数学九年级上册 旋转几何综合单元培优测试卷

数学九年级上册 旋转几何综合单元培优测试卷
数学九年级上册 旋转几何综合单元培优测试卷

数学九年级上册 旋转几何综合单元培优测试卷

一、初三数学 旋转易错题压轴题(难)

1.已知如图1,在ABC 中,90ABC ∠=?,BC AB =,点D 在AC 上,DF AC

⊥交BC 于F ,点E 是AF 的中点.

(1)写出线段ED 与线段EB 的关系并证明;

(2)如图2,将CDF 绕点C 逆时针旋转(

)

090a α?

<

(3)将CDF 绕点C 逆时针旋转一周,如果6BC =,32CF =,直接写出线段CE 的范围.

【答案】(1)ED EB =,DE BE ⊥,证明见解析;(2)结论不变,理由见解析;(3)最大值22= 最小值32

2

=. 【解析】 【分析】

(1)在Rt △ADF 中,可得DE=AE=EF ,在Rt △ABF 中,可得BE=EF=EA ,得证ED=EB ;然后利用等腰三角形的性质以及四边形ADFB 的内角和为180°,可推导得出∠DEB=90°; (2)如下图,先证四边形MFBA 是平行四边形,再证△DCB ≌△DFM ,从而推导出△DMB 是等腰直角三角形,最后得出结论;

(3)如下图,当点F 在AC 上时,CE 有最大值;当点F 在AC 延长线上时,CE 有最小值. 【详解】

(1)∵DF ⊥AC ,点E 是AF 的中点 ∴DE=AE=EF ,∠EDF=∠DFE ∵∠ABC=90°,点E 是AF 的中点 ∴BE=AE=EF ,∠EFB=∠EBF ∴DE=EB ∵AB=BC ,

∴∠DAB=45°

∴在四边形ABFD中,∠DFB=360°-90°-45°-90°=135°

∠DEB=∠DEF+∠FEB=180°-2∠EFD+180°-2∠EFB=360°-2(∠EFD+∠EFB)

=360°-2×135°=90°

∴DE⊥EB

(2)如下图,延长BE至点M处,使得ME=EB,连接MA、ME、MF、MD、FB、DB,延长MF交CB于点H

∵ME=EB,点E是AF的中点

∴四边形MFBA是平行四边形

∴MF∥AB,MF=AB

∴∠MHB=180°-∠ABC=90°

∵∠DCA=∠FCB=a

∴∠DCB=45°+a,∠CFH=90°-a

∵∠DCF=45°,∠CDF=90°

∴∠DFC=45°,△DCF是等腰直角三角形

∴∠DFM=180°-∠DFC-∠CFH=45°+a

∴∠DCB=∠DFM

∵△ABC和△CDF都是等腰直角三角形

∴DC=DF,BC=AB=MF

∴△DCB≌△DFM(SAS)

∴∠MDF=∠BDC,DB=DM

∴∠MDF+∠FDB=∠BDC+∠FDB=90°

∴△DMB是等腰直角三角形

∵点E是MB的中点

∴DE=EB,DE⊥EB

(3)当点F在AC上时,CF有最大值,图形如下:

∵BC=6,∴在等腰直角△ABC 中,AC=62 ∵CF=32,∴AF=32 ∴CE=CF+FE=CF+

12AF 922

= 当点F 在AC 延长线上时,CE 有最小值,图形如下:

同理,CE=EF -CF 32

2

= 【点睛】

本题考查三角形的旋转变换,用到了等腰直角三角形的性质和平行四边形的性质,解题关键是构造并证明△BDM 是等腰直角三角形.

2.如图,在边长为2的正方形ABCD 中,点P 、Q 分别是边AB 、BC 上的两个动点(与点A 、B 、C 不重合),且始终保持BP BQ =,AQ QE ⊥,QE 交正方形外角平分线CE 于点E ,AE 交CD 于点F ,连结PQ .

(1)求证:APQ QCE ??≌; (2)证明:DF BQ QF +=;

(3)设BQ x =,当x 为何值时,//QF CE ,并求出此时AQF ?的面积. 【答案】(1)证明见解析;(2)证明见解析;(3)当22

2x =-+//QF CE ;

AQF S ?442=-+.

【解析】 【分析】

(1)判断出△PBQ 是等腰直角三角形,然后求出∠APQ=∠QCE=135°,再根据同角的余角相等求出∠PAQ=∠CQE ,再求出AP=CQ ,然后利用“角边角”证明即可; (2)根据全等三角形对应边相等可得AQ=EQ ,判断出△AQE 是等腰直角三角形,将

ADF ?绕点A 顺时针旋转90?得F AB '?,再证明()F AQ FAQ SAS '??≌;

(3)连结AC ,设QF

CE ,推出QCF ?是等腰直角三角形°,再证明

()ABQ ADF SAS ??≌,根据全等三角形对应边相等可得QF=GF ,AQ AF =,

22.5QAB DAF ∠=∠=?,分别用x 表示出DF 、CF 、QF ,然后列出方程求出x ,再求出

△AQF 的面积. 【详解】

(1)∵四边形ABCD 是正方形,

∴AB BC =,90B BCD DCM ∠=∠=∠=?, ∵BP BQ =,

∴PBQ ?是等腰直角三角形,AP QC =, ∴45BPQ ∠=?, ∴135APQ ∠=? ∵CE 平分DCM ∠, ∴45DCE ECM ∠=∠=?, ∴135QCE ∠=?, ∴135APQ QCE ∠=∠=?, ∵AQ QE ⊥,

∴90AQB CQE ∠+∠=?. ∵90AQB BAQ ∠+∠=?. ∴BAQ CQE ∠=∠.

∴()APQ QCE ASA ?≌. (2)由(1)知APQ QCE ??≌. ∴QA QE =. ∵90AQE ∠=?,

∴AQE ?是等腰直角三角形, ∴45QAE ∠=?. ∴45DAF QAB ∠+∠=?,

如图4,将ADF ?绕点A 顺时针旋转90?得F AB '?,

其中点D 与点B 重合,且点F '在直线BQ 上,

则45F AQ '∠=?,F A FA '=,AQ AQ =, ∴()F AQ FAQ SAS '??≌. ∴QF QF BQ DF '==+.

(3)连结AC ,若QF CE ,

则45FQC ECM ∠=∠=?. ∴QCF ?是等腰直角三角形, ∴2CF CQ x ==-, ∴DF BQ x ==.

∵AB AD =,90B D ∠=∠=?, ∴()ABQ ADF SAS ??≌.

∴AQ AF =,22.5QAB DAF ∠=∠=?, ∴AC 垂直平分QF ,

∴22.5QAC FAC QAB FAD ∠=∠=∠=∠=?,2FQ QN =, ∴22FQ BQ x ==.

在Rt QCF ?中,根据勾股定理,得2

2

2

(2)(2)(2)x x x -+-=. 解这个方程,得1222x =-+ 2222x =--(舍去). 当22

2x =-+QF

CE .

此时,QCF QEF S S ??=,∴21

2

QCF AQF QEF AQF AQE S S S S S AQ ?????+=+==, ∴()

2222111

222

AQF AQE QCF S S S AQ CQ AQ CQ ???=-=

-=- ()

222

112(2)4244222x x x x ??=

+--=?==-+?

? 【点睛】 本题考查了正方形的性质,全等三角形的判定与性质,旋转的性质,等腰直角三角形的判定与性质,勾股定理的应用,难点在于(3)作辅助线构造成全等三角形并利用勾股定理列出方程.

3.如图1,在正方形ABCD 中,点E 、F 分别在边BC ,CD 上,且BE=DF ,点P 是AF 的中点,点Q 是直线AC 与EF 的交点,连接PQ ,PD . (1)求证:AC 垂直平分EF ;

(2)试判断△PDQ 的形状,并加以证明;

(3)如图2,若将△CEF 绕着点C 旋转180°,其余条件不变,则(2)中的结论还成立吗?若成立,请加以证明;若不成立,请说明理由.

【答案】(1)证明见解析;(2)△PDQ 是等腰直角三角形;理由见解析(3)成立;理由见解析. 【解析】

试题分析:(1)由正方形的性质得出AB=BC=CD=AD ,∠B=∠ADF=90°,

∠BCA=∠DCA=45°,由BE=DF ,得出CE=CF ,△CEF 是等腰直角三角形,即可得出结论; (2)由直角三角形斜边上的中线的性质得出PD=AF ,PQ=AF ,得出PD=PQ ,再证明∠DPQ=90°,即可得出结论;

(3)由直角三角形斜边上的中线的性质得出PD=AF ,PQ=AF ,得出PD=PQ ,再证明点A 、F 、Q 、P 四点共圆,由圆周角定理得出∠DPQ=2∠DAQ=90°,即可得出结论. 试题解析:(1)证明:∵四边形ABCD 是正方形, ∴AB=BC=CD=AD ,∠B=∠ADF=90°,∠BCA=∠DCA=45°, ∵BE=DF ,

∴CE=CF,

∴AC垂直平分EF;

(2)解:△PDQ是等腰直角三角形;理由如下:

∵点P是AF的中点,∠ADF=90°,

∴PD=AF=PA,

∴∠DAP=∠ADP,

∵AC垂直平分EF,

∴∠AQF=90°,

∴PQ=AF=PA,

∴∠PAQ=∠AQP,PD=PQ,

∵∠DPF=∠PAD+∠ADP,∠QPF=∠PAQ+∠AQP,

∴∠DPQ=2∠PAD+2∠PAQ=2(∠PAD+∠PAQ)=2×45°=90°,

∴△PDQ是等腰直角三角形;

(3)成立;理由如下:

∵点P是AF的中点,∠ADF=90°,

∴PD=AF=PA,

∵BE=DF,BC=CD,∠FCQ=∠ACD=45°,∠ECQ=∠ACB=45°,

∴CE=CF,∠FCQ=∠ECQ,

∴CQ⊥EF,∠AQF=90°,

∴PQ=AF=AP=PF,

∴PD=PQ=AP=PF,

∴点A、F、Q、P四点共圆,

∴∠DPQ=2∠DAQ=90°,

∴△PDQ是等腰直角三角形.

考点:四边形综合题.

4.如图1,矩形ABCD中,E是AD的中点,以点E直角顶点的直角三角形EFG的两边EF,EG分别过点B,C,∠F=30°.

(1)求证:BE=CE

(2)将△EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF,EG分别与AB,BC相交于点M,N.(如图2)

①求证:△BEM≌△CEN;

②若AB=2,求△BMN面积的最大值;

③当旋转停止时,点B恰好在FG上(如图3),求sin∠EBG的值.

【答案】(1)详见解析;(2)①详见解析;②2;③62 4

.

【解析】

【分析】

(1)只要证明△BAE≌△CDE即可;

(2)①利用(1)可知△EBC是等腰直角三角形,根据ASA即可证明;

②构建二次函数,利用二次函数的性质即可解决问题;

③如图3中,作EH⊥BG于H.设NG=m,则BG=2m,BN=EN=3m,EB=6m.利用面积法求出EH,根据三角函数的定义即可解决问题.

【详解】

(1)证明:如图1中,

∵四边形ABCD是矩形,

∴AB=DC,∠A=∠D=90°,

∵E是AD中点,

∴AE=DE,

∴△BAE≌△CDE,

∴BE=CE.

(2)①解:如图2中,

由(1)可知,△EBC是等腰直角三角形,

∴∠EBC=∠ECB=45°,

∵∠ABC=∠BCD=90°,

∴∠EBM=∠ECN=45°,

∵∠MEN=∠BEC=90°,

∴∠BEM=∠CEN,

∵EB=EC,

∴△BEM≌△CEN;

②∵△BEM≌△CEN,

∴BM=CN,设BM=CN=x,则BN=4-x,

∴S△BMN=

1

2

?x(4-x)=-

1

2

(x-2)2+2,

∵-

1

2

<0,

∴x=2时,△BMN的面积最大,最大值为2.

③解:如图3中,作EH⊥BG于H.设NG=m,则BG=2m,BN=EN=3m,EB=6m.

∴3(3m,

∵S△BEG=

1

2

?EG?BN=

1

2

?BG?EH,

∴EH=

3?(13)

m m

+3+3

m,

在Rt△EBH中,sin∠EBH=

3+3

62

2

4

6

EH

EB m

==

【点睛】

本题考查四边形综合题、矩形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质、旋转变换、锐角三角函数等知识,解题的关键是准确寻找全等三角形解决问题,

学会添加常用辅助线,学会利用参数解决问题,

5.阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE,

(1)在图1中证明小胖的发现;

借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:

(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;

(3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).

【答案】(1)证明见解析;(2)证明见解析;(3)∠EAF =1

2 m°.

【解析】

分析:(1)如图1中,欲证明BD=EC,只要证明△DAB≌△EAC即可;

(2)如图2中,延长DC到E,使得DB=DE.首先证明△BDE是等边三角形,再证明

△ABD≌△CBE即可解决问题;

(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到

M,使得DM=DE,连接FM、CM.想办法证明△AFE≌△AFG,可得∠EAF=∠FAG=1

2 m°.

详(1)证明:如图1中,

∵∠BAC=∠DAE,

∴∠DAB=∠EAC,

在△DAB和△EAC中,

AD AE

DAB EAC

AB AC

?

?

∠∠

?

?

?

∴△DAB≌△EAC,

∴BD=EC.

(2)证明:如图2中,延长DC到E,使得DB=DE.

∵DB=DE,∠BDC=60°,

∴△BDE是等边三角形,

∴∠BD=BE,∠DBE=∠ABC=60°,

∴∠ABD=∠CBE,

∵AB=BC,

∴△ABD≌△CBE,

AD=EC,

∴BD=DE=DC+CE=DC+AD.

∴AD+CD=BD.

(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.

由(1)可知△EAB≌△GAC,

∴∠1=∠2,BE=CG,

∵BD=DC,∠BDE=∠CDM,DE=DM,

∴△EDB≌△MDC,

∴EM=CM=CG,∠EBC=∠MCD,

∵∠EBC=∠ACF , ∴∠MCD=∠ACF , ∴∠FCM=∠ACB=∠ABC , ∴∠1=3=∠2,

∴∠FCG=∠ACB=∠MCF , ∵CF=CF ,CG=CM , ∴△CFG ≌△CFM , ∴FG=FM ,

∵ED=DM ,DF ⊥EM , ∴FE=FM=FG , ∵AE=AG ,AF=AF , ∴△AFE ≌△AFG , ∴∠EAF=∠FAG=

1

2

m°. 点睛:本题考查几何变换综合题、旋转变换、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会利用“手拉手”图形中的全等三角形解决问题,学会构造“手拉手”模型,解决实际问题,属于中考压轴题.

6.(1)发现

如图,点A 为线段BC 外一动点,且BC a =,AB b =.

填空:当点A 位于____________时,线段AC 的长取得最大值,且最大值为_________.(用含a ,b 的式子表示)

(2)应用

点A 为线段BC 外一动点,且3BC =,1AB =.如图所示,分别以AB ,AC 为边,作等边三角形ABD 和等边三角形ACE ,连接CD ,BE . ①找出图中与BE 相等的线段,并说明理由; ②直接写出线段BE 长的最大值.

(3)拓展

如图,在平面直角坐标系中,点A 的坐标为()2,0,点B 的坐标为()5,0,点P 为线段

AB外一动点,且2

PA=,PM PB

=,90

BPM

∠=?,求线段AM长的最大值及此时点P的坐标.

【答案】(1)CB的延长线上,a+b;(2)①DC=BE,理由见解析;②BE的最大值是4;(3)AM的最大值是2,点P的坐标为(22)

【解析】

【分析】

(1)根据点A位于CB的延长线上时,线段AC的长取得最大值,即可得到结论;

(2)①根据等边三角形的性质得到AD=AB,AC=AE,∠BAD=∠CAE=60°,推出

△CAD≌△EAB,根据全等三角形的性质得到CD=BE;②由于线段BE长的最大值=线段CD 的最大值,根据(1)中的结论即可得到结果;

(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,得到△APN是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM,根据当N在线段BA的延长线时,线段BN取得最大值,即可得到最大值为2+3;如图2,过P作PE⊥x轴于E,根据等腰直角三角形的性质即可得到结论.

【详解】

解:(1)∵点A为线段BC外一动点,且BC=a,AB=b,

∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b,

故答案为CB的延长线上,a+b;

(2)①CD=BE,

理由:∵△ABD与△ACE是等边三角形,

∴AD=AB,AC=AE,∠BAD=∠CAE=60°,

∴∠BAD+∠BAC=∠CAE+∠BAC,

即∠CAD=∠EAB,

在△CAD与△EAB中,

AD AB

CAD EAB

AC AE

?

?

∠∠

?

?

?

∴△CAD≌△EAB,

∴CD=BE;

②∵线段BE长的最大值=线段CD的最大值,

由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,

∴最大值为BD+BC=AB+BC=4;

(3)∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,

则△APN是等腰直角三角形,

∴PN=PA=2,BN=AM,

∵A的坐标为(2,0),点B的坐标为(5,0),

∴OA=2,OB=5,

∴AB=3,

∴线段AM长的最大值=线段BN长的最大值,

∴当N在线段BA的延长线时,线段BN取得最大值,

最大值=AB+AN,

∵AN=2AP=22,

∴最大值为22+3;

如图2,过P作PE⊥x轴于E,

∵△APN是等腰直角三角形,

∴PE=AE=2,

∴OE=BO-AB-AE=5-3-2=2-2,

∴P(2-2,2).

【点睛】

考查了全等三角形的判定和性质,等腰直角三角形的性质,最大值问题,旋转的性质.正确的作出辅助线构造全等三角形是解题的关键.

7.如图1,点O是正方形ABCD两对角线的交点. 分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.

(1)求证:DE⊥AG;

(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转角(0°< <360°)得到正方形

,如图2.

①在旋转过程中,当∠是直角时,求的度数;(注明:当直角边为斜边一半时,这条

直角边所对的锐角为30度)

②若正方形ABCD的边长为1,在旋转过程中,求长的最大值和此时的度数,直接写出结果不必说明理由.

【答案】(1)DE⊥AG (2)①当∠为直角时,α=30°或150°.②315°

【解析】

分析:(1)延长ED交AG于点H,证明≌,根据等量代换证明结论;(2)根据题意和锐角正弦的概念以及特殊角的三角函数值得到,分两种情况求出的度数;

(3)根据正方形的性质分别求出OA和OF的长,根据旋转变换的性质求出AF′长的最大值和此时的度数.

详解:如图1,延长ED交AG于点H,

点O是正方形ABCD两对角线的交点,

在和中,

≌,

即;

在旋转过程中,成为直角有两种情况:

Ⅰ由增大到过程中,当时,

在中,sin∠AGO=,

即;

Ⅱ由增大到过程中,当时,

同理可求,

综上所述,当时,或.

如图3,

当旋转到A、O、在一条直线上时,的长最大,

正方形ABCD的边长为1,

此时.

点睛:考查了正方形的性质,全等三角形的判定与性质,锐角三角形函数,旋转变换的性

质的综合应用,有一定的综合性,注意分类讨论的思想.

8.如图,正方形ABCO的边OA、OC在坐标轴上,点B的坐标为(6,6),将正方形ABCO 绕点C逆时针旋转角度α(0°<α<90°),得到正方形CDEF,ED交线段AB于点G,ED的延长线交线段OA于点H,连接CH、CG.

(1)求证:△CBG≌△CDG;

(2)求∠HCG的度数;并判断线段HG、OH、BG之间的数量关系,说明理由;

(3)连接BD、DA、AE、EB得到四边形AEBD,在旋转过程中,四边形AEBD能否为矩形?如果能,请求出点H的坐标;如果不能,请说明理由.

【答案】(1)证明见解析;(2)45°;HG= HO+BG;(3)(2,0).

【解析】

试题分析:(1)求证全等,观察两个三角形,发现都有直角,而CG为公共边,进而再锁定一条直角边相等即可,因为其为正方形旋转得到,所以边都相等,即结论可证.

(2)根据(1)中三角形全等可以得到对应边、角相等,即BG=DG,∠DCG=∠BCG.同第一问的思路容易发现△CDH≌△COH,也有对应边、角相等,即OH=DH,

∠OCH=∠DCH.于是∠GCH为四角的和,四角恰好组成直角,所以∠GCH=90°,且容易得到OH+BG=HG.

(3)四边形AEBD若为矩形,则需先为平行四边形,即要对角线互相平分,合适的点只有G为AB中点的时候.由上几问知DG=BG,所以此时同时满足DG=AG=EG=BG,即四边形AEBD为矩形.求H点的坐标,可以设其为(x,0),则OH=x,AH=6﹣x.而BG为AB的一半,所以DG=BG=AG=3.又由(2),HG=x+3,所以Rt△HGA中,三边都可以用含x的表达式表达,那么根据勾股定理可列方程,进而求出x,推得H坐标.

(1)证明:∵正方形ABCO绕点C旋转得到正方形CDEF,

∴CD=CB,∠CDG=∠CBG=90°.

在Rt△CDG和Rt△CBG中,

∴△CDG≌△CBG(HL);

(2)解:∵△CDG≌△CBG,

∴∠DCG=∠BCG,DG=BG.

在Rt△CHO和Rt△CHD中,

∵,

∴△CHO≌△CHD(HL),

∴∠OCH=∠DCH,OH=DH,

∴∠HCG=∠HCD+∠GCD=∠OCD+∠DCB=∠OCB=45°,

∴HG=HD+DG=HO+BG;

(3)解:四边形AEBD可为矩形.

如图,连接BD、DA、AE、EB,四边形AEBD若为矩形,则需先为平行四边形,即要对角线互相平分,合适的点只有G为AB中点的时候.

∵DG=BG,

∴DG=AG=EG=BG,即平行四边形AEBD对角线相等,则其为矩形,

∴当G点为AB中点时,四边形AEBD为矩形.

∵四边形DAEB为矩形,

∴AG=EG=BG=DG.

∵AB=6,

∴AG=BG=3.

设H点的坐标为(x,0),则HO=x

∵OH=DH,BG=DG,

∴HD=x,DG=3.

在Rt△HGA中,

∵HG=x+3,GA=3,HA=6﹣x,

∴(x+3)2=32+(6﹣x)2,解得x=2.

∴H点的坐标为(2,0).

考点:几何变换综合题.

9.(问题提出)

如图①,已知△ABC是等边三角形,点E在线段AB上,点D在直线BC上,且ED=EC,将△BCE绕点C顺时针旋转60°至△ACF连接EF

试证明:AB=DB+AF

(类比探究)

(1)如图②,如果点E在线段AB的延长线上,其他条件不变,线段AB,DB,AF之间又有怎样的数量关系?请说明理由

(2)如果点E在线段BA的延长线上,其他条件不变,请在图③的基础上将图形补充完整,并写出AB,DB,AF之间的数量关系,不必说明理由.

【答案】证明见解析;(1)AB=BD﹣AF;(2)AF=AB+BD.

【解析】

【分析】

(1)根据旋转的性质得出△EDB与FEA全等的条件BE=AF,再结合已知条件和旋转的性质推出∠D=∠AEF,∠EBD=∠EAF=120°,得出△EDB≌FEA,所以BD=AF,等量代换即可得出结论.(2)先画出图形证明∴△DEB≌△EFA,方法类似于(1);(3)画出图形根据图形直接写出结论即可.

【详解】

(1)证明:DE=CE=CF,△BCE

由旋转60°得△ACF,

∴∠ECF=60°,BE=AF,CE=CF,

∴△CEF是等边三角形,

∴EF=CE,

∴DE=EF,∠CAF=∠BAC=60°,

∴∠EAF=∠BAC+∠CAF=120°,

∵∠DBE=120°,

∴∠EAF=∠DBE,

又∵A,E,C,F四点共圆,

∴∠AEF=∠ACF,

又∵ED=DC,

∴∠D=∠BCE,∠BCE=∠ACF,

∴∠D=∠AEF,

∴△EDB≌FEA,

∴BD=AF,AB=AE+BF,

∴AB=BD+AF.

类比探究(1)DE=CE=CF,△BCE由旋转60°得△ACF,

∴∠ECF=60°,BE=AF,CE=CF,

∴△CEF是等边三角形,

∴EF=CE,

∴DE=EF,∠EFC=∠BAC=60°,

∠EFC=∠FGC+∠FCG,∠BAC=∠FGC+∠FEA,

∴∠FCG=∠FEA,

又∠FCG=∠EAD

∠D=∠EAD,

∴∠D=∠FEA,

由旋转知∠CBE=∠CAF=120°,

∴∠DBE=∠FAE=60°

∴△DEB≌△EFA,

∴BD=AE, EB=AF,

∴BD=FA+AB.

即AB=BD-AF.

(2)AF=BD+AB(或AB=AF-BD)

如图③,

ED=EC=CF,

∵△BCE绕点C顺时针旋转60°至△ACF,∴∠ECF=60°,BE=AF,EC=CF,BC=AC,∴△CEF是等边三角形,

∴EF=EC,

又∵ED=EC,

∴ED=EF,

∵AB=AC,BC=AC,

∴△ABC是等边三角形,

∴∠ABC=60°,

又∵∠CBE=∠CAF,

∴∠CAF=60°,

∴∠EAF=180°-∠CAF-∠BAC

=180°-60°-60°

相关文档
最新文档