离散数学第三章 谓词演算基础-唯一性量词与摹状词

合集下载

《离散数学》谓词逻辑

《离散数学》谓词逻辑

§3.5 前束范式
§3.6 谓词逻辑的推理
4
谓词与量词
个体词(individual)是一个命题里表示思维
对象的词,表示独立存在的具体或抽象的客体
具体的、确定的个体词称为个体常项,一般用
a, b, c 表示
抽象的、不确定的个体词称为个体变项,一般
用 x, y, z 表示
个体变项的取值范围称作个体域或论域
那么在解释2下该命题是真命题。

24
谓词公式及分类
类似于命题逻辑,也可以对谓词逻辑
公式进行分类:
设 A 为一个谓词公式,若 A 在任何解
释下真值均为真,则称 A 为普遍有效
的公式或逻辑有效式(logically valid
formula)

(x)
(P(x)∨P(x))
(x) P(x) P(y)
第三章 谓词逻辑
《离散数学及应用》
第三章 谓词逻辑
苏格拉底三段论:
凡是人都是要死的。
苏格拉底是人。
所以苏格拉底是要死的。
p∧q r
重言式?正确的推理?
2
第三章 谓词逻辑
为了克服命题逻辑的局限性,引入了
3
谓词和量词对原子命题和命题间的相
互关系做进一步的剖析,从而产生了
为谓词。这是一元(目)谓词,以
P(x), Q(x), …表示。

Human
(Socrates)
Mortal (Socrates)
7
谓词与量词
如果在命题里的个体词多于一个,那
么表示这几个个体词间的关系的词称
作谓词。这是多元(目)谓词,有 n
个个体的谓词 P(x1, …, xn) 称 n 元(目)

离散数学-03-一阶逻辑

离散数学-03-一阶逻辑
20
3.1.4 一阶逻辑公式与分类
解释和赋值的直观涵义
例 公式x(F(x)G(x)) 指定1 个体域:全总个体域, F(x): x是人, G(x): x是黄种人 真/假命题? 假命题 指定2 个体域:实数集, F(x): x>10, G(x): x>0 真/假命题? 真命题
21
3.1.4 一阶逻辑公式与分类
离散数学(第3版) 屈婉玲 耿素云 张立昂 编著 清华大学出版社出版
第3章 一阶逻辑
上海大学 谢江
1
第3章 一阶逻辑
• 3.1 一阶逻辑基本概念 • 3.2 一阶逻辑等值演算
2
3.1 一阶逻辑基本概念
• 3.1.1 命题逻辑的局限性 • 3.1.2 个体词、谓词与量词
– 个体常项、个体变项、个体域、全总个体域 – 谓词常项、谓词变项 – 全称量词、存在量词
n元谓词P(x1, x2,…, xn): 含n个个体变项的谓词, 是定义在 个体域上, 值域为{0,1}的n元函数 一元谓词: 表示事物的性质 多元谓词(n2): 表示事物之间的关系 0元谓词: 不含个体变项的谓词,即命题常项或命题变项 0元谓词是命题? 命题均可表示成0元谓词?
8
3.1.2 个体词、谓词与量词
• 3.1.3 一阶逻辑命题符号化
3
3.1 一阶逻辑基本概念(续)
• 3.1.4 一阶逻辑公式与分类
– 一阶语言L (字母表、项、原子公式、合式 公式) – 辖域和指导变元、约束出现和自由出现 – 闭式 – 一阶语言L 的解释 – 永真式、矛盾式、可满足式 – 代换实例
4
3.1.1 命题逻辑的局限性
11
3.1.3 一阶逻辑命题符号化
一阶逻辑命题符号化

离散数学第三章 谓词演算基础-唯一性量词与摹状词

离散数学第三章 谓词演算基础-唯一性量词与摹状词

谓词P(x)是指个体x所具有的性质, 摹状词是指具有性质P的那个个体x。摹状词 (指导 Nhomakorabea元、作用域)
x(x)——使得(x)成立的那个惟一的个体, 其中称为摹状词, x称为摹状词的指导变元, (x)称为摹状词的作用域。 注意 摹状词的作用域与唯一性量词的作用域 均为谓词演算公式,但摹状词的值为个 体,而唯一性量词的值为真或假,且要 使用摹状词必须满足存在唯一性。
摹状词 xy(x)
对于不满足存在性和唯一性的语句,如“地球的创造”其不 满足存在性、“计算机的发明者”其不满足唯一性等,我们 引入下面的表示方法: x 当!x(x)成立时是指使得(x) 成立的那个惟一的个体x y 否则
xy(x)=
由摹状词的定义可知,下列等式成立。
(xy(x)) =(!x(x)t((t)(t)))(!x(x)(y))
例1 (p57) 他是唯一没有去过北京的人。
解:设 A(e)表示“e为人”;
B(e1,e2)表示e1去过e2;
a表示“他”;
b表示“北京”。
则语句可译为:
!x(A(x) B(x,b) x=a)
例2 (p57) 地球是唯一有人的星球
解: 设 A(e)表示“e为星球”; B(e)表示“e为人”; C(e1,e2)表示e1上有e2; a表示“地球”; 则原句译为: !xy(A(x) B(y) C(x,y)x=a)
第三章 谓词演算基础
3.1 谓词与个体 3.2 函数与量词 3.3 自由变元和约束变元 3.4 永真性和可满足性 3.5 唯一性量词与摹状词 3.5.1 唯一性量词 3.5.2 摹状词
唯一性量词 !
!X 表示“只有一个X”、“恰好有一个X” 。 !x(x)表示恰好有一个x使得(x)为真。 等价公式: !x(x)=x((x)y(xy(y)))

离散数学讲义第三章谓词逻辑.ppt

离散数学讲义第三章谓词逻辑.ppt

题函数。 例如 H(x),L(x,y,z)均是简单命题函数。
(P(x,y)∨L(x,y,z)) P(y, x)是一复合命题函数
在命题函数中,个体变元的取值范围称为个体域。
例4 P(x,y)表示“2 x+y=1”,若x,y的个体域为正整数集,
则总是假;
若x,y的个体域为有理数集,则y=1―2x,对任意的有理数k , 在x= k,y =1―2k时,P( k,1―2k)为真。
6
三、量词和全总个体域
1.量词
使用前面介绍的概念,还不足以表达日常生活中 的各种命题。
例如:对于命题 “ 所有的正整数都是素数 ”
和 “ 有些正整数是素数 ” 仅用个体词和谓词是很难表达的。 量词 在命题里表示数量的词。
(1) 全称量词
“ x” x D(x),
7
如“所有人都是要死的。”可表示为 x的个体域为全体人的集合。
15
3.4 变元的约束
例1 令 P(x, y):“ x<y ”,Q(x):x是有理数;F(x):
x可以表示为分数。判断下列式子那些是命题函数,那些 是命题? P(x, y) P(x, y)∧ Q(x) Q(x) → F(x)
x(Q( x) F ( x))
例2 令H(x):x是人;M(y):y是药;S(x,y):x对y过敏。判断:
3.1、 3.2 谓词的概念与表示; 命题函数和量词 3.3 ~ 3.5 谓词演算的合适公式; 变元的约束 ; 谓词公式的解释 3.6 谓词演算的永真式 3.7 谓词演算的推理理论
1
3.1、3.2 谓词、命题函数和量词 例 判断下述论断的正确性
“苏格拉底三段论” : 凡人都是要死的, 苏格拉底是人, 所以苏格拉底是要死的。 类似的例子 还有许多。 例如:

离散数学第三章 谓词演算基础-自由变元和约束变元

离散数学第三章 谓词演算基础-自由变元和约束变元

第三章 谓词演算基础
3.1 谓词与个体 3.2 函数与量词 3.3 自由变元和约束变元 3.3.1 自由出现和约束出现 3.3.2 改名和代入 3.4 永真性和可满足性 3.5 唯一性量词与摹状词
改名的规则
(1) 改名是对约束变元而言,自由变元不能改名 ,改名时应对量词的指导变元及其作用域中 所出现的约束变元处处进行; (2) 改名前后不能改变变元的约束关系; (3) 改名用的新名应是该作用域中没有使用过的 变元名称。
例: x(A(x,y)y(B(x,y))) 解: 可把公式改名为: x(A(x,y)z(B(x,z)))
(AB),(AB),(AB),(AB)为公式;
(5) 若A是合式公式,x是A中出现的任何个体变元,则 xA(x),xA(x)为合式公式。 (6)只有有限次使用(1)、(2)、(3)、(4)、(5)所得到的式 子才是合式公式。
自由出现和约束出现
定义2:设为任何一个谓词演算公式,并设
xA(x),xA(x)为公式的子公式,
例 xF(x)G(x,y)
指出公式的指导变元,辖域、约束变元和自由变元。
解:x的辖域仅F(x),x是指导变元,变元x第 一次出现是约束出现,第二次出现是自由 出现,y的出现是自由出现。 所以第一个x是约束变元,第二个x是自由 变元,本质上这两个x的含义是不同的;而 y仅是自由变元。
例 x(x=yx2+x<5x<z)x=5y2
代入规则
(1) 代入必须处处进行,即代入时必须对公 式中出现的所有同名的自由变元进行。 (2) 代入后不能改变原式和代入式的约束关 系。 (3) 代入也可以对谓词填式而言,但也要遵 循上面两条规则; (4) 命题变元也可以实施代入。
例 x(A(x,y)y(B(x,y)C(z)))

一阶逻辑基本概念谓词逻辑(离散数学)

一阶逻辑基本概念谓词逻辑(离散数学)
x的辖域是 y( P( x, y) Q( x, y)) y的辖域是 P( x, y) Q( x, y) x的辖域是 P ( x, y ) x的出现均为约束出现, y的最后一次出现为自由 出现.
37
二、个体变项的自由出现与约束出现
换名规则:将量词辖域中某个约束变项的所有出现 及对应的指导变元,改成另一个在辖域中未曾出现 例2:使下面的公式不出现“既是约束出现 过的个体变项符号,公式中其余部分不变,则所得 又是自由出现的个体变项”。 公式与原来的公式等值。
原子命题公式 命题逻辑合式公式的定义:
(1) 单个命题常项或变项 p,q,r,…是合式公式; (2) 若A , B是合式公式,则 ( A),(AB), (AB), (AB), (AB)也是合式 公式; (3) 只有有限次地应用(1)~(2)形成的包含命题变元、联结词和括号的符号串 才是合式公式。
(3) 如果2>3,则3<4。 在命题逻辑中, 设 p:2>3,q:3<4.
符号化为 pq, 这是真命题。
在一阶逻辑中, 设 F(x,y):x>y,G(x,y):x<y, 符号化为: F(2,3)G(3,4)
12
一、个体词、谓词、量词的概念
例:有的人喜欢喝咖啡。 所有的人都喜欢喝茶。
3.
量词的基本概念
43三公式的解释1??xfgxax??x2xx2??x??yffxay?ffyax??x??yx2y?y2x3??xffxxgxx??x2xx2假命题假命题真命题44三公式的解释5??x??y??zffyzx??x??y??zyzx4??x??y??zffxyz??x??y??zxyz真命题假命题6??xfgxyzxyz不是命题45三公式的解释小结
35

离散数学第三章 谓词演算基础-谓词与个体

离散数学第三章  谓词演算基础-谓词与个体

WRITE(x,y)
其中x,y为变量符号项。
此式表示x和y的关系是WRITE,即作者x写了书y。 此时x可在个体域I (表示作者的集合)上变化; y可在个体域J (表示书名的集合)上变化。
谓词变元
一般地,考察
A(x,y)
其中x,y为变量符号项、A为谓词变元。 此式表示x和y具有关系A。 注意:x,y,A分别在三个域上变化。
可用变元来代替空位。因此,上述谓词可以表 示为: M(x),D(x),B(x,y),ADD(x, y, z)
谓词填式
——谓词的空位上填入个体后所产生的语句。 例如: M(苏格拉底)表示“苏格拉底是人”。 D(苏格拉底)表示“苏格拉底是要死的”。 B(张三,北京)表示“张三生于北京”。 ADD(3,2,5)表示“3+2=5”。
单个体的二元谓词有2个。
个体域{a,b}上的二元谓词
两个个体的二元谓词A(e1,e2)如下图所示:
e1 e2 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15
a a b b
a b a b
T T T T
F T T T
T F T T
T T F T
当谓词填式中所填个体都是常元时,它是一 个命题,因而有确定的真值。 例如: M(苏格拉底)为真, M(孔子)为真, M(孙悟空)为假, M(北京)为假。
一元谓词的数目与个体域的大小有关。
谓词:从个体域到真值集的映射
例如: D(苏格拉底)为真,
D(孙悟空)为假,
B(苏格拉底,希腊)为真 B(苏格拉底,中国)为假, ADD(1,1,2)为真, ADD(3,2,5)为真, ADD(3,2,6)为假。

离散数学-谓词演算的推理规则

离散数学-谓词演算的推理规则
解: P(x) :x 是液体, G(x):x是金属, R(x, y):x 溶解 y ,
xG(x) y p(y) R(y, x)
20
例2、将下列命题译成自然语言,并确定其真值。
(个体域为 Z ) (1) xyG(x, y) ,其中G(x, y) : xy y 解:对任意正整数 x ,存在正整数 y,
F(x),G(x, y) 中的 x 是约束变元, G(x, y) 中的 y是自由变元; y 的辖域是F( y) , F( y) 中的 y 是约束变元; R(x, y, z)中的 x, y, z 都是自由变元。
24
例5、 设个体域为 A a,b,c将下面谓词公式中的
量词消除,写出与之等值的命题公式。 (1) xP(x) xR(x) 解 xP(x) xR(x)
§2.3 谓词演算的推理规则
重点: 全称指定规则(US)(Universal Specification) 存在指定规则(ES)(Existential Specification) 全称推广规则(UG)(Universal Generalization) 存在推广规则(EG)(Existential Specification)
3
3、全称推广规则(UG)
A( y) xA(x) 要求:(1)y是个体域中任一个体,且都有A( y)为真。
4、存在推广规则(EG)
A( y) xA(x)
要求:(1) y 是个体常元或变元,
(2)在公式A(y)中,y不出现在量词 x或x
的辖域内。
4
注:考察以下推理过程
① xyP x, y

yP(c, y)
谓词公式;辖域,约束变项,自由变项; 代换实例;重言式, 矛盾式,可满足式。 2、应用。 (1) 求某些公式在给定解释下的真值。 (2) 判断某些简单公式的类型。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数与量词 3.3 自由变元和约束变元 3.4 永真性和可满足性 3.5 唯一性量词与摹状词 3.5.1 唯一性量词 3.5.2 摹状词
唯一性量词 !
!X 表示“只有一个X”、“恰好有一个X” 。 !x(x)表示恰好有一个x使得(x)为真。 等价公式: !x(x)=x((x)y(xy(y)))
谓词P(x)是指个体x所具有的性质, 摹状词是指具有性质P的那个个体x。
摹状词 (指导变元、作用域)
x(x)——使得(x)成立的那个惟一的个体, 其中称为摹状词, x称为摹状词的指导变元, (x)称为摹状词的作用域。 注意 摹状词的作用域与唯一性量词的作用域 均为谓词演算公式,但摹状词的值为个 体,而唯一性量词的值为真或假,且要 使用摹状词必须满足存在唯一性。
这里, 是一个谓词.
例(p37) 并非读书最多的人最有知识
解:设 A(e)表示“e为人”; B(e1,e2)表示e1比e2读书多; C(e1,e2)表示e1比e2有知识。 则“读书最多的人”译为: xy(A(x)y((A(y)yx)B(x,y))) 把它记为u,故原句译为: t((A(t)tu)C(u,t))
第三章 谓词演算基础
3.1 谓词与个体 3.2 函数与量词 3.3 自由变元和约束变元 3.4 永真性和可满足性 3.5 唯一性量词与摹状词 3.5.1 唯一性量词 3.5.2 摹状词 第四章 谓词演算的推理理论
第三章 谓词演算基础
3.1 谓词与个体 3.2 函数与量词 3.3 自由变元和约束变元 3.4 永真性和可满足性 3.5 唯一性量词与摹状词 3.5.1 唯一性量词 3.5.2 摹状词
摹状词
摹状词——描述特定个体的短语(利用个体的 特征性质来描述特定的个体), 比如: ◇ “纸的发明者”, ◇ “上帝的创造者”等。
例1 (p57) 他是唯一没有去过北京的人。
解:设 A(e)表示“e为人”;
B(e1,e2)表示e1去过e2;
a表示“他”;
b表示“北京”。
则语句可译为:
!x(A(x) B(x,b) x=a)
例2 (p57) 地球是唯一有人的星球
解: 设 A(e)表示“e为星球”; B(e)表示“e为人”; C(e1,e2)表示e1上有e2; a表示“地球”; 则原句译为: !xy(A(x) B(y) C(x,y)x=a)
摹状词 xy(x)
对于不满足存在性和唯一性的语句,如“地球的创造”其不 满足存在性、“计算机的发明者”其不满足唯一性等,我们 引入下面的表示方法: x 当!x(x)成立时是指使得(x) 成立的那个惟一的个体x y 否则
xy(x)=
由摹状词的定义可知,下列等式成立。
(xy(x)) =(!x(x)t((t)(t)))(!x(x)(y))
相关文档
最新文档