一元一次方程学习知识点总结归纳45444.doc

合集下载

七年级上册数学一元一次方程的总结

七年级上册数学一元一次方程的总结

七年级上册数学一元一次方程的总结一元一次方程是数学中的基础内容,它由一个未知数和一次方程组成。

在七年级上册的数学课程中,我们学习了一元一次方程的基本概念、求解方法和应用。

一、基本概念一元一次方程是指只有一个未知数,并且未知数的最高次数为1的等式。

一元一次方程的一般形式可以表示为ax + b = 0,其中a和b是已知数,a≠0,x是未知数。

二、解方程的基本方法1.同加同减法:通过同加同减法可以将含有未知数的项移至方程的一边,使得另一边变为0,从而简化求解过程。

2.同乘同除法:通过同乘同除法可以将方程中的系数约分或整理,使得未知数的系数变为1,从而简化求解过程。

三、解方程的步骤1.将方程移项,即将含有未知数x的项移到方程等式的一边,使得另一边为0。

2.化简方程,通过同加同减法和同乘同除法化简方程,使得未知数的系数变为1。

3.求解方程,从化简后的方程中可以直接得到未知数的解。

4.验证解,将得到的解代入原方程中,检验是否满足原方程。

四、方程的应用1.问题的建立:将问题中的已知条件和未知数用代数符号表示,建立一元一次方程。

2.方程的求解:通过解一元一次方程,得到未知数的解。

3.解的验证:将得到的解代入原问题中,检验是否满足原问题。

4.问题的回答:根据解的意义,给出问题的答案,并进行必要的分析和总结。

五、方程的解的分类1.有解方程:经过化简后能得到一个明确的解。

2.无解方程:经过化简后不会得到解。

3.恒等方程:对于所有的x,方程都成立。

六、解方程时的常见错误1.漏解:没有找到全部的解。

2.冗余解:方程与原问题不相符,解不满足。

3.解不符合题意:解与原问题不相符,无法解决问题。

4.算式错误:在计算过程中出现错误。

七、练习题技巧1.注意思维导图的绘制,即将已知条件和未知数用图形方式呈现,更清晰地理解问题。

2.细心审题,注意问题中的关键词和要求。

3.巩固基本运算,特别是消去法和整理运算的基础知识。

4.多做例题,加深对一元一次方程的理解和掌握。

一元一次方程 基础知识整理

一元一次方程  基础知识整理

一元一次方程1.定义:方程与一元一次方程含有未知数的叫方程,方程必须具备两个条件:第一是等式,第二是含有未知数。

方程中只含有一个未知数,且未知数的次数都是1的整式方程叫做一元一次方程。

2.方程的解与解方程使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!解方程就是求出使方程中左右两边均相等的未知数的值,是过程。

3.等式的性质(1):等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;(2):等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.解方程的过程就是把方程逐步化为x=a(常数)的形式,等式的性质是重要的转化依据。

4.解方程(1)合并同类项与移项:合并时牢记:同类项的系数相加,字母连同指数不变,系数为负数时要注意符号。

(2)移项(移项要变号):移项就是把等式一边的某项变号后移到另一边。

一般把方程转化为含有未知数的在方程的左边,常数在方程的右边。

注意与加法交换律不一样。

移项是把某些项从方程的一边移到另一边,移动要变号,而加法交换律只是加数之间交换位置,改变的只是顺序不改变符号。

(3)去括号与去分母:去括号法则与整式去括号法则相同:括号外的因数是整数时,去括号后原括号内各项的符号与原来的符号相同。

括号外的因数是负数时,去括号内后,原括号内各项的符号与原来的符号相反。

去分数:先把分式化成整式再计算。

应注意各项都要乘以各分母的最小公倍数,不要漏乘分母的项,如果分子是一个多项式,去分母时要将分子作为一个整体加上括号。

当分母是小数时,要先利用分母的基本性质把小数转化成整数,然后再去分母。

(4)一元一次方程解法的一般步骤:化简方程----------分数基本性质去分母----------同乘(不漏乘)最简公分母去括号----------注意符号变化移项----------变号合并同类项--------合并后注意符号系数化为1---------未知数细数是几就除以几5.列方程(1)读题分析法:…………多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法: …………多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.6.列方程解决实际问题一般步骤:审设列解验答(1)配套问题等量关系:加工或者生产的总量相等或成比例。

七年级上册一元一次方程知识点归纳

七年级上册一元一次方程知识点归纳

第三章一元一次方程知识点归纳一、一元一次方程1.方程:含有未知数的等式叫做方程。

2.方程的解:使方程左、右两边相等的未知数的值,叫做方程的解。

3.只含有一个未知数,并且未知数的次数是1,这样的方程叫做一元一次方程。

一元一次方程可以化为ax+b=0(a≠0)的形式,分母中不能含有未知数。

4.求方程的解叫做解方程二、等式的性质(解方程的依据)1.等式两边都加上或者减去同一个数(或代数式),所得结果仍是等式。

如果a=b,那么a ±c=b±c。

2.等式两边都乘或者除以同一个数(或代数式),所得结果仍是等式。

如果a=b,那么ac=bc, =(c≠0)拓展:①对称性:如果a=b,那么b=a,即等式的左右互换位置,所得的结果仍是等式;②传递性:如果a=b,b=c,那么a=c(等量代换)三、一元一次方程的解法1.移项:把方程中的某一项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。

移项要变号。

2.解形如mx+p=nx+q的一元一次方程(1)移项:根据等式性质,将含未知数的项移到方程的一边(通常是等号左边),常数项移到方程的另一边(通常是等号右边)mx-nx=q-p(2)合并同类项:化方程为ax=b(a,b为已知数,a≠0)的形式(m-n)x=q-p(3)未知数系数化为1:根据等式性质,将方程从ax=b的形式化为x=的形式x=(4)算出的值,即为方程的解2.解含有括号的方程:(1)根据去括号法则去括号;(2)移项;(3)化成标准形式ax=b;(4)系数化为1.注意:(1)去括号时要看清括号前面的符号,用去括号法则去括号;(2)括号前面的系数要与括号里面的每一项相乘,不能漏乘任何一项。

3.去分母解一元一次方程(1)去分母:在方程两边同乘各分母的最小公倍数。

(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1四、一元一次方程模型的应用(难点)1.一般步骤:(1)审题;(2)设未知数;(3)列方程;(4)解方程;(5)验算;(6)作答。

一元一次方程组知识要点

一元一次方程组知识要点

一元一次方程知识要点一、知识框架二、知识梳理知识点一:一元一次方程及解的概念1、方程:含有未知数的等式叫做方程;2、一元一次方程:在方程中,只含有一个未知数x 元,并且未知数的次数是1次,这样的方程叫一元一次方程;一元一次方程的标准形式:0=+b ax 其中x 是未知数,b a ,是已知数,且0≠a 要点诠释:一元一次方程须满足下列三个条件:1只含有一个未知数;2未知数的次数是1次;3整式方程;3、解方程与方程的解:求出使该方程中等号左右两边相等的未知数的值,这个值就是方程的解;判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等; 知识点二:一元一次方程的解法1、等式的基本性质等式的性质1:等式两边加或减同一个数或式子,结果仍相等;即:如果b a =,那么c b c a ±=±;c 为一个数或一个式子 等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等; 即:如果b a =,那么bc ac =;如果b a =0≠c ,那么c b c a =; 要点诠释:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变; 即:)其中0(≠÷÷==m mb m a bm am b a 特别注意:分数的基本性质主要是用于将方程中的小数系数特别是分母中的小数化为整数,如方程:6.12.045.03=+--x x ,将其化为:6.12401053010=+=-x x ;方程的右边没有变化,这要与“去分母”区别开;2、解一元一次方程的一般步骤:去分母;去括号;移项;合并同类项;系数化为1;⑴去分母时:①不含有分母的项也要乘以最小公分母;②区别于利用分数的性质将方程简化,此时不含分母的项不用扩大和缩小;③分数线相当于括号,去掉分母要将分子用括号括起来;⑵去括号时:与整式中去括号法则相同,注意括号外面的符号;⑶移项时:①区别于去括号,不论正负移项都要变号;②没有移项时不要误以为有移项,如x =-5得到5=x ,是错误的;⑷合并同类项时:把方程化成()0≠=a b ax 的形式;⑸系数化为1:在方程两边都除以未知数的系数a ,得到方程的解ab x =; 要点诠释:理解方程b ax =在不同条件下解的各种情况,并进行简单应用:①0≠a 时,方程有唯一解a b x =; ②0,0==b a 时,方程有无数个解;③0,0≠=b a 时,方程无解;知识点三:列一元一次方程解应用题1、列方程解应用题的步骤:1审题:认真审题,理解题意,弄清题目中的数量关系,找出其中的等量关系; 2找出等量关系:找出能够表示本题含义的相等关系;3设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程;4解方程:解所列的方程,求出未知数的值;5检验,写答案:检验所求出的未知数的值是否是方程的解是否符合实际,检验后写出答案;2、解应用题的书写格式:设→根据题意→解这个方程→检验→答;3、常见的一些等量关系1和、差、倍、分问题:①较大量=较小量+多余量②总量=倍数×倍量2等积变形问题:Sh V Sh V a V abh V 31,,,3====椎体柱体正方体长方体 3行程问题: 时间速度路程追及问题相遇问题⨯=4工程问题: 工作总量=工作效率×工作时间5利润率问题:()利润率进价售价商品进价商品利润商品利润率商品进价商品售价商品利润+⨯=⨯==1%100- 6数字问题:设一个两位数的十位上的数字、个位上的数字分别是a,b,则这个两个数可表示为10a+b;7储蓄问题: 利息=本金×利率×期数本金和=本金+利息=本金+本金×利率×期数×1-利息税率8按比例分配问题:甲:乙:丙=a:b:c9日历中问题: 日历中每一行上相邻两数,右边的数比左边的数大1;日历中每一列上相邻的数,下边的数比上边的数大7;注意:日历中的数a 的取值范围是,且都是正整数知识点四:方程与整式、等式的区别1从概念来看:整式:单项式和多项式统称为整式;等式:用符号来表示相等关系的式子叫做等式;如m n n m +===+,653121等都叫做等式,而像n m b a 2117,31-+ 不含等号,所以他们不是等式,而是代数式; 方程:含有未知数的等式叫做方程;如4543,1135=--=+a x 等都是方程;理解方程的概念必须明确两点:是等式;含有未知数;两者缺一不可;2从是否含有符号来看:方程首先是一个等式,它是用“=”将两个代数式连接起来的等式,而整式仅用运算符号连接起来,不含有等号;3从是否含有未知量来看:等式必含有“=”,但不一定含有未知量;方程既含有“=”,又必须含有未知数;但整式必不含有等号,不一定含有未知量,分为单项式和多项式;一元一次方程的应用解应用题的步骤1.审:分析好问题中的已知量和未知量,明确各数量之间的关系,从中找出能够表示实际问题全部含义的相等关系.要注意题中的相等关系有些是明显的,有些是不明显的,需要结合生活实际来发现;2.设:设未知数,一般求什么,就设什么为x,若有几个未知数,应恰当地选择其中的一个,用字母x表示出来.有时直接设不容易设得话,可采用间接设;3.找:找出能够表示应用题全部意义的一个相等关系;4.列:根据这个相等关系列出方程;5.解:解所列出的方程,求出未知数的值;6.验:检验所求得的解是否符合题意;7.答:检验所求解是否符合题意,写出答案包括单位名称.。

一元一次方程笔记整理

一元一次方程笔记整理

一元一次方程笔记整理摘要:一、一元一次方程的定义和基本概念1.一元一次方程的定义2.方程中各部分的名称3.解方程的基本方法二、一元一次方程的解法1.移项法2.合并同类项法3.系数化为1 法三、一元一次方程的应用1.实际问题中的应用2.行程问题中的应用3.工程问题中的应用四、一元一次方程的检验1.代入法检验2.带回原方程检验正文:一、一元一次方程的定义和基本概念一元一次方程是指形如ax+b=0 的方程,其中a 和b 是已知数,x 是未知数。

在解一元一次方程时,我们需要将方程移项,使未知数x 的项单独出现在等式的一边,从而求得x 的值。

方程中各部分的名称包括:未知数(x)、系数(a 和b)、常数项(b)和等式(=)。

解一元一次方程的基本方法有移项法、合并同类项法和系数化为1 法。

这些方法各有特点,适用于不同类型的方程。

二、一元一次方程的解法1.移项法:通过加减法操作,将方程中的未知数项移到等式的一边,从而求得未知数的值。

2.合并同类项法:将方程中的同类项合并,简化方程,然后通过移项求解未知数。

3.系数化为1 法:通过除以系数,将方程的系数化为1,从而简化方程并求解未知数。

三、一元一次方程的应用一元一次方程在实际问题中有广泛的应用,例如在商品销售、工程建设和行程规划等方面。

通过建立一元一次方程,我们可以更直观地理解问题,并求解未知数,为实际问题的解决提供依据。

四、一元一次方程的检验在求解一元一次方程后,我们通常需要检验求得的解是否符合原方程。

检验方法有代入法检验和带回原方程检验。

1.代入法检验:将求得的解代入原方程,看是否能使方程成立。

2.带回原方程检验:将求得的解带回原方程,进行加减乘除等运算,看是否能得到原方程。

一元一次方程知识点总结

一元一次方程知识点总结

一元一次方程知识点总结一元一次方程是高中数学的基础内容,也是解决实际问题中常见的一种数学模型。

下面是我对一元一次方程的知识点的总结:一、一元一次方程的基本概念1. 方程的定义和基本性质:方程是由等号连接的两个代数式构成的等式,方程中含有一个未知数。

2. 一元一次方程的定义:一元一次方程是含有一个未知数,且未知数的最高次数为1的方程。

3. 方程的解:对于一元一次方程,其解就是使得方程成立的未知数的值,也即方程中满足等号两边相等的数值。

二、一元一次方程的解法1. 移项法:将方程中的项移到等号两侧,使等号两边只有未知数。

2. 合并同类项:将方程中同类项合并,使方程简化。

3. 消元法:通过加减乘除等运算来消去方程中的系数和常数,最终得到未知数的值。

三、解一元一次方程的常用方法1. 原方程法:直接将原方程逐步化简,最终解得未知数的值。

2. 换元法:引入一个新的未知数,通过替换的方式简化方程,使得方程能够更容易求解。

3. 系数比较法:将方程与其他已知的一元一次方程进行系数的比较,从而求得未知数的值。

四、解一元一次方程的步骤1. 观察方程:确定方程的类型和形式。

2. 移项:将方程中未知数的项移到等号两侧。

3. 合并同类项:对方程中的同类项进行合并。

4. 消元:通过加减乘除等运算,将方程化简为未知数的项和常数项。

5. 求解:根据简化后的方程,求得未知数的值。

6. 检验:将求得的未知数代入原方程,验证解的正确性。

7. 唯一解、无解和无数解:根据方程的求解结果,判断方程的解的情况。

五、一元一次方程的应用1. 简单的实际问题:例如,甲、乙两个数之和是10,甲比乙多2,求甲和乙分别是多少。

2. 代数表达式的求解:例如,求一个数的三倍加2等于11,求这个数是多少。

3. 几何问题的求解:例如,某直角三角形的两条直角边长度之和是10,求这两条直角边的长度。

综上所述,一元一次方程是高中数学中的重要内容,解一元一次方程是我们解决实际问题的常用方法。

初中一元一次方程知识点归纳

初中一元一次方程知识点归纳

初中一元一次方程知识点归纳
初中一元一次方程知识点归纳如下:
1. 一元一次方程的定义:一元一次方程是指方程中只有一个变量,且变量的最高次数为1的方程。

2. 方程的基本形式:一元一次方程的基本形式为ax+b=0,其
中a和b是已知实数,且a≠0。

3. 解方程的步骤:解一元一次方程的步骤主要包括去括号、合并同类项、移项、合并同类项、化简等。

4. 解方程的性质:一元一次方程的解具有唯一性,即要么无解,要么有唯一解。

5. 方程的解表示形式:一元一次方程的解有三种表示形式,即唯一解、无解和无穷多解。

6. 解方程的方法:解一元一次方程的方法主要包括正向代入、逆向代入、等式交换等。

7. 使用方程解实际问题:一元一次方程可以应用于实际问题中,通过建立方程并解方程可以求解实际问题。

8. 方程的应用领域:一元一次方程在代数、几何、物理等领域中都有广泛的应用。

9. 方程的相关概念:一元一次方程与方程的根、方程的系数、方程的次数等相关概念有着密切的联系。

10. 方程的扩展:一元一次方程是一元线性方程的特殊情况,线性方程还有更高次数的形式,如二次方程、三次方程等。

一元一次方程知识点整理

一元一次方程知识点整理

七年级上一元一次方程知识点整理一、本章知识点梳理:知识点一:方程的相关概念 知识点二:解方程知识点三: 用方程解应用题二、各知识点分类讲解知识点一:方程的有关概念(1)概念总结1. 方程:含有未知数的等式就叫做方程. 注意未知数的理解,n m x ,等,都可以作为未知数2.一元一次方程:只含有一个未知数(元),并且未知数的指数都是1(次),这样的方程叫做一元一次方程。

⑴ 方程:含有未知数的 叫做方程; 使方程左右两边值相等的 ,叫做方程的解; 求方程解的 叫做解方程. 注意:重点区分:方程的解与解方程.注:⑴ 方程的解和解方程是两个不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程。

⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论。

理解方程ax=b 在不同条件下解的各种情况,并能进行简单应用: ①0≠a 时,方程有唯一解ab x =; ②0,0==b a 时,方程有无穷解;③0,0≠=b a 时,方程无解。

⑵ 一元一次方程:在整式方程中,只含有 个未知数,并且未知数的次数是 ,系数不等于0的方程叫做一元一次方程;它的一般形式为 ()0≠a . 3.判断一元一次方程的条件 1. 首先是一元一次方程。

2. 其次是必须只含有一个未知数3. 未知数的指数是14. 分母中不含有未知数例1:判定下列那些方程,那些是一元一次方程?0=x ,712=+x π,3)813(4)5(21,01002,2,01-+=-=++=+=+x x x y x xx 0)(22=+-x x x注意:1、分式的含义,分式不能在方程中出现。

2、必须进行方程的化简,最后的结果中,仍然满足满足一元一次方程的定义时才可。

3、π是字母,但不是未知数,是一个常数。

(2)典型例题 例1、下列方程①313262-=+x x ②4532x x =+ ③2(x+1)+3=x 1 ④3(2x+5)-2(x-1)=4x+6.一元一次方程共有( )个.A.1B.2C.3D.4例2、 如果(m-1)x |m|+5=0是一元一次方程,那么m =___.例3、 一个一元一次方程的解为2,请写出一个这样的一元一次方程 . 知识点二:解方程 1:等式的基本性质等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍是等式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精心整理一元一次方程方程的有关概念夯实基础一.等式用等号(“ =”)来表示相等关系的式子叫做等式。

温馨提示①等式可以是数字算式,可以是公式、方程,也可以是运算律、运算法则等,所以等式可以表示不同的意义。

②不能将等式与代数式混淆,等式含有等号,是表示两个式子的“相等关系”,而代数式不含等号,它只能作为等式的一边。

如5x 3 72x 才是等式。

二.等式的性质性质 1:等式两边同时加(或减)同一个数(或式子),结果仍相等。

即如果a b ,那么 a c b c 。

性质 2:等式两边同时乘同一个数,或除以同一个不为0 的数,结果仍相等。

即如果a b ,那么ac bc;如果a b c 0 ,那么 a b 。

c c温馨提示①等式类似天平,当天平两端放有相同质量的物体时,天平处于平衡状态。

若在天平的两端各加(或减)相同质量的物体,则天平仍处于平衡状态。

所以运用等式性质 1 时,当等式两边都加上(或减去)同一个数或同一个整式时,才能保证所得的结果仍是等式,应特别注意“都”和“同一个”。

如 1 x 3 ,左边加2,右边也加2,则有 1 x 2 3 2 。

②运用等式的性质 2 时,等式两边不能同除以 0,因为 0 不能作除数或分母。

③等式性质的延伸: a.对称性:等式左、右两边互换,所得结果仍是等式,即如果a b,那么 b a 。

b.传递性:如果a b, b c ,那么 a c (也叫等量代换)。

例1:用适当的数或整式填空,使所得的结果仍为等式,并说明根据等式哪一条性质,以及怎样变形得到的。

(1)如果4x 11 5 ,那么4x 5 ;3 3(2)如果ax by c ,那么ax c ;(3)如果 4 t 3,那么 t 。

3 4三.方程含有未知数的等式叫做方程。

温馨提示方程有两层含义:①方程必须是一个等式,即是用等号连接而成的式子。

②方程中必有一个待确定的数,即未知的字母,这个字母就是未知数。

如x 2 1 。

四.方程与等式的区别与联系概念及其特点区别联系含有未知数的等式叫做方方程一定是等式,并且是方程是特殊的等式。

程。

一个式子是方程,要含有未知数的等式。

方程满足两个条件:一是等式,二含有未知数。

用等号来表示相等关系的等式不一定是方程,因为方程和等式的关系式从属等式式子叫做等式。

等式的主等式不一定含有未知数。

关系,且有不可逆性。

体是相等关系。

五.方程的解与解方程内容实质使方程中等号左右两边相等的未知方程的解具体的数值数的值叫做方程的解解方程求方程的解的过程叫做解方程变形的过程温馨提示①检验一个数是否是方程的解,只要用这个数代替方程中的未知数,如果方程两边的值相等,那么这个数就是方程的解;如果不相等,这个数就不是方程的解。

②方程可能无解,可能只有一个解,也可能有多个解。

③等式的基本性质是解方程的依据。

④方程的解释结果,而解方程是得到这个结果的一个过程。

例 3:下列方程中解为x 2 的是()A. 3x 3 xB. x 3 0C. 2x 6D. 5x 2 8例 4:利用等式的性质解下列方程:(1) 6x 2 7x ( 2) 5x 6 2x 3掌握方法一.等量关系的确定方法列方程解应用题是初中数学的一个重点也是一个难点,要突破这一难关,学会寻找等量关系是关键,那么怎样寻找应用题中的等量关系呢?(1)从关键词中找等量关系;(2)对于同一个量,从不同角度用不同的方法表示,得到等量关系;(3)运用基本公式找等量关系;(4)运用不变量找等量关系。

例1:某村原有林地 108 公顷,旱地 54 公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的 20%,设把x公顷旱地改为林地,则可列方程为()。

A. 54 x 20% 108B. 54 x 20%(108 x)C. 54 x 20% 162D. 108 x 20%(54 x)二.利用方程的解求待定字母的方法利用方程的解求方程中的待定字母时,只要将方程的解代入方程,得到关于待定字母的方程,即可解决问题。

例 2:已知 x 2 是关于x的方程x1k k ( x 2) 的解,则k的值应为()。

31 A. 9B.1 C. D. 1一元一次方程解一元一次方程夯实基础一.一元一次方程1.定义:只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程。

2.标准形式:方程ax b 0(其中x是未知数,a、 b 是已知数,并且a0 )叫做一元一次方程的标准形式。

温馨提示①一元一次方程中未知数所在的式子是整式,即分母不含未知数。

②一元一次方程只含有一个未知数,未知数的次数都为1。

如 1 3, x y 6 , x2 x 6 0 都不是一x 2元一次方程。

例 1:下列方程中,哪些是一元一次方程?哪些不是?(1)5 4x;( 2)2 x y 5 ;(3)x2 5x6 0 ;11(4)2 x3 ;(5)y 1 y1 。

x 23二.移项1.定义:把等式一边的某项变号后移到另一边,叫做移项。

2.示例:解方程3x 2 2x 5 时,可在方程的两边先加 2 ,再减 2x ,得 3x 2 2 2x2x 5 2 2x ,即变形为 3x 2x 5 2 。

与原方程比较,这个变形过程如下:温馨提示①移项的原理就是等式的性质1。

②移项所移动的是方程中的项,并且是从方程的一边移到另一边,而不是方程的一边交换两个项的位置。

③移项时一定要改变所移动的项的符号,不移动的项不能变号。

如解方程3x 5x10 ,若移项,得 5x 3x10 就出错了,原因是被移动的项“ 5x ”的符号没有改变,而改变了没有被移动的项“ 3x”的符号。

④在移动时,最好先写左右两边不移动的项,再写移来的项。

例 2:下列各题中的变形为移项的是()。

1 11 1A. 由(x 2) 1 ,得 x2 25x 3 7x 5 7x 5 5x 3C.由x 5 2x 6 ,得 2x x 5 6D. 由x 5 8 x ,得 x x 8 5三.去括号与去分母解一元一次方程的最终目标是要得到“x a ”这一结果。

为了达到这一目标,方程中有括号就要根据去括号法则去掉括号,即为去括号;方程中有分母的,根据等式性质 2 去掉分母,即为去分母。

温馨提示(1)解含有括号的一元一次方程时,去括号时一般遵循去括号的基本法则。

但在实际去括号时,应根据方程的结构特点利用一些方法技巧,恰当地去括号,以简化运算。

对于一些特殊结构的方程,可采用以下去括号的技巧:①先去外再去内。

即在解题时,打破常规,不是由内到外去括号,而是由外到内去括号。

②整体合并去括号。

有些方程,把含有的某些多项式看作整体,先合并,再去括号,往往会简单。

如,解方程x 1( x 8)3(x 8) 时,可把x 8 看作整体先合并,再去括号。

2 2(2)去分母时,在方程两边要同时乘以所有分母的最小公倍数,不要漏乘不含分母的项。

当分母时小数时,需要把分母化整。

同时注意分母化整只与这一项有关,而与其他项无关,要与去分母区分开。

例 3:下列方程去括号正确的是()。

A. 由2x 3( 4 2x) 6 得 2x 12 2x 6B. 由2x 3( 4 2x) 6 得2x 12 6 x 6C.由2x 3( 4 2x) 6 得 2x 12 6x 6D.由2x 3( 4 2x) 6 得2x 3 6x 6例 4:方程3x 2x 1 3 x 1,去分母正确的是()。

3 2A. 18 x 2( 2x 1) 18 3( x 1)B. 3x ( 2x 1) 3 ( x 1)C. 18 x (2x 1) 18 ( x 1)D. 3x 2(2x 1) 3 3( x 1)四.解一元一次方程的一般步骤步骤具体做法变形依据去分母在方程的两边同乘各分母的最小公倍数等式性质 2号把含有未知数的项移到方程的一边,其移项它各项都移到方程的另一边(记住移项等式性质 1要变号)合并同类项把方程化为ax b(a 0) 的形式合并同类项法则在方程的两边都除以未知数的系数 a ,系数化为 1b得到方程的解xa等式性质 2温馨提示1.解一元一次方程的五个步骤,有些可能用不到,有些可能重复使用,不一定按顺序进行,根据方程的特点灵活运用。

2.在解方程的不用环节有各自不同的注意事项,分别如下:( 1)分子是多项式的,去分母后要加括号;去分母( 2)不要漏乘不含分母的项( 1)括号前的数要乘括号内的每一项;去括号( 2)括号前面是负数,去掉括号后,括号内各项都要变号( 1)移项时不要漏项;移项( 2)将方程中的项从一边移到另一边要变号,而在方程同一边改变项的位置时不变号合并同类项按合并同类项法则进行,不要漏乘且系数的符号处理要得当系数化为 1( 1)未知数的系数为整数或小数时,方程两边同除以该系数;(2)未知数的系数为分数时,方程两边同乘该系数的倒数例5:解一元一次方程x 1 2x 11。

3 2掌握方法一.一元一次方程概念的应用原方程为一元一次方程,即未知数的次数为1,系数不为0,由此来确定原方程中待定字母的值。

例 1:( 1)若2x m 2 1 2 是关于 x 的一元一次方程,则m =;( 2)若方程(m 4)x 2014 2015 是关于 x 的一元一次方程,则 m 。

(1)合并同类项时,不能用连等号与原方程相连。

(2)几个常数项也是同类项,移项时应该把它们放到一起。

(3)移项时把某项改变符号后移到等式的另一边,而不是等式一边的两项交换位置。

(4)移项必变号,不变号不能移项。

例 2:解方程:( 1) 3x 7 32 2x ;( 2)1a 63a 1。

2 4三.利用去分母解方程的方法利用等式的性质2,在方程的两边同时乘各分母的最小公倍数,将分母去掉,把系数为分数的方程转化为系数为整数的方程。

(1)分数线具有括号的作用,分子如果是一个多项式,去掉分母后,要把分母后,要把分子放在括号里。

(2)去分母时,不能漏乘不含分母的项。

例 3:解方程3x 13 x 5 。

2 3四.含小数的一元一次方程的解法将小数化成整数,是根据分数的基本性质把含小数的项的分子、分母乘同一个适当的数,而不是方程所有的项都乘这个数。

小数化成整数,是对分母含小数的项的恒等变形。

例 4:解方程:0.4x 9x 5 0.03 0.02 x 。

0.5 2 0.03五.有关同解方程的解题方法如果两个方程的解相同,那么我们把这两个方程称为同解方程。

已知两个一元一次方程是同解方程,求其中待定字母的取值,主要有两种常见题型,其解法有所不同。

(1)在两个同解方程中,如果只有一个方程中含有待定字母,一般先解不含待定字母的方程,再把未知数的值代入含有待定字母的方程中,求出待定字母的值。

(2)如果在两个同解方程中都含有相同的待定字母,一般是分别解两个方程,用这个待定字母分别表示两个方程的解,并建立等式,形成关于这个待定字母的方程,求出该待定字母的值。

相关文档
最新文档