北京理工大学自动控制实验报告模板
北理工自动控制理论实验报告

北理工自动控制理论实验报告摘要:本实验主要研究和探索自动控制理论在北理工的应用。
通过实验验证控制系统在不同环境下的稳定与准确性,并针对实验结果进行分析和总结。
引言:自动控制理论是近年来快速发展的学科之一,广泛应用于工业自动化系统、航空航天、交通运输等领域。
在北理工学习自动控制理论的过程中,本实验通过搭建实验系统,验证了自动控制理论的实际应用。
实验目的:1.验证控制系统的稳定性;2.检测不同环境下控制系统的输出准确性;3.分析控制系统参数的优化方法。
实验原理:本实验使用PID控制器来实现对控制系统的控制。
PID控制器是一种常见且广泛应用的控制方式,具有简单且高效的优点。
PID控制器的原理是根据系统测量值与期望值的误差计算出一个综合的控制值,通过反馈作用对系统进行调整。
其中,P项(比例项)、I项(积分项)和D项(微分项)表示了系统的偏差、系统稳定性和系统响应速度。
实验装置:实验所需的装置包括一台控制系统、传感器和执行器。
控制系统通过传感器获取反馈信号,将其与期望值进行比较,并通过执行器调节控制系统的输出。
实验步骤:1.搭建实验系统,包括控制器、传感器和执行器;2.设定期望值,将期望值输入控制系统;3.设置控制器参数,并将其与控制系统连接;4.开始实验,记录系统的输出值;5.对实验结果进行分析和总结。
实验结果:实验中记录了不同环境下控制系统的输出值,并与期望值进行比较。
结果表明,控制系统在不同环境下都能保持稳定,且输出值与期望值的误差在可接受范围内。
通过分析实验结果,总结出了一些优化控制系统参数的方法,如调整P、I、D参数的比例,根据实际需求对系统进行调整等。
结论:本实验通过对自动控制理论的实际应用进行研究和探索,验证了控制系统在不同环境下的稳定性和准确性。
实验结果表明,自动控制理论在北理工的应用具有较高的实效性和可行性。
本实验的结果对进一步优化控制系统参数和提高系统稳定性具有一定的指导意义。
[1]张三.自动控制理论与应用[M].北京:XXXX。
自动控制实训实验报告

一、实验目的1. 熟悉并掌握自动控制系统的基本原理和实验方法;2. 理解典型环节的阶跃响应、频率响应等性能指标;3. 培养动手能力和分析问题、解决问题的能力。
二、实验原理自动控制系统是指利用各种自动控制装置,按照预定的规律自动地完成对生产过程或设备运行状态的调节和控制。
本实验主要研究典型环节的阶跃响应和频率响应。
1. 阶跃响应:当系统受到一个阶跃输入信号时,系统输出信号的变化过程称为阶跃响应。
阶跃响应可以反映系统的稳定性、快速性和准确性。
2. 频率响应:频率响应是指系统在正弦输入信号作用下的输出响应。
频率响应可以反映系统的动态性能和抗干扰能力。
三、实验仪器与设备1. 自动控制实验箱;2. 双踪示波器;3. 函数信号发生器;4. 计算器;5. 实验指导书。
四、实验内容与步骤1. 阶跃响应实验(1)搭建实验电路,连接好实验箱和示波器。
(2)输入阶跃信号,观察并记录阶跃响应曲线。
(3)分析阶跃响应曲线,计算系统的超调量、上升时间、调节时间等性能指标。
2. 频率响应实验(1)搭建实验电路,连接好实验箱和示波器。
(2)输入正弦信号,改变频率,观察并记录频率响应曲线。
(3)分析频率响应曲线,计算系统的幅频特性、相频特性等性能指标。
3. 系统校正实验(1)搭建实验电路,连接好实验箱和示波器。
(2)输入阶跃信号,观察并记录未校正系统的阶跃响应曲线。
(3)根据期望的性能指标,设计校正环节,并搭建校正电路。
(4)输入阶跃信号,观察并记录校正后的阶跃响应曲线。
(5)分析校正后的阶跃响应曲线,验证校正效果。
五、实验结果与分析1. 阶跃响应实验(1)实验结果:根据示波器显示的阶跃响应曲线,计算得到系统的超调量为10%,上升时间为0.5s,调节时间为2s。
(2)分析:该系统的稳定性较好,但响应速度较慢,超调量适中。
2. 频率响应实验(1)实验结果:根据示波器显示的频率响应曲线,计算得到系统的幅频特性在0.1Hz到10Hz范围内基本稳定,相频特性在0.1Hz到10Hz范围内变化不大。
北工大自控matlab实验报告

自动控制原理实验报告一、试验设计构造一个二阶闭环系统,使得该系统的%30≥p M对于任意二阶系统,其闭环传递函数为2222)(G nn nc s s s ωξωω++=,其中ξ为二阶系统的阻尼比,n ω为二阶系统的无阻尼振荡频率,该系统的超调量为πξξ21--=e M p 。
若要%30≥p M ,则0.36≤ξ。
取0.3=ξ,又n ω任意,所以取20=n ω,则要求设计的闭环传递函数为40012400)(2++=s s s G c 。
二、实验内容及步骤1.以MATLAB 命令行的方式,进行系统仿真,确定系统时域性能指标 num=[400]; den=[1 12 400]; step(num,den)由图可知,该系统的超调量为%30%37>=p M ,满足要求,上升时间为0985.0=r t ,峰值时间为164.0=p t ,调节时间为0.472=s t 。
2.通过改变系统的开环放大倍数K (分增大和减小两种情况)和系统的阻尼比系数(分增大和减小两种情况),进行系统仿真分析,确定新的性能指标,并与原构造系统的进行比较,根据响应曲线分析并说明出现的现象 (1)增大开环放大倍数num=[500]; den=[1 12 500]; step(num,den)由图可知,该系统的超调量为%30%42>=p M ,上升时间为0858.0=r t ,峰值时间146.0=p t ,调节时间0.48=s t 。
(2)减小开环放大倍数 num=[300]; den=[1 12 300]; step(num,den)由图可知,该系统的超调量为%30%31>=p M ,上升时间为119.0=r t ,峰值时间为0.1921=p t ,调节时间为0.455=s t 。
(3)增大阻尼比 num=[400];den=[1 12.4 400]; step(num,den)由图可知,该系统的超调量为%30%36>=p M ,上升时间为0995.0=r t ,峰值时间为0.163=p t ,调节时间为0.486=s t 。
北京理工大学自动控制原理实验报告

本科实验报告实验名称:控制理论基础实验实验时间:课程名称:控制理论基础任课教师:实验地点:实验教师:实验类型:□原理验证□综合设计学生姓名:□自主创新组号:学号/班级:学院:同组搭档:专业:成绩:实验1控制系统的模型建立一、实验目的1、掌握利用MATLAB建立控制系统模型的方法。
2、掌握系统的各种模型表述及相互之间的转换关系。
3、学习和掌握系统模型连接的等效变换。
二、实验原理1、系统模型的MATLAB描述系统的模型描述了系统的输入、输出变量以及内部各变量之间的关系,表征一个系统的模型有很多种,如微分方程、传递函数模型、状态空间模型等。
这里主要介绍系统传递函数(TF)模型、零极点增益(ZPK)模型和状态空间(SS)模型的MATLAB描述方法。
1)传递函数(TF)模型传递函数是描述线性定常系统输入-输出关系的一种最常用的数学模型,其表达式一般为在MATLAB中,直接使用分子分母多项式的行向量表示系统,即num=[bm,bm-1,…b1,b0]den=[an,an-1,…a1,a0]调用tf函数可以建立传递函数TF对象模型,调用格式如下:Gtf=tf(num,den)Tfdata函数可以从TF对象模型中提取分子分母多项式,调用格式如下:[num,den]=tfdata(Gtf)返回cell类型的分子分母多项式系数[num,den]=tfdata(Gtf,'v')返回向量形式的分子分母多项式系数2)零极点增益(ZPK)模型传递函数因式分解后可以写成式中,z1,z2,…,z m称为传递函数的零点,p1,p2,…,p n称为传递函数的极点,k为传递系数(系统增益)。
在MATLAB中,直接用[z,p,k]矢量组表示系统,其中z,p,k分别表示系统的零极点及其增益,即:z=[z1,z2,…,zm];p=[p1,p2,…,pn];k=[k];调用zpk函数可以创建ZPK对象模型,调用格式如下:Gzpk=zpk(z,p,k)同样,MATLAB提供了zpkdata命令用来提取系统的零极点及其增益,调用格式如下:[z,p,k]=zpkdata(Gzpk)返回cell类型的零极点及增益[z,p,k]=zpkdata(Gzpk,’v’)返回向量形式的零极点及增益函数pzmap可用于求取系统的零极点或绘制系统得零极点图,调用格式如下:pzmap(G)在复平面内绘出系统模型的零极点图。
北京理工大学自动控制理论实验报告一

自动控制理论实验报告(一)班级:姓名:学号:一、实验目的1、了解和掌握各典型环节以及二阶系统模拟电路的构成方法、传递函数表达式及输出时域函数表达式。
2、观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响。
3、研究I型二阶闭环系统的结构参数——无阻尼振荡频率和阻尼比对过渡过程的影响。
4、观察和分析I型二阶闭环系统在欠阻尼、临界阻尼、过阻尼的瞬态响应曲线及在阶跃信号输入时的动态性能指标、值,并与理论计算值作对比。
二、实验内容1、比例环节的模拟电路比例环节的模拟电路:比例环节的阶跃响应曲线:2、惯性环节的模拟电路惯性环节的模拟电路:惯性环节的阶跃响应曲线:3、积分环节的模拟电路积分环节的模拟电路:积分环节的阶跃响应曲线:4、比例积分环节的模拟电路比例积分环节的模拟电路:比例积分环节的阶跃响应曲线:5、比例微分环节的模拟电路比例微分环节的模拟电路:比例微分环节的阶跃响应曲线:6、比例积分微分环节的模拟电路比例积分微分环节的模拟电路:比例积分微分环节的阶跃响应曲线:以下实验内容均在典型I 型二阶单位反馈闭环系统下进行。
该系统结构框图如图:该系统模拟电路如图:该二阶系统由积分环节和惯性环节构成,其积分时间常数为:111i T R C s=⨯=可变电阻惯性时间常数为:220.1T R C s=⨯=故,该系统的开环传递函数为:()(0.11)KG s s s =+其中,2100R K R R== 所以,该系统的闭环传递函数为:2()10()1()1010G s K s G s s s K φ==+++故,自然频率为:n ω=阻尼比为:ξ=7、4R k =Ω时的欠阻尼响应为实现欠阻尼响应,须有:01ξ<<,首先,电路参数选为:4R k =Ω。
此时, 增益:25K =; 传递函数:2()250()1()10250G s s G s s s φ==+++;自然频率:15.81n ω=;阻尼比:0.316ξ==。
北理工:自动控制实验实验报告汇总

北理工:自动控制实验实验报告汇总控制理论基础实验(基于MATLAB)控制理论基础实验班级:05611001 学号:1120211327 姓名:付予实验时间:周五下午7、8节指导教师:范哲意1控制理论基础实验(基于MATLAB)实验一:控制系统的模型建立一、实验目的1. 掌握利用MATLAB 建立控制系统模型的方法。
2. 掌握系统的各种模型表述及相互之间的转换关系。
3. 学习和掌握系统模型连接的等效变换。
二、实验原理1.系统模型的MATLAB描述 1)传递函数(TF)模型 2)零极点增益(ZPK)模型 3)状态空间(SS)模型 4)三种模型之间的转换2. 系统模型的连接在实际应用中,整个控制系统是由多个单一的模型组合而成,基本的组合方式有串联连接、并联连接和反馈连接。
三、实验内容1. 已知控制系统的传递函数如下2s2?18s?40G(s)?3 2S?5s?8s?6试用MATLAB 建立系统的传递函数模型、零极点增益模型及系统的状态空间方程模型,并绘制系统零极点图。
实验代码: >> num=[2,18,40]; >> den=[1,5,8,6];>> gtf=tf(num,den) >> gzpk=zpk(gtf)2控制理论基础实验(基于MATLAB)>> gss=ss(gtf) >> pzmap(gzpk)实验结果:传递函数模型: gtf =x1 -5 -2 -1.5 x2 4 0 0 >> grid on2 s^2 + 18 s + 40 --------------------- s^3 + 5 s^2 + 8 s + 6零极点增益模型: gzpk =2 (s+5) (s+4) -------------------- (s+3) (s^2 + 2s + 2)状态空间方程模型: gss = a =x1 x2 x3零极点图形:x3 0 1 0 b = u1 x1 4 x2 0 x3 0 c =x1 x2 x3 y1 0.5 1.125 2.5 d = u1 y1 0 3控制理论基础实验(基于MATLAB)2.已知控制系统的状态空间方程如下?0100??0??0010??0??x???ux???0001??0? ????-1-2-3-4???1?y??10200?x试用MATLAB 建立系统的传递函数模型、零极点增益模型及系统的状态空间方程模型,并绘制系统零极点图。
自动控制实训实验报告

一、实验目的1. 熟悉自动控制系统的基本组成和原理。
2. 掌握常用控制元件的性能和特点。
3. 学会搭建简单的自动控制系统。
4. 通过实验,加深对自动控制理论知识的理解。
二、实验原理自动控制系统是一种通过反馈机制实现被控对象状态控制的系统。
它主要由被控对象、控制器和执行器组成。
控制器根据被控对象的实际状态与期望状态之间的偏差,产生控制信号,驱动执行器实现对被控对象的控制。
三、实验仪器与设备1. 自动控制实训台2. 电源3. 控制器4. 执行器5. 测量仪器四、实验内容1. 搭建简单控制系统(1)根据实验要求,搭建一个简单的自动控制系统,如图1所示。
(2)检查系统连接是否正确,确保各个元件连接牢固。
(3)开启电源,观察系统运行情况。
2. 观察控制过程(1)通过手动调节控制器,使被控对象的输出达到期望值。
(2)观察控制过程,分析控制效果。
3. 改变系统参数(1)改变控制器的参数,观察系统响应的变化。
(2)分析参数变化对系统性能的影响。
4. 故障排除(1)人为制造故障,观察系统响应。
(2)分析故障原因,并排除故障。
五、实验结果与分析1. 搭建简单控制系统通过搭建简单的控制系统,我们掌握了自动控制系统的基本组成和原理。
在实验过程中,我们观察到控制器通过调整控制信号,使被控对象的输出达到期望值。
2. 观察控制过程在控制过程中,我们观察到控制器根据被控对象的实际状态与期望状态之间的偏差,产生控制信号,驱动执行器实现对被控对象的控制。
通过手动调节控制器,我们可以使被控对象的输出达到期望值。
3. 改变系统参数在改变控制器参数的过程中,我们观察到系统响应的变化。
当控制器参数改变时,系统响应速度、稳定性和超调量等性能指标都会发生变化。
这表明控制器参数对系统性能有重要影响。
4. 故障排除在故障排除过程中,我们学会了分析故障原因,并采取相应措施排除故障。
这有助于我们更好地理解自动控制系统的运行原理。
六、实验总结通过本次实验,我们掌握了自动控制系统的基本组成和原理,学会了搭建简单的自动控制系统,并加深了对自动控制理论知识的理解。
北理工自动控制理论实验报告

Gzpk = 2 (s+5) (s+4) -------------------(s+3) (s^2 + 2s + 2) Continuous-time zero/pole/gain model.
Gss = A= x1 x2 x3 B= x1 x2 x3 C= y1 D= u1 y1 0 Continuous-time state-space model. 系统零极点图 x1 x2 0.5 1.125 x3 2.5 u1 4 0 0 x1 -5 4 0 x2 x3 -2 -1.5 0 0 1 0
系统模型的连接
在实际应用中,整个控制系统是由多个单一的模型组合而成,基本的组合方式有串联连
接、并联连接和反馈连接。图 1-2 分别为串联连接、并联连接和反馈连接的结构框图和等效总 传递函数。
(a)串联系统
(b)并联系统
(c)反馈连接 在 MATLAB 中可以直接使用“*”运算符实现串联连接,使用“+”运算符实现并联连接。反馈系 统传递函数求解可以通过命令 feedback 实现,调用格式如下: T = feedback(G,H), T = feedback(G,H,sign) 其中,G 为前向传递函数,H 为反馈传递函数;当 sign = +1 时,GH 为正反馈系统传递函 数;当 sign = -1 时,GH 为负反馈系统传递函数;默认值是负反馈系统。
传递函数因式分解后可以写成:
式中 z1,z2,…,zm 称为传递函数的零点;P1,P2,…,Pn 称为传递函数的极点;k 为传递系数(系统增益) 。 在 MATLAB 中,直接用[z,p,k]矢量组表示系统,其中 z,p,k 分别表示系统的零极点及其 增益,即:z=[z1,z2,…,zm];p=[p1,p2,…,pn];k=[k]; 调用 zpk 函数可以创建 ZPK 对象模型,调用格式如下: Gzpk = zpk(z,p,k) 同样,MATLAB 提供了 zpkdata 命令用来提取系统的零极点及其增益,调用格式如下: [z,p,k] = zpkdata(Gzpk) 返回 cell 类型的零极点及增益 [z,p,k] = zpkdata (Gzpk,’v’) 返回向量形式的零极点及增益 函数 pzmap 用来求取系统的零极点或绘制系统得零极点图,调用格式如下:pzmap(G) 在 复平面内绘出系统模型的零极点图。 [p,z] = pzmap(G) 返回的系统零极点,不作图。 3) 状态空间(SS)模型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验1 控制系统的模型建立一、实验目的1. 掌握利用MATLAB 建立控制系统模型的方法。
2. 掌握系统的各种模型表述及相互之间的转换关系。
3. 学习和掌握系统模型连接的等效变换。
二、实验原理1. 系统模型的 MATLAB描述系统的模型描述了系统的输入、输出变量以及内部各变量之间的关系,表征一个系统的模型有很多种,如微分方程、传递函数模型、状态空间模型等。
这里主要介绍系统传递函数(TF)模型、零极点增益(ZPK)模型和状态空间(SS)模型的MATLAB 描述方法。
1)传递函数(TF)模型传递函数是描述线性定常系统输入-输出关系的一种最常用的数学模型,其表达式一般为在MATLAB 中,直接使用分子分母多项式的行向量表示系统,即num = [bm, bm-1, … b1, b]den = [an, an-1, … a1, a0]调用tf 函数可以建立传递函数TF 对象模型,调用格式如下:Gtf = tf(num,den) Tfdata函数可以从TF 对象模型中提取分子分母多项式,调用格式如下:[num,den] = tfdata(Gtf) 返回cell 类型的分子分母多项式系数[num,den] = tfdata(Gtf,'v') 返回向量形式的分子分母多项式系数2)零极点增益(ZPK)模型传递函数因式分解后可以写成式中,z1,z2…zm称为传递函数的零点,p1,p2…pn⋯称为传递函的极点,k 为传递系数(系统增益)。
在MATLAB 中,直接用[z,p,k]矢量组表示系统,其中z,p,k 分别表示系统的零极点及其增益,即:z=[ z1,z2…zm];p=[p1,p2…pn];k=[k];调用zpk 函数可以创建ZPK 对象模型,调用格式如下:G= zpk(z,p,k)同样,MATLAB 提供了zpkdata 命令用来提取系统的零极点及其增益,调用格式如下:[z,p,k] = zpkdata(Gzpk) 返回cell 类型的零极点及增益[z,p,k] = zpkdata (Gzpk,’v’) 返回向量形式的零极点及增益函数pzmap 可用于求取系统的零极点或绘制系统得零极点图,调用格式如下:pzmap(G) 在复平面内绘出系统模型的零极点图。
[p,z] = pzmap(G) 返回的系统零极点,不作图。
3)状态空间(SS)模型由状态变量描述的系统模型称为状态空间模型,由状态方程和输出方程组成:其中:x 为n 维状态向量;u 为r 维输入向量; y 为m 维输出向量; A 为n×n 方阵,称为系统矩阵; B 为n×r 矩阵,称为输入矩阵或控制矩阵;C 为m×n 矩阵,称为输出矩阵; D为m×r 矩阵,称为直接传输矩阵。
在MATLAB 中,直接用矩阵组[A,B,C,D]表示系统,调用ss 函数可以创建ZPK 对象模型,调用格式如下:Gss = ss(A,B,C,D)同样,MATLAB 提供了ssdata 命令用来提取系统的A、B、C、D 矩阵,调用格式如下:[A,B,C,D] = ssdata (Gss) 。
它返回系统模型的A、B、C、D 矩阵。
4)三种模型之间的转换上述三种模型之间可以互相转换,MATLAB 实现方法如下TF 模型→ZPK 模型:zpk(SYS)或tf2zp(num,den)TF 模型→SS 模型:ss(SYS)或tf2ss(num,den)ZPK 模型→TF 模型:tf(SYS)或zp2tf(z,p,k)ZPK 模型→SS 模型:ss(SYS)或zp2ss(z,p,k)SS 模型→TF 模型:tf(SYS)或ss2tf(A,B,C,D)SS 模型→ZPK 模型:zpk(SYS)或ss2zp(A,B,C,D)2. 系统模型的连接在实际应用中,整个控制系统是由多个单一的模型组合而成,基本的组合方式有串联连接、并联连接和反馈连接。
图1-2 分别为串联连接、并联连接和反馈连接的结构框图和等效总传递函数。
在MATLAB 中可以直接使用“*”运算符实现串联连接,使用“+”运算符实现并联连接。
反馈系统传递函数求解可以通过命令feedback 实现,调用格式如下:T = feedback(G,H)T = feedback(G,H,sign)其中,G 为前向传递函数,H 为反馈传递函数;当sign = +1 时,GH 为正反馈系统传递函数;当sign = -1 时,GH 为负反馈系统传递函数;默认值是负反馈系统。
三、实验内容1.已知控制系统的传递函数如下试用MATLAB建立系统的传递函数模型、零极点增益模型及系统的状态空间方程模型,并绘制系统零极点图。
代码及结果分析:2.已知控制系统的状态空间方程如下试用MATLAB 建立系统的传递函数模型、零极点增益模型及系统的状态空间方程模型,并绘制系统零极点图。
代码及结果分析:3.已知三个系统的传递函数分别为试用MATLAB 求上述三个系统串联后的总传递函数。
代码及结果分析:4.已知如图E2-1 所示的系统框图试用MATLAB 求该系统的闭环传递函数。
代码及结果分析:5.已知如图E2-2 所示的系统框图试用MATLAB 求该系统的闭环传递函数。
代码及结果分析:四.实验收获与心得实验2控制系统的暂态特性分析一、实验目的1.学习和掌握利用MATLAB进行系统时域响应求解和仿真的方法。
2.考察二阶系统的时间响应,研究二阶系统参数对系统暂态特性的影响。
二、实验原理1.系统的暂态性能指标控制系统的暂态性能指标常以一组时域量值的形式给出,这些指标通常由系统的单位阶跃响应定义出来,这些指标分别为:(1)延迟时间td :响应曲线首次到达稳态值的 50%所需的时间。
(2)上升时间tr :响应曲线从稳态值的 10%上升到 90%所需要的时间长,对于欠阻尼系统,通常指响应曲线首次到达稳态值所需的时间。
(3)峰值时间tp :响应曲线第一次到达最大值的时间。
(4)调整时间ts :响应曲线开始进入并保持在允许的误差(±2%或±5%)范围内所需要的时间。
(5)超调量σ:响应曲线的最大值和稳态值之差,通常用百分比表示其中 y(t) 为响应曲线。
在 MATLAB 中求取单位阶跃响应的函数为 step,其使用方法如下step(sys)在默认的时间范围内绘出系统响应的时域波形step(sys,T)绘出系统在0– T范围内响应的时域波形step(sys,ts:tp:te)绘出系统ts–te范围内,以tp为时间间隔取样的响应波形。
[y,t]=step(…)该调用格式不绘出响应波形,而是返回响应的数值向量及其对应的时间向量。
系统的暂态性能指标可以根据上述定义,在响应曲线上用鼠标读取关键点或通过搜索曲线对应的数值向量中关键点来确定。
2.LTIViewer工具在MATLAB中提供了线性是不变系统仿真的工具LT Viewer,可以方便地观察系统的响应曲线和性能指标。
在命令窗口中键入litview即可启动LTIViewer。
这里简要介绍 LTI Viewer 工具。
1)【File】菜单Import 选项:可以从Workspace或文件中导入系统模型。
Export选项:将当前窗口中的对象模型保存到Workspace或文件中。
Toolbox preferences选项:属性设置功能,可以设置控制系统中得各种属性值。
Page Setup 选项:页面设置功能,可以对打印输出和显示页面进行设置。
2)【Edit】菜单Plot Configuration选项:对显示窗口及显示内容进行配置。
Line Style选项:线型设置功能,可以对输出响应曲线的线型进行设置。
Viewer Preferences选项:对当前窗口的坐标、颜色、字体、响应曲线的特性参数等属性进行设置。
3)右键菜单在运行界面上点击鼠标右键,将会弹出一个弹出式菜单,菜单上个选项的功能分别为:Plot Types:选择绘制的系统曲线类型,可选的类型有单位阶跃响应、单位冲击响应、波特图、奈奎斯特图、零极点图等。
System:选择需要仿真的系统。
Characteristic:系统的性能指标选项。
Grid:显示和关闭网格。
Normalize:正常显示模式。
Full View:满界面显示模式。
Properties:性能编辑器选项,可以设置画面的标题、坐标标志、坐标范围、线型、颜色、性能指标等。
三、实验内容1.已知单位负反馈系统前向通道的传递函数为试用MATLAB绘制系统的单位阶跃响应曲线。
代码及结果分析:2. 已知二阶系统(1)ζ=0.6,ωn=5,试用MATLAB绘制系统单位阶跃响应曲线,并求取系统的暂态性能指标。
代码及结果分析:(2)ωn=1,ζ从 0 变化到 2,求此系统的单位阶跃响应。
代码及结果分析:(3)ζ=0.5,ωn 从0变化到1(ωn ≠0),求此系统的单位阶跃响应。
代码及结果分析:(4)观察上述实验结果,分析这两个特征参数对系统暂态特性的影响。
四、实验心得实验3根轨迹分析一、实验目的1.学习和掌握利用 MATLAB 绘制根轨迹图的方法。
2. 学习和掌握利用系统根轨迹图分析系统的性能。
二、实验原理1.根轨迹分析的 MATLAB实现根轨迹是指系统某一参数变化时,闭环特征根在s平面上运动的轨迹。
在MATLAB中,提供了用于根轨迹分析的专门函数。
1)rlocus函数该函数的使用方法如下:rlocus(sys) 绘制单输入单输出LTI系统的根轨迹图。
rlocus(sys,k) 使用用户指定的根轨迹增益 k 来绘制系统的根轨迹图。
[r,k]= rlocus(sys)返回根轨迹增益值和闭环极点值,不绘制根轨迹图。
2)rlocfind函数该函数的使用方法如下:[k,poles]=rlocfind(sys)计算鼠标选取点处的根轨迹增益值和闭环极点值,可在图形窗口根轨迹图中显示出十字光标,当用户选择其中一点时,相应的增益值和极点值记录在k和poles 中。
[k,poles]=rlocfind(sys,p)计算最靠近给定闭环极点p处的根轨迹增益。
3)sgrid函数该函数的使用方法如下:Sgrid可在连续系统根轨迹或零极点图上绘制出栅格线,栅格线由等阻尼系数和等自然频率线构成。
sgrid(‘new’)先清除当前的图形,然后绘制出栅格线,并将坐标轴属性设置成 hold on. sgrid(z,Wn) 指定阻尼系数 z 和自然频率 Wn。
sgrid(z,Wn,’new’) 指定阻尼系数 z 和自然频率 Wn,在绘制栅格线之前清除当前的图形并将坐标轴属性设置成 hold on.2.Rltool工具MATLAB 提供了一个根轨迹设计工具Rltool,在命令窗口输入 rltool命令即可启动该工具,也可输入rltool(sys)命令打开带系统模型 sys 的根轨迹设计器,运行界面如图 3‐1 所示。