SPSS两个独立样本秩和检验操作步骤

合集下载

SPSS学习之——两独立样本的非参数检验(Mann-Whitney U

SPSS学习之——两独立样本的非参数检验(Mann-Whitney U

---------------------------------------------------------------最新资料推荐------------------------------------------------------
SPSS学习之——两独立样本的非参数检验
(Mann-Whitney U
SPSS 学习笔记之两独立样本的非参数检验( Mann-Whitney U 一、概述Mann‐WhitneyU 检验是用得最广泛的两独立样本秩和检验方法。

简单的说,该检验是与独立样本 t 检验相对应的方法,当正态分布、方差齐性等不能达到 t 检验的要求时,可以使用该检验。

其假设基础是:
若两个样本有差异,则他们的中心位置将不同。

二、问题为了研究某项犯罪的季节性差异,警察记录了 10 年来春季和夏季的犯罪数量,请问该项犯罪在春季和夏季有无差异。

下面使用Mann‐WhitneyU 检验进行分析。

SPSS 版本为 20。

三、统计操作SPSS 变量视图:
SPSS 数据视图:
进入菜单如下图:
点击进入如下的界面,目标选项卡不需要手动设置进入字段选项卡,将报警数量选入检验字段框,将季节选入组框中。

再进入设置选项卡,选中自定义检验单选按钮,选择Mann‐WhitneyU(二样本)检验。

1 / 2
点击运行即可。

四、结果解读这是输出的主要结果,零假设是报警数量的分布在季节类别上相同,其 P=0.0090.05,故拒绝原假设,认为报警数量在季节上有统计学差异。

双击该表格,可以得到更多的信息,不再叙述。

SPSS非参数检验—两独立样本检验_案例解析

SPSS非参数检验—两独立样本检验_案例解析

SPSS非参数检验—两独立样本检验_案例解析非参数检验是一种在统计学中常用于比较两个或多个独立样本的方法。

与参数检验不同,非参数检验不需要对数据的分布进行假设,并且适用于非正态分布的数据。

SPSS(统计软件包for社会科学)是一个广泛使用的统计分析软件,它提供了许多非参数检验的功能。

本文将以一个案例为例,解析如何使用SPSS进行两独立样本的非参数检验。

案例描述:一家公司正在评估一个新的培训课程对员工的绩效是否有显著影响。

为了评估培训课程的效果,研究人员随机选择了两组员工,一组接受了培训课程(实验组),另一组没有接受培训课程(对照组)。

研究人员想要比较两组员工在绩效上的差异。

步骤一:导入数据首先,将实验组和对照组的数据分别导入SPSS中。

假设每个样本中有n个观测值。

在SPSS中,每一组数据应该是一个独立的变量(或列),并且每个观测值应该占据矩阵中的一个单元格。

步骤二:选择非参数检验方法在SPSS中,可以使用Mann-Whitney U检验来比较两组独立样本的绩效差异。

该检验的原假设是两组样本来自同一个总体,备择假设是两组样本来自不同的总体。

步骤三:运行非参数检验在SPSS的菜单栏中,依次选择"分析" - "非参数检验" - "独立样本检验(Mann-Whitney U)"。

将实验组和对照组的变量分别输入到"因子1"和"因子2"中。

在"可选"选项中,可以选择在报告中包含各种统计量。

步骤四:解读结果SPSS将输出很多统计信息,包括推断统计、置信区间、效应大小等。

其中,最重要的是U值和显著性。

U值是用来检验两组样本是否来自同一个总体的统计量,显著性则是用来判断差异是否显著。

如果显著性小于0.05,则可以拒绝原假设,认为两组样本在绩效上存在显著差异。

总结:通过上述步骤,我们可以利用SPSS进行两独立样本的非参数检验。

使用SPSS进行两组独立样本的t检验、F检验、显著性差异、计算p值

使用SPSS进行两组独立样本的t检验、F检验、显著性差异、计算p值

使用SPSS 进行两组独立样本的t检验、F检验、显著性差异、计算p值SPSS版本为SPSS 20.如有以下两组独立的数据,名称分别为“111”,“222”。

111组:4、5、6、6、4222组:1、2、3、7、7首先打开SPSS,输入数据,命名分组,体重和组名要对应,111组的就不要输入到222组了。

数据视图如下:变量视图如下,名称可以改成“分组嗷嗷嗷”“体重喵喵喵”等点击“分析”-“比较均值”-“独立样本T检验”来到这里,分组变量为“分组嗷嗷嗷”,检验变量为“体重喵喵喵”。

【关键的一步】点击分组嗷嗷嗷,进行“定义组”【关键的一步】输入对应的两组数据的组名:“ 111”和“222”点击确定,可见数据与组名对应上了。

点击“确定”,生成T检验的报告,即将大功告成!第一个表都知道什么回事就不缩了,excel都能实现的。

第二个表才是重点,不然用SPSS干嘛。

F检验:在两样本t检验中要用到F检验,F检验又叫方差齐性检验,用于判断两总体方差是否相等,即方差齐性。

如图:F旁边的 Sig的值为.007 即0.007, <0.01, 即两组数据的方差显著性差异!看到“假设方差相等”和“假设方差不相等”了么?此时由于F检验得出Sig <0.01,即认为假设方差不相等!因此只关注红框中的数据即可。

如图,红框内,Sig(双侧),为.490即0.490,也就是你们要求的P值啦,Sig ( 也就是P值 ) >0.05,所以两组数据无显著性差异。

PS:同理,如果F检验的Sig >.05(即>0.05),则认为两个样本的假设方差相等。

所以相应的t检验的结果就看上面那行。

by 20150120 深大医学院 FG。

秩和检验spss中文版

秩和检验spss中文版

秩和检验 spss中文版秩和检验在SPSS实现的操作步骤秩和检验:例两组受试者文化程度如下表,比较两组受试者文化程度有无差别。

小学1 初中2 高中3 大学4 组1 65 18 30 13 组2 42 6 23 11【操作过程】1、建立数据文件设定三个变量: 文化程度、group、频数。

文化程度:小学、初中、高中、大学,分别用1、2、3、4代表;group,组别,分组变量:组1 ,组2;频数,即对应每组数量。

文化程度 group 频数1.00 1.00 65.002.00 1.00 18.003.00 1.00 30.004.00 1.00 13.001.002.00 42.002.00 2.00 6.003.00 2.00 23.004.00 2.00 11.00 2、统计分析过程(1)数据, 加权个案 , 选中加权个案W 单选框,在频率变量E 框里选入:频数 , 单击确定;(2)分析==>非参数检验==>两独立样本(2)检验变量列表框:文化程度(3)分组变量框:group(分组);单击定义组钮在group1框和group2框中分别输入1和2单击继续钮(4)检验类型复选框组:选中Mann-Whitney U复选框(5) 单击确定钮【结果解释】Mann-Whitney 检验秩group N 秩均值秩和文化程度 1 126 102.82 12955.502 82 107.08 8780.50总数 208a检验统计量文化程度Mann-Whitney U 4954.500Wilcoxon W 12955.500Z -.543渐近显著性(双侧) .587a. 分组变量: group组1平均秩和为 102.82;组2平均秩和为:107.08。

u(Z值)=0.543,P(渐进显著性)=0.587。

尚不能认为两组文化程度有差别。

下面是赠送的团队管理名言学习,不需要的朋友可以编辑删除!!!谢谢!!!1、沟通是管理的浓缩。

两独立样本T检验---SPSS操作详解

两独立样本T检验---SPSS操作详解

两独立样本T检验-SPSS操作详解
为了解某一新药降血压的效果,将28名高血压患者随机分为实验组和对照组,实验组采用新药,对照组采用常规药,测得治疗前后的血压变化,问新药是否优于常规药?
1 打开SPSS软件,定义变量。

变量1设置:name-group , decimals-0 , label-分组, value-(1=新药,2=常规药) 变量2设置:name-value , decimals-0 , label-血压下降值
2 输入数据---血压差=用药前血压-用药后血压
3 单击菜单栏analyze/compare means/independent-samples t test
4 将血压下降值调入test variables下矩形框
5 将分组(group)调入grouping variable 下矩形框
6单击define groups…定义分组group1为1 定义group2为2 单击continue
7 options选项默认
8 bootstrap选项默认
9 单击OK 输出结果
10 结果界面
11 结果解释
表1表示两独立样本t检验基本统计量-group statistics
表2表示两独立样本t检验结果,方差方程的levene检验(Levene’s Test for Equality of Variances 方差齐性检验)F=3.115,P=0.93,认为两样本来自的总体方差齐。

T检验中t=3.18,P=0.005。

按α=0.05水准拒绝H0
,差异有统计学意义。

可认为新药组的降压效果优于常规药。

2017/06/06于深圳
随时交流:ammomeng@。

用SPSS实现完全随机设计多组比较秩和检验的多重比较

用SPSS实现完全随机设计多组比较秩和检验的多重比较

用SPSS实现完全随机设计多组比较秩和检验的多重比较用SPSS实现完全随机设计多组比较秩和检验的多重比较一、引言在实证研究中,为了探讨不同处理或干预对某个变量的影响,常常需要进行多组比较。

多组比较的目的是确定是否存在差异以及差异的大小。

秩和检验是一种用于比较两组或多组样本之间差异的非参数方法,具有一定的优势。

二、方法以SPSS软件为例,我们可以利用其提供的功能实现完全随机设计多组比较秩和检验的多重比较。

以下是具体的步骤:1. 数据准备首先,需要准备好用于分析的数据。

假设有n个处理组,每个处理组有m个观测值。

可以将数据按照处理组进行分类整理,每个处理组的观测值放在一列中。

2. 数据输入打开SPSS软件,创建一个新的数据文件,并将之前准备好的数据输入。

确保每个处理组的观测值对应正确。

3. 非参数检验选择菜单栏中的“分析-非参数检验-维尔科克森-曼-惠特尼U 检验”或“分析-非参数检验-克鲁斯卡尔-华里斯H检验”,根据实验需要选择适当的检验方法。

4. 设置选项在弹出的对话框中,将要比较的变量选择到“因子”框中,将处理组变量选择到“因子标签”框中。

选择需要进行多重比较的处理组,点击“组间对比”按钮。

5. 多重比较在“组间对比”对话框中,选择想要进行多重比较的处理组。

可以点击“加入全部对比”按钮将所有处理组两两比较,也可以手动选择需要比较的处理组。

点击“确定”进行多重比较。

6. 结果输出SPSS将会输出多重比较的结果,包括均值、标准误差、t值、p值等统计指标。

根据p值判断处理组之间是否存在显著差异。

三、示例为了更好地理解上述方法,我们通过一个假想的实验来展示如何使用SPSS进行完全随机设计多组比较秩和检验的多重比较。

假设研究人员想要比较四种不同药物对降压效果的影响。

他们随机地将30名患有高血压的参与者分为四个处理组,分别接受A药物、B药物、C药物和D药物的治疗。

每个处理组的参与者分别测量他们的血压值。

现在,研究人员想要确定这些药物在降压效果上是否有显著差异。

(完整版)SPSS两个独立样本秩和检验操作步骤

(完整版)SPSS两个独立样本秩和检验操作步骤

SPSS两个独立样本秩和检验步骤例表:
分组动物数病变
组织
各组病变严重程度分级/动物数(只)数字
评分病变不明显病变轻度病变中度病变显著
正常组14 心11 2 0 1 5 肝14 0 0 0 0 脑14 0 0 0 0 主动脉14 0 0 0 0
模型组16 心 4 7 5 0 17 肝 1 3 9 3 30 脑10 6 0 0 6 主动脉8 4 1 3 15
对正常组及模型组各脏器病变差异进行统计分析:
1、打开SPSS,点变量视图,进行定义,注意都选择数值类型。

2、点数据视图,组别以1、2代替,病变程度0(不明显)、1(轻度)、2(中度)及3(显著),例数以模型及正常组心脏例数为例填上。

3、点数据→加权个案,频率变量选择例数,点确定,弹出输出数据对话框,可以选择不保存。

4、点击分析→非参数检验→2个独立样本,检测变量列表选择病变,分组变量选择组别,点定义组,写上1和2,再选择Mann-Whitney U检验,点确定。

5、分析结果看双侧P值,示例结果为0.008,P<0.01,具有显著性差异。

spss秩和检验

spss秩和检验

秩和检验前面介绍的均数的区间估计及假设检验,都是要求个体变量值服从正态分布,或根据中心极限定理,当样本较大时,样本均数服从正态分布。

这种要求样本来自总体分布型是已知的,在此基础上对总体参数进行估计或检验,称为参数统计(parametric statistics)。

但在医学研究中,许多数据不符合参数统计的要求,这时有两种处理的方法。

一是,进行数据转换,使其符合参数统计方法的要求。

二是,选择非参数检验方法,非参数检验(non-parametric test)方法是对样本来自的总体分布不作要求(如不要求样本来自正态分布)的一类假设检验方法。

非参数检验的主要优点是对样本的总体分布不作要求,适用的范围广,尤其是当变量中有不确定数值时,如<0.5mg,可用非参数检验。

同时,非参数检验方法存在其致命的缺点,其检验功效低于相应的参数统计方法。

因此,如果数据符合参数统计的要求首选参数统计方法;如果数据不符合参数统计的要求有两个选择,一是选择非参数检验方法。

下面介绍了属于非参检验的两种秩和检验(rank sum test)方法。

二是,将数据经过变换使其符合参数统计方法,再选择参数统计方法,本节介绍了几种数据变换方法。

应用条件①总体分布形式未知或分布类型不明;②偏态分布的资料:③等级资料:不能精确测定,只能以严重程度、优劣等级、次序先后等表示;④不满足参数检验条件的资料:各组方差明显不齐。

⑤数据的一端或两端是不确定数值,如“>50mg”等。

一、配对资料的Wilcoxon符号秩和检验(Wilcoxon signed-rank test)例1对10名健康人分别用离子交换法与蒸馏法,测得尿汞值,如表9.1的第(2)、(3)栏,问两种方法的结果有无差别?表1 10名健康人用离子交换法与蒸馏法测定尿汞值(μg/l)样品号(1)离子交换法(2)蒸馏法(3)差值(4)=(2) (3)秩次(5)1 0.5 0.0 0.5 22 2.2 1.1 1.1 73 0.0 0.0 0.0 —4 2.3 1.3 1.0 65 6.2 3.4 2.8 86 1.0 4.6 -3.6 -97 1.8 1.1 0.7 3.58 4.4 4.6 -0.2 -19 2.7 3.4 -0.7 -3.510 1.3 2.1 -0.8 -5T+=+26.5T-=-18.5差值先进行正态性及方差齐性检验,看是否可以做参数检验,其检验效能高于非参数检验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

S P S S两个独立样本秩和
检验操作步骤
Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT
SPSS两个独立样本秩和检验步骤例表:
分组动物数病变
组织
各组病变严重程度分级/动物数(只)数字
评分病变不明显病变轻度病变中度病变显着
正常组14心112015肝140000脑140000主动脉140000
模型组16心475017肝139330脑106006主动脉841315
对正常组及模型组各脏器病变差异进行统计分析:
1、打开SPSS,点变量视图,进行定义,注意都选择数值类型。

2、点数据视图,组别以1、2代替,病变程度0(不明显)、1(轻度)、2(中度)及3(显着),例数以模型及正常组心脏例数为例填上。

3、点数据→加权个案,频率变量选择例数,点确定,弹出输出数据对话框,可以选择不保存。

4、点击分析→非参数检验→2个独立样本,检测变量列表选择病变,分组变量选择组别,点定义组,写上1和2,再选择Mann-Whitney U检验,点确定。

5、分析结果看双侧P值,示例结果为,P<,具有显着性差异。

相关文档
最新文档