众数、中位数和平均数
众数中位数平均数

16
5
10 1 23
2200 1出这个问题中周工资的众数、中 位数、平均数
(2)这个问题中,工资的平均数能客观 地反映该厂的工资水平吗?为什么?
分析:众数为200,中位数为
220,平均数为300。
因平均数为300,由表格中所 列出的数据可见,只有经理在平 均数以上,其余的人都在平均数 以下,故用平均数不能客观真实 地反映该工厂的工资水平。
(1) 1 ,2,3,3,3,4,6,8,8,8,9,9 中位数是:5
(2) 1 ,2,3,3,3,4,8,8,8,9,9 中位数是:4
如何在频率分布直方图中确定众数
频率 组距
众数在样本数据的频率分布直方图中, 就是最高矩形的中点的横坐标。
0.5 0.4 0.3 0.2 0.1
O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量(t)
众数、中位数、平均数
一 众数、中位数、平均数的概念
众数:在一组数据中,出现次数最多的数据叫 做这组数据的众数.
中位数:将一组数据按大小依次排列,把处在 最中间位置的一个数据(或最中间两个数据的 平均数)叫做这组数据的中位数.
平均数: 一组数据的算术平均数,即
X
1 n
( x1
x2
xn )
问题1:众数、中位数、平均数这三个数 一般都会来自于同一个总体或样本,它们 能表明总体或样本的什么性质?
选择平均数更好:因为,此时的众数20万 比中位数25万还小,所以众数代表的是局 部的数。中位数代表的虽然是大多数公路 投资的数额,但由于其不受极端值的影响, 不能代表全体,因而此时成了它的缺点。 选择平均数较好,能比较好的代表整体水 平,但缺点是仍不能显示出具体的数字特 征
众数中位数和算术平均数的关系

众数中位数和算术平均数的关系众数、中位数和算术平均数是统计学中常用的三种描述数据集中趋势的方法。
它们可以帮助我们更好地理解和分析数据,从而得出有关数据分布的结论。
我们来了解一下什么是众数、中位数和算术平均数。
众数是指数据集中出现次数最多的数值,它可以用来反映数据的典型特征。
中位数是指将数据按照大小顺序排列后,处于中间位置的数值。
对于奇数个数据,中位数就是中间那个数;对于偶数个数据,中位数是中间两个数的平均值。
算术平均数是将数据集中的所有数值相加,然后除以数据个数得到的数值。
众数、中位数和算术平均数在描述数据集中趋势方面各有不同的特点。
众数可以直观地反映数据集中最常出现的值,它对于反映数据的集中趋势有一定的帮助。
而中位数则相对稳健一些,它不受数据集中极端值的影响,更能反映数据的中间位置。
算术平均数则是最常用的一种描述数据集趋势的方法,它可以对数据集中所有的数值进行平等对待,但对于存在极端值的数据集可能会产生偏差。
那么,众数、中位数和算术平均数之间是否存在某种关系呢?答案是存在关系的,但并不是绝对的。
在一些特定的情况下,这三个统计量可能会出现一定的关联。
例如,对于一个数据集中众数和中位数相等的情况,可以得出结论:众数等于中位数等于算术平均数。
这种情况通常出现在数据集分布均匀的情况下,即数据集没有明显的偏斜。
此时,众数、中位数和算术平均数都能够很好地反映数据集的特征。
然而,在大多数情况下,众数、中位数和算术平均数之间并没有明显的关系。
数据集的分布形态、数据集中的极端值等因素都会对这三个统计量产生影响。
例如,当数据集存在明显的偏斜时,众数往往会偏离中位数和算术平均数。
当数据集中存在极端值时,算术平均数会受到极端值的影响,而中位数和众数则相对稳定。
总结一下,众数、中位数和算术平均数是常用的描述数据集趋势的统计量。
它们在反映数据集特征方面各有不同的优势和适用条件。
众数可以直观地反映数据集中最常出现的值;中位数相对稳健,更能反映数据的中间位置;算术平均数是最常用的一种描述数据集趋势的方法。
平均数、中位数、众数的联系和区别

一.雷同点【1 】平均数.中位数和众数这三个统计量的雷同之处重要表示在:都是来描写数据分散趋向的统计量;都可用来反应数据的一般程度;都可用来作为一组数据的代表.二.不合点它们之间的差别,重要表示在以下方面.1.界说不合平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数.中位数:将一组数据按大小次序分列,处在最中央地位的一个数叫做这组数据的中位数 .众数:在一组数据中消失次数最多的数叫做这组数据的众数.2.求法不合平均数:用所稀有据相加的总和除以数据的个数,须要盘算才得求出. 中位数:将数据按照从小到大或从大到小的次序分列,假如数据个数是奇数,则处于最中央地位的数就是这组数据的中位数;假如数据的个数是偶数,则中央两个数据的平均数是这组数据的中位数.它的求出不需或只需简略的盘算.众数:一组数据中消失次数最多的谁人数,不必盘算就可求出.3.个数不合在一组数据中,平均数和中位数都具有惟一性,但众数有时不具有惟一性.在一组数据中,可能不止一个众数,也可能没有众数.4.呈现不合平均数:是一个“虚拟”的数,是经由过程盘算得到的,它不是数据中的原始数据.中位数:是一个不完整“虚拟”的数.当一组数据有奇数个时,它就是该组数据排序后最中央的谁人数据,是这组数据中真实消失的一个数据;但在数据个数为偶数的情形下,中位数是最中央两个数据的平均数,它不一定与这组数据中的某个数据相等,此时的中位数就是一个虚拟的数.众数:是一组数据中的原数据 ,它是真实消失的.5.代表不合平均数:反应了一组数据的平均大小,经常运用来一代表数据的总体“平均程度”.中位数:像一条分界限,将数据分成前半部分和后半部分,是以用来代表一组数据的“中等程度”.众数:反应了消失次数最多的数据,用来代表一组数据的“多半程度”.这三个统计量虽反应有所不合,但都可暗示数据的分散趋向,都可作为数据一般程度的代表.6.特色不合平均数:与每一个数据都有关,个中任何数据的变动都邑响应引起平均数的变动.重要缺陷是易受极端值的影响,这里的极端值是指偏大或偏小数,当消失偏大数时,平均数将会被举高,当消失偏小数时,平均数会下降.中位数:与数据的排各地位有关,某些数据的变动对它没有影响;它是一组数据中央地位上的代表值,不受数据极端值的影响.众数:与数据消失的次数有关,着眼于对各数据消失的频率的考核,其大小只与这组数据中的部分数据有关,不受极端值的影响,其缺陷是具有不独一性,一组数据中可能会有一个众数,也可能会有多个或没有 .7.感化不合平均数:是统计中最经常运用的数据代表值,比较靠得住和稳固,因为它与每一个数据都有关,反应出来的信息最充分.平均数既可以描写一组数据本身的整体平均情形,也可以用来作为不合组数据比较的一个尺度.是以,它在生涯中运用最普遍,比方我们经常所说的平均成绩.平均身高.平均体重等.中位数:作为一组数据的代表,靠得住性比较差,因为它只运用了部分数据.但当一组数据的个体数据偏大或偏小时,用中位数来描写该组数据的分散趋向就比较合适.众数:作为一组数据的代表,靠得住性也比较差,因为它也只运用了部分数据..在一组数据中,假如个体数据有很大的变动,且某个数据消失的次数最多,此时用该数据(即众数)暗示这组数据的“分散趋向”就比较合适.。
什么是中位数,众数,平均数

什么是中位数,众数,平均数中位数,又称中点数,中值。
中数是按顺序排列的一组数据中居于中间位置的数;众数是统计学名词,在统计分布上具有明显集中趋势点的数值,代表数据的一般水平;平均数是指在一组制数据中所有数据之和再除以数据的个数。
什么是中位数,众数,平均数中位数:把一组数据从小到大排列,最中间的那个数就是中位数。
众数:一组数据中出现次数量多的那个数,众数可以是多个。
平均数:一组数据之和,除以这组数的个数,所得的结果就是平均数。
中位数,众数,平均数的作用中位数:表示数据的中等水平。
中位数与数据的排列位置有关,某些数据的变动对它没有影响;它是一组数据中间位置上的代表值,不受数据极端值的影响。
众数:表示数据的普遍情况。
与数据出现的次数有关,着眼于对各数据出现的频率的考察,其大小只与这组数据中的部分数据有关,不受极端值的影响,其缺点是具有不惟一性。
平均数:表示数据的总体水平。
与每一个数据都有关,其中任何数据的变动都会相应引起平均数的变动。
主要缺点是易受极端值的影响,这里的极端值是指偏大或偏小数,当出现偏大数时,平均数将会被抬高,当出现偏小数时,平均数会降低。
中位数,众数,平均数怎么求1.中位数:将数据按照从小到大或从大到小的顺序排列,如果数据个数是奇数,则处于最中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数是这组数据的中位数。
它的求出不需或只需简单的计算。
2.众数:一组数据中出现次数最多的那个数,不必计算就可求出。
3.平均数:用所有数据相加的总和除以数据的个数,需要计算才得求出。
(在选手比赛成绩统计中通常会去掉一个最高分和一个最低分,以示公平)。
平均数、中位数、众数的联系和区别

一、相同点平均数、中位数和众数这三个统计量的相同之处主要表现在:都是来描述数据集中趋势的统计量;都可用来反映数据的一般水平;都可用来作为一组数据的代表。
二、不同点它们之间的区别,主要表现在以下方面。
1、定义不同平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。
中位数:将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数。
众数:在一组数据中出现次数最多的数叫做这组数据的众数。
2、求法不同平均数:用所有数据相加的总和除以数据的个数,需要计算才得求出。
中位数:将数据按照从小到大或从大到小的顺序排列,如果数据个数是奇数,则处于最中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数是这组数据的中位数。
它的求出不需或只需简单的计算。
众数:一组数据中出现次数最多的那个数,不必计算就可求出。
3、个数不同在一组数据中,平均数和中位数都具有惟一性,但众数有时不具有惟一性。
在一组数据中,可能不止一个众数,也可能没有众数。
4、呈现不同平均数:是一个“虚拟”的数,是通过计算得到的,它不是数据中的原始数据。
中位数:是一个不完全“虚拟”的数。
当一组数据有奇数个时,它就是该组数据排序后最中间的那个数据,是这组数据中真实存在的一个数据;但在数据个数为偶数的情况下,中位数是最中间两个数据的平均数,它不一定与这组数据中的某个数据相等,此时的中位数就是一个虚拟的数。
众数:是一组数据中的原数据,它是真实存在的。
5、代表不同平均数:反映了一组数据的平均大小,常用来一代表数据的总体“平均水平”。
中位数:像一条分界线,将数据分成前半部分和后半部分,因此用来代表一组数据的“中等水平”。
众数:反映了出现次数最多的数据,用来代表一组数据的“多数水平”。
这三个统计量虽反映有所不同,但都可表示数据的集中趋势,都可作为数据一般水平的代表。
6、特点不同平均数:与每一个数据都有关,其中任何数据的变动都会相应引起平均数的变动。
平均数中位数众数之间的区别及联系

平均数中位数众数之间的区别与联系一、相同点平均数、中位数和众数这三个统计量的相同的地方要紧表此刻:都是来描述数据集中趋势的统计量;都可用来反映数据的一样水平;都可用来作为一组数据的代表。
二、不同点它们之间的区别,要紧表此刻以下方面。
一、意义不同平均数:一组数据的总和除以这组数据个数所取得的商叫这组数据的平均数。
中位数:将一组数据按大小顺序排列,处在最中间位置的一个数或最中间的两个数的平均数叫做这组数据的中位数。
众数:在一组数据中显现次数最多的数叫做这组数据的众数。
二、求法不同平均数:用所有数据相加的总和除以数据的个数。
与每一个数的大小都有关系。
中位数:将数据依照从小到大或从大到小的顺序排列,若是数据个数是奇数,那么处于最中间位置的数确实是这组数据的中位数;若是数据的个数是偶数,那么中间两个数据的平均数是这组数据的中位数。
它只要找或简单的计算。
众数:一组数据中显现次数最多的那个数。
只要找,没必要计算就可求出。
3、个数不同在一组数据中,平均数和中位数都具有惟一性,但众数有时不具有惟一性。
在一组数据中,可能不止一个众数,也可能没有众数。
4、呈现形式不同平均数:是一个“虚拟”的数,是通过计算取得的,它不是数据中的原始数据,它可能与原数据中的某一个相同,也可能与原数据中的任何一个都不同。
中位数:是一个不完全“虚拟”的数。
当一组数据是奇数个时,它确实是该组数据排序后最中间的那个数据,是这组数据中真实存在的一个数据;但在数据个数为偶数的情形下,中位数是最中间两个数据的平均数,只有当中间的两个数相同时,它才与这组数据中的两个或两个以上数据相同,是数据中的一个真实的数,若是正中间的两个数不同,现在的中位数确实是一个“虚拟”的数。
众数:是一组数据中显现次数最多的原数据,它是真实存在的。
但当一组数据中的每一个数据都显现相同次数时,这组数据就没有众数了。
五、代表不同平均数:反映了一组数据的平均大小,经常使用来一代表数据的整体“平均水平”。
众数,中位数,平均数的符号

众数,中位数,平均数的符号
众数、中位数和平均数在统计学中常用于描述数据集的集中趋势。
它们的符号分别是:
1. 众数,众数是指在数据集中出现次数最多的数值。
它的符号通常用大写字母 "M" 表示。
2. 中位数,中位数是将数据集按照大小排序后,位于中间位置的数值。
如果数据集中的数据个数为奇数,则中位数就是排序后的中间值;如果数据个数为偶数,则中位数是中间两个数的平均值。
中位数的符号通常用大写字母 "Me" 表示。
3. 平均数,平均数是将数据集中所有数值相加后再除以数据个数得到的结果。
平均数的符号通常用小写字母 "x̄" 表示。
这些符号在统计学中被广泛使用,用于表示和计算数据集的不同统计特征。
平均数、中位数、众数的联系和区别

一、相同点之阿布丰王创作平均数、中位数和众数这三个统计量的相同之处主要表示在:都是来描述数据集中趋势的统计量;都可用来反映数据的一般水平;都可用来作为一组数据的代表。
二、分歧点它们之间的区别,主要表示在以下方面。
1、定义分歧平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。
中位数:将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数。
众数:在一组数据中出现次数最多的数叫做这组数据的众数。
2、求法分歧平均数:用所有数据相加的总和除以数据的个数,需要计算才得求出。
中位数:将数据依照从小到大或从大到小的顺序排列,如果数据个数是奇数,则处于最中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数是这组数据的中位数。
它的求出不需或只需简单的计算。
众数:一组数据中出现次数最多的那个数,不必计算就可求出。
3、个数分歧在一组数据中,平均数和中位数都具有惟一性,但众数有时不具有惟一性。
在一组数据中,可能不止一个众数,也可能没有众数。
4、呈现分歧平均数:是一个“虚拟”的数,是通过计算得到的,它不是数据中的原始数据。
中位数:是一个不完全“虚拟”的数。
当一组数据有奇数个时,它就是该组数据排序后最中间的那个数据,是这组数据中真实存在的一个数据;但在数据个数为偶数的情况下,中位数是最中间两个数据的平均数,它纷歧定与这组数据中的某个数据相等,此时的中位数就是一个虚拟的数。
众数:是一组数据中的原数据,它是真实存在的。
5、代表分歧平均数:反映了一组数据的平均大小,经常使用来一代表数据的总体“平均水平”。
中位数:像一条分界线,将数据分成前半部分和后半部分,因此用来代表一组数据的“中等水平”。
众数:反映了出现次数最多的数据,用来代表一组数据的“多数水平”。
这三个统计量虽反映有所分歧,但都可暗示数据的集中趋势,都可作为数据一般水平的代表。
6、特点分歧平均数:与每一个数据都有关,其中任何数据的变动都会相应引起平均数的变动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学
课题:用样本的数据特征估计总体的数据特征
第一课时学案
编制人:魏怡 审核人: 编制时间:2015年3月18日
【学习目标】
(1)能从样本数据中提取基本的数字特征,并做出合理的解释. (2)会求样本的众数、中位数、平均数.
(3)能从频率分布直方图中,求得众数、中位数、平均数. 【自学指导】 学习重点
(1) 给出一组数据,能够快速求出数据的众数、中位数、平均数.
(2) 掌握这三种数字特征的优缺点,并能够根据数据的特点,选择合适的数字特征描述样
本。
学习突破点
给出频率分布直方图,能够求得这三种数字特征,并作出简单、合理的分析。
【知识准备】 1、概念梳理
(1)众数:一组数据中出现次数 最多的数;
特征:一组数据中的众数可能 ,也可能没有,反映了该组数据的 . (2)中位数:一组数据按从小到大的顺序排成一列,处于 位置的数称为这组数据的中位数. 特征:一组数据中的中位数是 的,反映了该组数据的 .
(3)平均数:一组数据的和与这组数据的个数的商.数据x 1,x 2,…,x n 的平均数为 .
特征:平均数对数据有“取齐”的作用,代表该数组数据的 .任何一个数据的
改变都会引起平均数的变化,这是众数和中位数都不具有的性质.所以与众数、中位数比较起来,平均数可以反映出更多的关于样本数据全体的 。
2、基础知识巩固
(1)数据组8,-1,0,4,1
7,4,3的众数是__________. (2)数据组5,7,9,6,-1,0的中位数是__________.
(3)10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,则其平均数是 ,众数是 ,中位数是 .
【学习内容】
探究一:频率分布直方图和众数的关系 问题1:频数与频率的关系?
问题2:在频率分布直方图中,小长方形的面积代表什么?小长方形越高,说明什么?
问题3:经过以上思考,想想如何在样本数据的频率分布直方图中,估计出众数的值?
【尝试练习】课本72页图2.2-5是某小区100位居民的月均用水量的频率分布直方图,请问月均用水量的众数是多少?
探究二:频率分布直方图与中位数的关系
问题1:中位数处于一组数据的中间位置,因此出现在中位数两边的数据在个数上有什么特点? 问题2:如何根据频率分布直方图计算中位数?(以下图为例)
探究三:频率分布直方图与平均数的关系
问题1:计算数据组2,2,3,3,3,7,7,7,7的平均数
总结:在一组数据中x 出现了k 次,x 出现了k 次,……,x 出现了k 次,则这组数的平均数为 .
问题2:如何利用频率分布直方图计算这组数据的平均数?(以下图为例) 0.08
探究四:众数、中位数和平均数的优缺点
例某公司的33名职工月工资(单位:元)如下表:
职务董事长副董事长董事总经理经理管理员职员
人数 1 1 2 2 5 3 20
工资5500 5000 3500 3000 2500 2000 1500
(1)计算该公司职工月工资的平均数、中位数、众数。
(2)若董事长、副董事长的工资分别从5500元、5000元提升到30000元、20000元,那么公司职工月工资的平均数、中位数和众数又是多少?
(3)你认为哪个统计量更能反映这个公司员工的工资水平?
(4)结合以上问题以及本节课所学知识,你可以得出平均数、中位数和众数的特点吗?
【课堂小结】本节课你都学到了什么?试着总结一下
【反馈练习】
1、某地居民的月收入调查所得数据画的样本的频率
分布直方图如下,计算居民月收入的众数、中位数
和平均数.
名称优点缺点众数
中位数
平均数。