 8 r, OE2 OH 2 HE2, r2 (8 r)2 42. 解得: r = 5 故 O 的半径为 5 【点睛】本题主要考查了切线的证明、角平分线的性质定理以及全等三角形的判定与性质勾股定理,掌握 切线的证明、角平分线的性质定理以及全等三角形的判定与性质、勾股定理是解题关键. 5.(2023 秋·江苏·九年级专题练习)如图,在 ABC 中,C 90 ,点 E 在 AC 边上,BE 平分 ABC ,DE BE 交 AB 于 D , O 是△BDE 的外接圆.
AB 是 O 的直径, AEB 90 ,即 AEO OEB 90 , AE 平分 CAB , CAE EAB , OA OE , EAB AEO , BEF CAE , BEF AEO ,
BEF OEB 90 , OE EF , OE 是 O 的半径, EF 是 O 的切线. (2)设 O 的半径为 x , 则有 OE OB x , ∵ EF 是 O 的切线. ∴ OEF 90 , 在 RtOEF 中, OE 2 EF 2 OF 2 , x2 202 (x 10)2 , 解得 x 15, O 的半径为15 . 【点睛】本题考查了切线的性质与判定,勾股定理,熟练掌握切线的性质与判定是解题的关键. 4.(2022 秋·山西朔州·九年级校考期中)如图,在 ABC 中, C 90 , ABC 的平分线交 AC 于点 E,过 点 E 作 BE 的垂线交 AB 于点 F, O 是△BEF 的外接圆.
∵四边形 ABDE 是 O 的内接四边形, ∴ B AED 180 , ∵ DEC AED 180 , ∴ DEC B. ∵ AB AC , ∴ B C , ∴ DEC C , ∴ DE CD , ∵ DF AC , ∴ EF CF 1, ∴ AC AE EF CF 5 , ∴ AB 5 , ∴ O 的半径是 5 .

平面几何中的证明:中考数学切线与割线

平面几何中的证明:中考数学切线与割线

平面几何中的证明:中考数学切线与割线在平面几何中,切线与割线是经常出现的重要概念。

在中考数学中,对于这些概念的掌握以及对于切线、割线相应定理的证明都是非常重要的。

本文将介绍中考数学中切线和割线的基本概念以及相应的证明方法。

一、切线的概念所谓切线,是指一个曲线在某一点上的切线,即这条切线与曲线在该点处相切,并且仅在该点处相切。

二、割线的概念所谓割线,是指一个曲线的两点之间所经过的直线,其中这两点分别不在直线之上,相应地,这条直线也与曲线在这两点上相交。

三、切线定理1.定理一:曲线的任何一点处只有一条切线。

证明:假设曲线在某点处有两条不同的切线,则这两条切线将会构成一个三角形,在这个三角形中,切线段I和切线段II之间将会形成一个锐角或平角,而这是不可能的,因为这个角不可能大于九十度,也不可能小于零度。

所以,曲线在任何一点处只有一条切线。

2.定理二:切线垂直于半径。

证明:取代数较少的 Approa ch在圆心 O 处,画出半径 OA1 . 由于切点 A1 处的切线仅在该处与圆相切,所以在圆上以点 A1 为圆心绘制一条半径 A1 B 和半径 OA1 之间的夹角定义为β.此时,切点处的切线 T1 就与半径 OA1 处的半径 OA1 垂直;而对于这个锐角的余角β,由余角定理可知,β = α ,所以证毕。

3.定理三:切线与半径夹角相等的定理。

证明:如下图所示,在圆心 O 处,画出半径 OA1 . 对于点 A2(切点),连接 OA2 .则在Δ OA1 A2 中,β = α ,因为圆的半径和切线在切点处垂直。

又因为角β 与角γ 分别为Δ OA2 A1 中的内角和外角,所以γ = β = α (由内角和定理及外角定理可知)。

结合角γ 与角 A2 OA1 所对应的圆周角不等于 90°,即γ ≠ 90°,可以得出切线与半径夹角相等的定理:γ = α 。

四、割线定理1.定理一:割线与该圆的几何平均线段成正比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题解析——切线证明切线的性质定理: 圆的切线垂直于经过切点的半径切线的性质定理的推论1: 经过圆心且垂直于切线的直线必经过切点. 切线的性质定理的推论2: 经过切点且垂直于切线的直线必经过圆心 切线的判定定理: 经过半径的外端并且垂直于这条半径的直线是圆的切线. 切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。

一、要证明某直线是圆的切线,如果已知直线过圆上的某一个点,那么作出过这一点的半径,证明直线垂直于半径.【例1】如图1,已知AB 为⊙O 的直径,点D 在AB 的延长线上,BD =OB ,点C 在圆上,∠CAB =30º.求证:DC 是⊙O 的切线.思路:要想证明DC 是⊙O 的切线,只要我们连接OC ,证明∠OCD =90º即可.证明:连接OC ,BC .∵AB 为⊙O 的直径,∴∠ACB =90º. ∵∠CAB =30º,∴BC =21AB =OB . ∵BD =OB ,∴BC =21OD .∴∠OCD =90º. ∴DC 是⊙O 的切线.【评析】一定要分清圆的切线的判定定理的条件与结论,特别要注意“经过半径的外端”和“垂直于这条半径”这两个条件缺一不可,否则就不是圆的切线.图1【例2】如图2,已知AB为⊙O的直径,过点B作⊙O的切线BC,连接OC,弦AD∥OC.求证:CD是⊙O的切线.图2思路:本题中既有圆的切线是已知条件,又证明另一条直线是圆的切线.也就是既要注意运用圆的切线的性质定理,又要运用圆的切线的判定定理.欲证明CD是⊙O的切线,只要证明∠ODC=90º即可.证明:连接OD.∵OC∥AD,∴∠1=∠3,∠2=∠4.∵OA=OD,∴∠1=∠2.∴∠3=∠4.又∵OB=OD,OC=OC,∴△OBC≌△ODC.∴∠OBC=∠ODC.∵BC是⊙O的切线,∴∠OBC=90º.∴∠ODC=90º.∴DC是⊙O的切线.【例3】如图2,已知AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D.求证:AC平分∠DAB.图3思路:利用圆的切线的性质——与圆的切线垂直于过切点的半径.证明:连接OC.∵CD是⊙O的切线,∴OC⊥CD.∵AD⊥CD,∴OC∥AD.∴∠1=∠2.∵OC=OA,∴∠1=∠3.∴∠2=∠3.∴AC平分∠DAB.【评析】已知一条直线是某圆的切线时,切线的位置一般是确定的.在解决有关圆的切线问题时,辅助线常常是连接圆心与切点,得到半径,那么半径垂直切线.【例4】如图1,B、C是⊙O上的点,线段AB经过圆心O,连接AC、BC,过点C作CD⊥AB于D,∠ACD=2∠B.AC是⊙O的切线吗?为什么?解:AC是⊙O的切线.理由:连接OC,∵OC=OB,∴∠OCB=∠B.∵∠COD是△BOC的外角,∴∠COD=∠OCB+∠B=2∠B.∵∠ACD=2∠B,∴∠ACD=∠COD.∵CD⊥AB于D,∴∠DCO+∠COD=90°.∴∠DCO+∠ACD=90°.即OC⊥AC.∵C为⊙O上的点,∴AC是⊙O的切线.【例5】如图2,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB 的延长线上的一点,AE⊥DC交DC的延长线于点E,且AC平分∠EAB.求证:DE是⊙O的切线.证明:连接OC,则OA=OC,∴∠CAO=∠ACO,∵AC平分∠EAB,∴∠EAC=∠CAO=∠ACO,∴AE∥CO,又AE⊥DE,∴CO⊥DE,∴DE是⊙O的切线.二、直线与圆的公共点未知时须通过圆心作已知直线的垂直线段,证明此垂线段的长等于半径【例6】如图3,AB=AC,OB=OC,⊙O与AB边相切于点D.求证:AC是⊙O的切线证明:连接OD ,作OE ⊥AC ,垂足为E . ∵AB=AC,OB =OC .∴AO 为∠BAC 角平分线,∠DAO=∠EAO ∵⊙O 与AB 相切于点D , ∴∠BDO =∠CEO =90°.∵AO=AO ∴△ADO ≌△AEO ,所以OE =OD .∵OD 是⊙O 的半径,∴OE 是⊙O 的半径. ∴⊙O 与AC 边相切.【例7】 如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 交BC 于D ,交AC 于E ,B 为切点的切线交OD 延长线于F.求证:EF 与⊙O 相切.证明:连结OE ,AD. ∵AB 是⊙O 的直径, ∴AD ⊥BC. 又∵AB=BC , ∴∠3=∠4.∴BD=DE ,∠1=∠2.又∵OB=OE ,OF=OF , ∴△BOF ≌△EOF (SAS ). ∴∠OBF=∠OEF.⌒ ⌒∵BF 与⊙O 相切, ∴OB ⊥BF. ∴∠OEF=900. ∴EF 与⊙O 相切.说明:此题是通过证明三角形全等证明垂直的【例8】如图,AD 是∠BAC 的平分线,P 为BC 延长线上一点,且PA=PD.求证:PA 与⊙O 相切.证明一:作直径AE ,连结EC.∵AD 是∠BAC 的平分线, ∴∠DAB=∠DAC. ∵PA=PD , ∴∠2=∠1+∠DAC. ∵∠2=∠B+∠DAB , ∴∠1=∠B. 又∵∠B=∠E , ∴∠1=∠E ∵AE 是⊙O 的直径,∴AC ⊥EC ,∠E+∠EAC=900.∴∠1+∠EAC=900. 即OA ⊥PA.∴PA 与⊙O 相切.证明二:延长AD 交⊙O 于E ,连结OA ,OE. ∵AD 是∠BAC 的平分线,∴BE=CE ,∴OE ⊥BC.∴∠E+∠BDE=900.⌒ ⌒∵OA=OE,∴∠E=∠1.∵PA=PD,∴∠PAD=∠PDA.又∵∠PDA=∠BDE,∴∠1+∠PAD=900即OA⊥PA.∴PA与⊙O相切说明:此题是通过证明两角互余,证明垂直的,解题中要注意知识的综合运用. 【例9】如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M 求证:DM与⊙O相切.证明一:连结OD.∵AB=AC,∴∠B=∠C.∵OB=OD,∴∠1=∠B.∴∠1=∠C.∴OD∥AC.∵DM⊥AC,∴DM⊥OD.∴DM与⊙O相切证明二:连结OD,AD.∵AB是⊙O的直径,∴AD⊥BC.又∵AB=AC,∴∠1=∠2.∵DM⊥AC,∴∠2+∠4=900∵OA=OD,D∴∠1=∠3. ∴∠3+∠4=900. 即OD ⊥DM.∴DM 是⊙O 的切线说明:证明一是通过证平行来证明垂直的.证明二是通过证两角互余证明垂直的,解题中注意充分利用已知及图上已知.【例10】 如图,已知:AB 是⊙O 的直径,点C 在⊙O 上,且∠CAB=300,BD=OB ,D 在AB 的延长线上.求证:DC 是⊙O 的切线证明:连结OC 、BC. ∵OA=OC , ∴∠A=∠1=∠300.∴∠BOC=∠A+∠1=600.又∵OC=OB , ∴△OBC 是等边三角形. ∴OB=BC. ∵OB=BD , ∴OB=BC=BD. ∴OC ⊥CD.∴DC 是⊙O 的切线.说明:此题解法颇多,但这种方法较好.【例12】 如图,AB 是⊙O 的直径,CD ⊥AB ,且OA 2=OD ·OP. 求证:PC 是⊙O 的切线.证明:连结OC∵OA 2=OD ·OP ,OA=OC , ∴OC 2=OD ·OP ,OCOPOD OC . 又∵∠1=∠1, ∴△OCP ∽△ODC. ∴∠OCP=∠ODC. ∵CD ⊥AB , ∴∠OCP=900. ∴PC 是⊙O 的切线.说明:此题是通过证三角形相似证明垂直的【例13】 如图,ABCD 是正方形,G 是BC 延长线上一点,AG 交BD 于E ,交CD 于F.求证:CE 与△CFG 的外接圆相切.分析:此题图上没有画出△CFG 的外接圆,但△CFG 是直角三角形,圆心在斜边FG 的中点,为此我们取FG 的中点O ,连结OC ,证明CE ⊥OC 即可得解.证明:取FG中点O,连结OC.∵ABCD是正方形,∴BC⊥CD,△CFG是Rt△∵O是FG的中点,∴O是Rt△CFG的外心.∵OC=OG,∴∠3=∠G,∵AD∥BC,∴∠G=∠4.∵AD=CD,DE=DE,∠ADE=∠CDE=450,∴△ADE≌△CDE(SAS)∴∠4=∠1,∠1=∠3.∵∠2+∠3=900,∴∠1+∠2=900.即CE⊥OC.∴CE与△CFG的外接圆相切二、若直线l与⊙O没有已知的公共点,又要证明l是⊙O的切线,只需作OA⊥l,A为垂足,证明OA是⊙O的半径就行了,简称:“作垂直;证半径”【例14】如图,AB=AC,D为BC中点,⊙D与AB切于E点.求证:AC与⊙D相切.证明一:连结DE,作DF⊥AC,F是垂足.∵AB是⊙D的切线,∴DE⊥AB.∵DF⊥AC,∴∠DEB=∠DFC=900.∵AB=AC,∴∠B=∠C.又∵BD=CD,∴△BDE≌△CDF(AAS)∴DF=DE.∴F在⊙D上.∴AC是⊙D的切线证明二:连结DE,AD,作DF⊥AC,F是垂足.∵AB与⊙D相切,∴DE⊥AB.∵AB=AC,BD=CD,∴∠1=∠2.∵DE⊥AB,DF⊥AC,∴DE=DF.∴F在⊙D上.∴AC与⊙D相切.说明:证明一是通过证明三角形全等证明DF=DE的,证明二是利用角平分线的性质证明DF=DE的,这类习题多数与角平分线有关.【例15】已知:如图,AC,BD与⊙O切于A、B,且AC∥BD,若∠COD=900.求证:CD是⊙O的切线.证明:连结OA,OB,作OE⊥CD于E,延长DO交CA延长线于F.∵AC,BD与⊙O相切,∴AC⊥OA,BD⊥OB.∵AC∥BD,∴∠F=∠BDO.又∵OA=OB,∴△AOF≌△BOD(AAS)∴OF=OD.∵∠COD=900,∴CF=CD,∠1=∠2.又∵OA⊥AC,OE⊥CD,∴OE=OA.∴E点在⊙O上.∴CD是⊙O的切线.。

相关文档
最新文档