第八章 卤代烃..
合集下载
第八章 卤代烃

CH3CH
CH CH3
CH2CH3
Cl
3-甲基-2-氯戊烷
陈明
CH3
CH
CH
CH2CH3
CH3 Cl
2-甲基-3-氯戊烷
CH3CH CH2 CH3
CH Br
CH3
2-甲基-4-溴戊烷
陈明
H
Cl H (1S,2S)-1-溴-2-氯环己烷
Br
CH2 CH CH CH3
3-甲基- 4 -氯-1-丁烯
CH2 Cl
1)通式:
Nu + R X
亲核试剂 亲核试剂: 底物
-
Nu R + X
产物
-
离去基团
OH-、CH3O-、HS-、X-、CN- ; H2O、NH3、ROH 等;
陈明
2)常见的亲核取代反应
OHR'OR'COOR X -X
o
R-OH R-OR' R-OCOR' R-NR'3 XR-C N R-SH R-C CR'
极性溶剂有利于 SN1 反应的进行
陈明
要强调的是:SN1 和 SN2 反应均受溶剂的很大影响,但 是它们的作用机制不同。 SN2 在质子性溶剂中是不利的,因为亲核试剂被溶剂化 作用降低了反应活性 SN1 反应却是在质子性溶剂中有利的,因为反应中产生 活泼中间体碳正离子的过渡态能被溶剂化作用稳定,生 成的阳离子和阴离子均可被溶剂化作用稳定。
一、分类和命名
根据所含卤素种类,分为氟代烷、氯代烷、溴代烷及碘代烷;
根据所含卤素原子个数,分为一元、二元、多元卤代烷等;
CH3Cl CH3CH2F CH3CH2I CH3CH2Br 2°) 根据卤素所连接饱和碳原子的类型,又可分为伯( 1°)、仲( CH3Cl CH2Cl2 CHCl3 CCl4
有机化学第8章卤代烃

在SN2反应中
进攻试剂是从离去基团的背面进攻碳原子的。 进攻试剂是从离去基团的背面进攻碳原子的。 当Nu与碳原子接近时,C-Nu之间的化学键逐渐形成,而C-X之间的 Nu与碳原子接近时,C Nu之间的化学键逐渐形成,而C 化学键逐渐变弱,三者基本在同一直线上,形成了反应的过渡态,中心 碳由sp 转化为sp 碳由sp3转化为sp2杂化状态, Nu继续接近碳原子并与碳原子完全键合,离去基团完全离去,由过渡状 Nu继续接近碳原子并与碳原子完全键合,离去基团完全离去,由过渡状 态变为产物。
1)被羟基取代 加热 R-X + KOH(NaOH,水溶液) KOH(NaOH,水溶液) 2)被烷氧基取代 R-X + R`ONa R-O-R` +NaX R此反应也称为Wiliamson合成反应 合成反应。 此反应也称为Wiliamson合成反应。 3)被NH3取代 R-X + NH3 R-NH2(胺) + HX 胺是有机碱,它与反应生成的HX成盐 成盐, 胺是有机碱,它与反应生成的HX成盐,RNH3+XR-OH + KX
查依采夫规律
一般叔卤代烷最易消去,而伯卤代烷最难。 一般叔卤代烷最易消去,而伯卤代烷最难。仲或叔卤代烷 氢可以消去,因而产物不同。 有几个β氢可以消去,因而产物不同。 1875年俄国化学家查依采夫根据大量事实指出 年俄国化学家查依采夫根据大量事实指出: 1875年俄国化学家查依采夫根据大量事实指出:在β-消 去反应中主要产物是双键碳原子上烃基最多的烯烃, 去反应中主要产物是双键碳原子上烃基最多的烯烃,即得 到最稳定的烯烃。-- 。--查依采夫规律 到最稳定的烯烃。--查依采夫规律
溴甲烷在NaOH溶液中反应生成甲醇,反应时OH 溴甲烷在NaOH溶液中反应生成甲醇,反应时OH-从背面接近中 心碳原子,必须克服三个氢原子的阻力,同时三个C 心碳原子,必须克服三个氢原子的阻力,同时三个C-H键的偏 转使键角发生变化,因而体系的能量升高。达到过渡状态时,能 量也达到最高点。随着溴离子的进一步离去和C 量也达到最高点。随着溴离子的进一步离去和C-O键的进一步 形成,体系的能量逐渐降低,最后形成产物。
有机化学-第八章

试剂的亲核性大小主要是由两个因素决定的。一个是试剂 的碱性(给电子性),一个是试剂的极化度(变形性)。 这两个因素对试剂的亲核性的影响通常是一致的;但也有 不一致的情况,这时往往是后者起主导作用,有时还与溶 剂性质有关。
8.2 卤代烷的亲核取代反应
1.同一周期的原子作为亲核中心时,试剂的亲核性与碱性 有相同的强弱次序:
的生成。因此,烷基碳正离子越稳定,越易形成,生成时 的活化能越低,反应速率也越快,由于烷基正离子稳定性 的顺序是:
(CH3)3C+ > (CH3)2CH+ > CH3CH2+ > CH3+ 所以,在 SN1 反应中,卤代烷的活性顺序为:
R3CX > R2CHX > RCH2X > CH3X 即 (3° > 2° > 1° > CH3X)
例如, I- 在下面各溴代烷的丙酮溶液中于25℃发生 SN2 反应时的相对反应速率为:
8.2 卤代烷的亲核取代反应
如果在卤代烷的 β- 碳原子上连有支链烷基时,对 SN2 反应的速率也有明显的影响,即卤代烷中心碳( α- 碳)
原子上连接的烷基体积越大,其空间位阻越大,不利于亲
核试剂的攻击。例如,在 C2H5OH 溶剂中 C2H5ONa 与下面 各溴代烷于55℃发生 SN2 反应的相对反应速率为:
C-Cl > C-Br > C-I
根据卤原子变形性的大小可知不同的碳卤键的可极化度的 大小次序与其极性大小次序相反。
8.1 卤代烃的分类及结构
由于卤原子的电负性大于饱和碳原子的电负性, 使饱和卤代烃的碳卤键的成键电子偏向卤原子一 方,而碳原子 具有缺电子的特征,即:
8.1 卤代烃的分类及结构
8.2 卤代烷的亲核取代反应
1.同一周期的原子作为亲核中心时,试剂的亲核性与碱性 有相同的强弱次序:
的生成。因此,烷基碳正离子越稳定,越易形成,生成时 的活化能越低,反应速率也越快,由于烷基正离子稳定性 的顺序是:
(CH3)3C+ > (CH3)2CH+ > CH3CH2+ > CH3+ 所以,在 SN1 反应中,卤代烷的活性顺序为:
R3CX > R2CHX > RCH2X > CH3X 即 (3° > 2° > 1° > CH3X)
例如, I- 在下面各溴代烷的丙酮溶液中于25℃发生 SN2 反应时的相对反应速率为:
8.2 卤代烷的亲核取代反应
如果在卤代烷的 β- 碳原子上连有支链烷基时,对 SN2 反应的速率也有明显的影响,即卤代烷中心碳( α- 碳)
原子上连接的烷基体积越大,其空间位阻越大,不利于亲
核试剂的攻击。例如,在 C2H5OH 溶剂中 C2H5ONa 与下面 各溴代烷于55℃发生 SN2 反应的相对反应速率为:
C-Cl > C-Br > C-I
根据卤原子变形性的大小可知不同的碳卤键的可极化度的 大小次序与其极性大小次序相反。
8.1 卤代烃的分类及结构
由于卤原子的电负性大于饱和碳原子的电负性, 使饱和卤代烃的碳卤键的成键电子偏向卤原子一 方,而碳原子 具有缺电子的特征,即:
8.1 卤代烃的分类及结构
有机化学 第八章卤代烃

对SN2的影响
空间效应
H2C CH CH2X Ph CH2 X
注意:
H H
Nu H L H
〉SN2反应速度最快
p-π共轭,稳定过渡态, △E活化低快
知识点 苄基 (苯甲基)> 烯丙基 > CH3 > 1º > 2º > 3º
对SN1的影响 SN1的速控步骤:
电子效应 空间效应
RX R+ + X-
R1 2 HO C R R3 R1 R2 C OH R3
第一步生成平面三角形碳正离子, OH-从平面的两边进攻的机会均等。 例:
H3CO + CH3COOH O H2O/O O CH O C CH3 H3CO CH OH SN1
大多亲核取代反应既非完全转化,也非完全外销旋化。
例:
C6H5
CH CH3 + H2O/丙酮 Cl
凡是能稳定C+的因素,也稳定生成它的过渡态。
△E ----反应快( SN1 主要考虑电子效应)
例:
H3CO CH2 X
p-π共轭,稳定C+
空间效应也有影响:
H3C O CH2+
对SN1的影响
电子效应 空间效应
空间效应
3º最拥挤,解除拥挤的要求最强—易形成C+ CH3相反,解除拥挤的要求最小—难形成C+
亲核试剂 Nu
-
R CH2 Nu + X 离去基团
底物
Nucleophilies
反应是由带负电荷(或孤队电子)的试剂进攻带正
电荷的C原子引起的——亲核取代(SN) Substitution Nucleophilic
常见的亲核取代反应:
第8章卤代烃

R
X + Nu亲核试剂
R
Nu + X离去基团
1) 水解 卤代烷与碱的水溶液或 水解: 卤代烷与碱的水溶液或AgOH等作用时 -X被-OH 等作用时, 被 等作用时 取代生成醇
R
X
KOH/H2O
CH2Cl H2O
R
OH + KX
CH2OH
(CH3)3CCl
H2O
(CH3)3C
OH
但在一般条件下
Cl
H2O
即当亲核试剂从离去基团背后进攻中心碳原子, 即当亲核试剂从离去基团背后进攻中心碳原子,必然会引 转化)。 起中心碳原子构型的转化(Walden转化 。 转化 起中心碳原子构型的转化
Nu- + R3C-X
Nu-R3C-X
Nu-CR3
SN2
Ingold等用 碘辛烷与放射性的碘离子起取代反应: 等用2-碘辛烷与放射性的碘离子起取代反应 等用 碘辛烷与放射性的碘离子起取代反应:
CH3
(5) 有些化合物还用习惯命名。如 有些化合物还用习惯命名。
CH2Cl
氯化苄) 苄氯 ( 氯化苄
Cl
邻氯甲苯
3. 同分异构 卤代烃的异构体比相应的烷烃多. 即除了碳链异构外还有 卤代烃的异构体比相应的烷烃多 官能团的位置异构。 官能团的位置异构。
§8.2 卤代烃的物理性质
室温下,绝大多数一卤代烃为液体 以上为固体。 室温下,绝大多数一卤代烃为液体, C15以上为固体。 碘、溴及多氯代烷的比重 > 1, 随着卤原子数目的增加, 其 随着卤原子数目的增加 可燃性降低. 可燃性降低
(2) SN1反应的立体化学 反应的立体化学
研究表明, 反应的复杂的多。 研究表明 SN1反应的立体化学比 SN2反应的复杂的多。 反应的立体化学比 反应的复杂的多
第8章 卤代烃

5、与硝酸银作用
RX + AgNO3 醇 RONO2 + AgX
用于鉴别伯、仲、 叔卤代烷
活性顺序为:RI>RBr>RCl 3°>2°>1°
6. 卤离子互换反应
RBr + NaI RCl + NaI
丙酮 丙酮
RI + NaBr RI + NaCl
碘化钠可溶于丙酮,而氯化钠和溴化钠不能溶于丙酮,生成 了沉淀。因此,此反应也可用于鉴别卤代烃,反应最快的是 伯卤代烷,其次是仲卤代烷,反应最慢的是叔卤代烷。
甲酸
ROH +Br -
(CH3)2CHBr 45
CH3CH2Br 1.7
CH3Br 1.0
关键:碳正离子的稳定性
Stability and Structure of Carbocations
planar
2 sp
超共轭效应: (CH3)3C+> (CH3)2CH+>CH3CH2+>CH3+
CH3 CH3-C-CH2Br CH3
RX
NaOH
工业上生产混合戊醇的方法 :
C5H11Cl NaOH H2O C5H11OH NaCl
2、与氰化钠作用 RX + NaCN→RCN + NaX
腈
二甲亚砜, CH3CH2CHCH3 + NaCN 3h, Cl
CH3CH2CHCH3 CN
65%~70%
3、与醇钠作用
醚
——醚的Williamson合成法
CH3Br
1.0
Cl The formation of carbocation is difficult
SbF6stable below-50oC
华中科技大学有机化学第八章 卤代烃

(3) SN1与SN2反应影响因素的比较 它们都属取代反应,但历程不同,因此影响反应速度的因素也各异。 扼要归纳于下表。
如何判断亲核取代反应按SN1还是SN2历程进行,由卤代烃的烃基 部分决定。烃基为伯基或者甲基一般按SN2历程,为叔丁基按SN1历 程,为仲基,烯丙基或者苄基可以是SN1或者SN2。
由实验得知该反应的反应速度与卤代烷和碘负离子的乘积成正比:
同时产物的构型发生转换,即由R转换成S。而叔丁基溴与乙醇加热回流得 到乙基叔丁基醚的反应速度,与乙醇浓度无关,只与叔丁基溴浓度有关。
旅光性的R-2-溴辛烷与水反应得到外消旋的dl-2-辛醇。 从上述实验结果看出,它们用于两种不同的反应过程。推断其历程如下:
这种起始于亲核试剂的进攻而发生的取代反应.称为亲核取代反应, 常用SN来表示(S代表取代反应,N代表亲核试剂进攻)。 亲核取代反应种类很多,在合成上很有用,一些常见的取代反应类 型与取代反应产物的种类如下表。
(1)取代反应历程 SN2与SN1取代反应。反应历程一般是通过测定反应速度与反应物浓度的关 系,以及分析产物构型来推断的。卤代烷与碘化钠在丙酮溶液中的取代反应 是这类反应的典型例子:
从AgX沉淀的速度可以判断此反应的速度,而卤代烷进行SN1与E1反应的 速率为:
NaI-丙酮溶液与卤代烷的反应是按SN2历程进行的, 因此卤代烷的活性次序为:
在卤代烷中加NaI丙酮溶液, 在室温,立即有沉淀产生的为一级溴代烷, 苯甲基卤,烯丙基卤;在50℃,放置3min,有沉淀的为一级氯代烷、二级溴 代烷;50℃,放置长时间出现沉淀的为三级卤代烷、氯代环己烷等。所以, NaI-丙酮与AgNO3-乙醇溶液的测试是很方便的鉴定卤代烷结构的方法。
反应温度升高不利于取代反应。如
有机化学第八章卤代烃

该反应是法国有机化学家Grignard(格利雅)于1901年在他的博士论 文研究中首次发现的。为纪念这位化学家对化学事业的贡献,人们 将烷基卤化镁称为Grignard试剂,而把有Grignard试剂参与的反 应,称为Grignard反应。
第15页/共52页
制备Grignard试剂所用的溶剂:乙醚、四氢呋喃(THF)、其 它醚(如:丁醚)、苯等。Grignard试剂在醚中有很好的溶解度, 醚作为Lewis碱,与Grignard试剂中的Lewis酸中心镁原子形 成稳定的络合物。乙醚的作用既是溶剂,又是稳定化剂。
吡啶 回流
R-CL + SO2 + HCl
第7页/共52页
三、卤代烷的互换
§ 8—3 卤 代 烷的性质
一、物理性质 (略) 二、化学性质
卤代烃的化学性质活泼,且主要发生在C—X 键上。 ① 分子中C—X 键为极性共价键,碳带部分正电荷,易受带负电荷 或孤电子对的试剂的进攻。
第8页/共52页
卤代烷:
4、与醇钠(RONa)反应
R-X + R'ONa
R-O R' + NaX 醚
R-X一般为1°RX,(仲、叔卤代烷与醇钠反应时,主要发生消除反应
生成烯烃)。该法是合成不对称醚的常用方法,称为 Williamson (威廉逊)合成
法。该法也常用于合成硫醚或芳醚。
5、与AgNO3—醇溶液反应
醇 R-X + AgNO3
按卤素所连的碳原子的类型
R-CH2-X
伯卤代烃 一级卤代烃(1°)
R2CH-X
仲卤代烃 二级卤代烃(2°)
R3C-X
叔卤代烃 三级卤代烃( 3°)
二、命名
1、简单的卤代烃用普通命名或俗名,(称为卤代某烃或某基卤)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(R=1, 2 , 3 烷基 ; RCH=CH-; RCH=CHCH2-; Ph-. X: I, Br, Cl)
Corey-House合成法——制备烷烃
[CH3(CH2)3]2LiCu + 2CH3(CH2)6Cl
Et2O, 5days 0℃75%
2CH3(CH2)3-(CH2)6CH3 + LiCl +CuCl
无水乙醚
Grignard试剂在醚中有很好的溶解度,醚作为 Lewis碱,与Grignard试剂中的Lewis酸中心镁原子 形成稳定的络合物。
C2H5 C2H5
R O Mg X O
C2H5 C2H5
格氏试剂很易与含活泼H的化合物如 H2O、R-OH、NH3 、 R-NH2 、 HX、 HOOCCH3、炔氢等反应生成相应的烃
卤代烃一般使用伯卤代烃,有时也可使用仲卤 代烃,但仲卤代烃或叔卤代烃在反应条件下往往会发生 消除得到烯烃,不适用于制备。 而乙烯型、苯基型一般都不发生上述反应
1. 水解(被-OH取代): 卤代烃与 NaOH 或 KOH 的水溶液共热,-X被OH取代,产物为醇。这个反应也叫卤代烃的碱性 水解。
R—X + NaOH
伯卤代烃 CH3CH2Cl 2.按C-X键C的类型 仲卤代烃 CH3CHClCH3 叔卤代烃 (CH3)3C-Cl
3.按X的种类 氟代烃(制法和性质特殊) 氯代烃、溴代烃、碘代烃
二、命名
1. 普通命名法: 卤(代)某烃或某烃基卤。 CHCl3 C2H5Cl n-C4H9-Cl 正丁基氯
三氯甲烷
氯乙烷 i-C4H9-Cl 异丁基氯
样作为取代基来命名。 ②编号:根据最低系列原则将主链编号。
③取代基: 优先顺序大的基团后列出。 3 2 1 CH3CHCH2B r CH3 1 H 3C 2 CH 3 CH 4 CH
3
C H 3 Br
2-甲基-1-溴丙烷
2-甲基-3-溴丁烷
CH3CH2CH-CH2CH2CH3 CH2Cl CH2=CH-CH-CH2-Br CH3 CH3 I
第二节 卤代烃的性质
碳卤键的特点
δ+ δ极性共价键, 成键电子对 偏向X.
C
X
C—>X 键的极性序为C—F > C—Cl > C—Br > C—I ,但通常在化学反应中卤代烷所表现出来的 活性正好相反。(为什么?) 对化学活性起决定作用的是键的极化度。
卤代烷可极化性次序为: RI > RBr > RCl > RF
二、消除反应(Elimination)
由分子中脱去一个小分子(如HX、H2O等)形成不饱 和结构的反应称为消除反应,以 E 表示。
1. 脱HX
(1)b-消除反应——生成不饱和键 乙醇 R—CH—CH2 + KOH ——> R—CH=CH2 + HX D H X 消除反应的活性: 叔卤代烷 > 仲卤代烷 > 伯卤代烷 RI > RBr > RCl
烯丙基卤和苄卤较活泼,要低温反应
H2C CHCH2Cl + Mg CH2Cl 乙醚 0 C H2C CHCH2MgCl CH2MgCl
偶联:
H2C CHCH2MgCl H2C + H2C CHCH2Cl 30 C CHCH2CH2CH CH2
与活泼卤代烷发生偶联反应(形成碳碳键方法之一)
2. 与锂反应
氯仿
乙基氯 (CH3)3CBr 叔丁基溴 乙烯基氯
CH2=CHCl
氯乙烯
CH2=CH-CH2 Br
3-溴丙烯
烯丙基溴
Br 溴苯 CFCl3 氟利昂-21 F21
CH2Cl
苄基氯 见p.273
氯化苄
Fx y z
,x=碳原子数-1 ,y=氯原子数-1
,z=氟原子数
2.系统命名:
①选母体:烃作母体,将 X 和烃中的支链一
D
R—OH + NaX
水解反应的相对活性: RI>RBr>RCl>RF (烷基相同)
此反应常用于将 -OH 引入一些较复杂的分子中, 因为有时直接引入-OH比直接引入-X更为困难。
2. 氰解(被氰基取代):
卤代烷与 NaCN 或 KCN 的醇溶液共热, X 被 -CN 取代,生成腈。
Cl-CH2CH2CH2CH2-Cl + 2NaCN
H 邻二卤代物 R C X X 偕二卤代物 R C X X C H H C H R' R'
KOH, 乙醇
CH3
CH2
CH
CH2
CH(CH3)2
- HBr
CH2
CH
CH
C
CH(CH3)2
CH(CH3)2
- HCl
CH
CH
CH(CH3)2
R
C
C
R'
KOH, 乙醇
R
C
C
R'
(2)a -消除反应——生成卡宾
OH Cl CH 2 CH 2
CaO H2O
O
HO CH 2 CH 2 Cl Cl CH 2 CH 2 OH
2 NaOH
O
O
5. 酸解 R’COOR RX + R’COONa RX为伯卤,仲卤和叔卤易消除 6. 被-C≡C-R’取代 R—X + NaC≡C —R’ 该反应可用于增长碳链。 R — C≡C — R’
一、双分子亲核取代反应(SN2)
溴甲烷的碱性水解反应如下:
CH3
Br + OH-
CH3
OH + Br-
其水解的速度既与溴甲烷的浓度成正比,也与 OH-的浓度成正比,在动力学上称为二级反应。 反应速度方程:ν = k[CH3-Br] [OH-]
Nucleophilic backside attack
室温迅速生成AgX↓
加热才起反应
活性顺序:RI > RBr > RCl
(按SN1历程进行)
。 。 。 3 RX > 2 RX >1 RX ( X 原子相同 )
8. 卤离子的交换反应
氯代烷、溴代烷与碘化钠反应
CH3CHCH3 Br NaI 丙酮 25℃ CH3CHCH3 I NaBr
NaBr与NaCl不溶于丙酮,而NaI却溶于丙 酮,从而有利于反应的进行。 反应活性: 伯卤代烃 > 仲卤代烃 > 叔卤代烃 (一般按SN2历程进行)
第八章 卤代烃 (Halides)
烃分子中的氢被卤素取代而生成的化合物称 卤代烃。卤代烃的结构通式: R—X。 在有机体中含卤素的有机物不多。但许多卤代 物具有生理活性。 氯霉素(含Cl)具有杀菌消炎作用; 甲状腺素是一种含碘的有机物。 许多卤代烃用作农药、溶剂、制冷剂、灭火剂、 麻醉剂和防腐剂等。
第一节 分类和命名
一、分类
1.按烃基的结构 饱和卤代烃: C2H5Cl,
Cl, (CH3)3C-Cl
乙烯型 RCH=CH-X
不饱和卤代烃 烯丙基型 RCH=CHCH2-X
孤立型 RCH=CH(CH2)n X 苯型 Ar-X 卤代芳烃 苄基型 ArCH2-X 孤立型 Ar(CH2)n X n 2
n 2
不同烃基的相对反应活性:
苄基型,烯丙基型>一般型 >乙烯型,苯基型
一般型中,伯、仲、叔卤代烃的相对活性也 存在一定差异
一、亲核取代反应(Nucleophilic Substitution, SN)
C——X 底物
d+ d-
+ Nu(-) ——> Nu — C — + 亲核试剂
X-
离去基
卤代烷称为底物。与卤原子相连的C叫a 碳原子,它 带部分正电荷,是反应的中心。 进攻试剂都有较大的电子密度,具有亲核性— 亲核试剂(Nucleophilic reagent, Nu: or Nu:-). 底物受 Nu:进攻, C—X键异裂, X- 离开底物分 子,故称为离去基(Leaving group, L). 由亲核试剂进攻底物分子中带部分正电荷的中心 而引起的取代反应,叫亲核取代反应,以 SN 表示。
H HO + H H C Br
H HO
δ
Inversion of configuration at carbon
δ
H HO C H H + Br
C H H
Br
Transition state
b a
对于仲卤代烷和叔卤代烷,消除反应可沿二个 或三个方向进行。
KOH/EtOH CH3CH2CHCH3 —————> Br CH3 KOH/EtOH CH3CH2-C-CH3 —————> Br CH3CH=CHCH3+ CH3CH2CH=CH2 2-丁烯 (81%) CH3 CH3CH=C-CH3 + 1-丁烯 (19%) CH3 CH3CH2C=CH2 2-甲基-1-丁烯 29%
3. 与Na反应 Wurtz合成法-制备高级烷烃
RX只能是1。卤代烃
四、还原
R
X
[H]
R
H
(1)催化氢化:H2,Ni、Pd、Pt… (2)化学还原:LiAlH4、NaBH4、 Zn/HCl、Na-NH3
在有机合成中,卤代烃往往能起到承上启 下的纽带作用,它是原料与目标化合物之间 的重要桥梁。
第三节 亲核取代反应历程
R—MgX + H-OH ——> R—H + Mg(OH)X
RM gX + R`O
H
RH + M g(O R`)X
所以在制备格氏试剂时必须防止这些物质的存在, 并采取隔绝空气中湿气的措施。
卤代烷与金属镁反应的活性顺序是:
> RF RI > RBr > RCl > RX > ArX