浙江杭州市拱墅区2018年七年级下学期期末数学试卷及解析
浙教版-学年度下学期七年级数学期末试卷(含解析)

浙教版2018-2019学年七年级下期末数学试卷一.选择题(共10小题,满分20分,每小题2分)1.下列四个图形中,不能通过基本图形平移得到的是()A.B.C.D.2.如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=()A.76°B.78°C.80°D.82°3.同时使分式有意义,又使分式无意义的x的取值范围是()A.x≠﹣4,且x≠﹣2 B.x=﹣4,或x=2 C.x=﹣4 D.x=24.下列计算正确的是()A.x8÷x4=x2B.x3•x4=x12C.(x3)2=x6D.(﹣x2y3)2=﹣x4y65.y﹣2x+1是4xy﹣4x2﹣y2﹣k的一个因式,则k的值是()A.0 B.﹣1 C.1 D.46.下列调查最适合于抽样调查的是()A.某校要对七年级学生的身高进行调查B.卖早餐的师傅想了解一锅茶鸡蛋的咸度C.班主任了解每位学生的家庭情况D.了解九年级一班全体学生立定跳远的成绩7.如果,则x:y的值为()A.B.C.2 D.38.在今年抗震赈灾活动中,小明统计了自己所在的甲、乙两班的捐款情况,得到三个信息:(1)甲班捐款2500元,乙班捐款2700元;(2)乙班平均每人捐款数比甲班平均每人捐款数多;(3)甲班比乙班多5人,设甲班有x人,根据以上信息列方程得()A.B.C.×(1+)=D.9.计算(a﹣1)2正确的是()A.a2﹣a+1 B.a2﹣2a+1 C.a2﹣2a﹣1 D.a2﹣110.一个两位数,十位数字比个位数字的2倍大1,若将这个两位数减去36恰好等于个位数字与十位数字对调后所得的两位数,则这个两位数是()A.86 B.68 C.97 D.73二.填空题(共10小题,满分30分,每小题3分)11.科学家发现一种病毒的直径为0.000104米,用科学记数法表示为米.12.若分式的值为零,则x的值为.13.如图,用直尺和三角尺作出直线AB、CD,得到AB∥CD的理由是.14.如图,一次数学测试后,老师将全班学生的成绩整理后绘制成频数分布直方图,若72分及以上成绩为及格,由图得出该班这次测试成绩的及格率是%.15.(20a n﹣2b n﹣14a n﹣1b n+1+8a2n b)÷(﹣2a n﹣3b)=.16.若x2﹣16x+m2是一个完全平方式,则m=;若m﹣=9,则m2+=.17.已知:a+x2=2015,b+x2=2016,c+x2=2017,且abc=12,则﹣=.18.若多项式x2+ax+b分解因式的结果为(x+1)(x﹣2),则a+b的值为.19.计算:①=,②=.20.已知a=2005x+2006,b=2005x+2007,c=2005x+2008,则a2+b2+c2﹣ab﹣ac﹣bc=.三.解答题(共6小题,满分50分)21.(8分)计算(1)÷+(﹣2)2×20160﹣()﹣2;(2)(x﹣y)2﹣(x+2y)(x﹣y).22.(8分)解方程(组):(1).(2)23.(8分)因式分解(1)﹣2a3+12a2﹣18a(2)9a2(x﹣y)+4b2(y﹣x)24.(8分)如图,DE⊥AO于E,BO⊥AO于O,FC⊥AB于C,∠1=∠2.(1)找出图中互相平行的线并加以说明;(2)DO和AB有怎样的位置关系并加以说明.25.(8分)典典同学学完统计知识后,随机调查了她家所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)扇形统计图中a=,b=;并补全条形统计图;(2)若该辖区共有居民3500人,请估计年龄在0~14岁的居民的人数.(3)一天,典典知道了辖区内60岁以上的部分老人参加了市级门球比赛,比赛的老人们分成甲、乙两组,典典很想知道甲乙两组的比赛结果,王大爷告诉说,甲组与乙组的得分和为110,甲组得分不低于乙组得分的1.5倍,甲组得分最少为多少?26.(10分)某中学将组织七年级学生春游一天,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格,公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了5辆45座和2辆60座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗”甲、乙两同学想了一下,都说知道了价格.聪明的你知道45座和60座的客车每辆每天的租金各是多少元吗?(2)公司经理问:“你们准备怎样租车”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在﹣旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗”?如果是你,你该如何设计租车方案,并说明理由.四.解答题(共2小题,满分20分,每小题10分)27.(10分)已知直线AB∥CD.(1)如图1,直接写出∠BME、∠E、∠END的数量关系为;(2)如图2,∠BME与∠CNE的角平分线所在的直线相交于点P,试探究∠P与∠E之间的数量关系,并证明你的结论;(3)如图3,∠ABM=∠MBE,∠CDN=∠NDE,直线MB、ND交于点F,则=.28.(10分)已知a、b、c满足a﹣b=8,ab+c2+16=0,求2a+b+c的值.参考答案与试题解析一.选择题(共10小题,满分20分,每小题2分)1.下列四个图形中,不能通过基本图形平移得到的是()A.B.C.D.【分析】根据平移的性质,对四个选项逐步分析.【解答】解:A、能通过其中一个菱形平移得到,不符合题意;B、能通过其中一个正方形平移得到,不符合题意;C、能通过其中一个平行四边形平移得到,不符合题意;D、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意.故选:D.【点评】本题主要考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状、大小和方向,学生易混淆图形的平移与旋转或翻转,而误选A、B、C.2.如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=()A.76°B.78°C.80°D.82°【分析】分别过K、H作AB的平行线MN和RS,根据平行线的性质和角平分线的性质可用∠ABK和∠DCK分别表示出∠H和∠K,从而可找到∠H和∠K的关系,结合条件可求得∠K.【解答】解:如图,分别过K、H作AB的平行线MN和RS,∵AB∥CD,∴AB∥CD∥RS∥MN,∴∠RHB=∠ABE=∠ABK,∠SHC=∠DCF=∠DCK,∠NKB+∠ABK=∠MKC+∠DCK=180°,∴∠BHC=180°﹣∠RHB﹣∠SHC=180°﹣(∠ABK+∠DCK),∠BKC=180°﹣∠NKB﹣∠MKC=180°﹣(180°﹣∠ABK)﹣(180°﹣∠DCK)=∠ABK+∠DCK﹣180°,∴∠BKC=360°﹣2∠BHC﹣180°=180°﹣2∠BHC,又∠BKC﹣∠BHC=27°,∴∠BHC=∠BKC﹣27°,∴∠BKC=180°﹣2(∠BKC﹣27°),∴∠BKC=78°,故选:B.【点评】本题主要考查平行线的性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.3.同时使分式有意义,又使分式无意义的x的取值范围是()A.x≠﹣4,且x≠﹣2 B.x=﹣4,或x=2 C.x=﹣4 D.x=2【分析】让第一个分式的分母不为0,第二个分式的分母为0即可.【解答】解:由题意得:x2+6x+8≠0,且(x+1)2﹣9=0,(x+2)(x+4)≠0,x+1=3或﹣3,x≠﹣2且x≠﹣4,x=2或x=﹣4,∴x=2,故选D.【点评】分式有意义,分式的分母都应不为0;分式无意义,分母为0.4.下列计算正确的是()A.x8÷x4=x2B.x3•x4=x12C.(x3)2=x6D.(﹣x2y3)2=﹣x4y6【分析】根据同底数幂的除法对A进行判断;根据同底数幂的乘法对B进行判断;根据幂的乘方对C进行判断;根据积的乘方对D进行判断.【解答】解:A、原式=x4,所以A选项的计算错误;B、原式=x7,所以B选项的计算错误;C、原式=x6,所以C选项的计算正确;D、原式=x4y6,所以D选项的计算错误.故选:C.【点评】本题考查了同底数幂的除法法则:底数不变,指数相减.即a m÷a n=a m﹣n(a≠0,m,n是正整数,m>n).也考查了同底数幂的乘法.5.y﹣2x+1是4xy﹣4x2﹣y2﹣k的一个因式,则k的值是()A.0 B.﹣1 C.1 D.4【分析】观察已给的多项式,可变形为可以利用分组分解法,前三项可以用完全平方公式分解,根据式子的特点就可以确定k的值.【解答】解:原式=﹣(4x2+y2﹣4xy+k)=﹣[(2x﹣y)2+k]显然根据平方差公式的特点,两个平方项要异号才能继续分解又由y﹣2x+1是4xy﹣4x2﹣y2﹣k的一个因式,可知第二个数是1则k=﹣1.故选:B.【点评】要熟练因式分解的公式法,同时注意前后联系.本题主要考查了因式分解与整式的乘法互为逆运算.是中考中的常见题型.6.下列调查最适合于抽样调查的是()A.某校要对七年级学生的身高进行调查B.卖早餐的师傅想了解一锅茶鸡蛋的咸度C.班主任了解每位学生的家庭情况D.了解九年级一班全体学生立定跳远的成绩【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、某校要对七年级学生的身高进行调查,调查范围小,适合抽样普查,故A错误;B、卖早餐的师傅想了解一锅茶鸡蛋的咸度无法进行普查,适合抽样调查,故B正确;C、班主任了解每位学生的家庭情况,适合普查,故B错误;D、了解九年级一班全体学生立定跳远的成绩适合普查,故D错误;故选:B.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有坏的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.如果,则x:y的值为()A.B.C.2 D.3【分析】要想求得x:y的值,实际应把常数项消去.【解答】解:在方程组中,(2)×5﹣(1)×11,得3x﹣9y=0,∴3x=9y,即x=3y.所以x:y=3.故选:D.【点评】想求得方程组里两个未知数的比值,有两种方法:求得两个未知数的值再比;消去常数项,直接求比.8.在今年抗震赈灾活动中,小明统计了自己所在的甲、乙两班的捐款情况,得到三个信息:(1)甲班捐款2500元,乙班捐款2700元;(2)乙班平均每人捐款数比甲班平均每人捐款数多;(3)甲班比乙班多5人,设甲班有x人,根据以上信息列方程得()A. B.C.×(1+)=D.【分析】人数为未知数,有各个班的捐款总数,应根据每个班每人捐款数来列等量关系.关键描述语是:乙班平均每人捐款数比甲班平均每人捐款数多.等量关系为:甲班平均每人捐款数×(1+)=乙班平均每人捐款数.【解答】解:甲班每人的捐款额为:,乙班每人的捐款额为:.根据(2)中所给出的信息,方程可列为:×(1+)=.故选:C.【点评】找到关键描述语,找到等量关系是解决问题的关键.9.计算(a﹣1)2正确的是()A.a2﹣a+1 B.a2﹣2a+1 C.a2﹣2a﹣1 D.a2﹣1【分析】原式利用完全平方公式展开得到结果,即可作出判断.【解答】解:原式=a2﹣2a+1,故选:B.【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.10.一个两位数,十位数字比个位数字的2倍大1,若将这个两位数减去36恰好等于个位数字与十位数字对调后所得的两位数,则这个两位数是()A.86 B.68 C.97 D.73【分析】用二元一次方程组解决问题的关键是找到2个合适的等量关系.由于十位数字和个位数字都是未知的,所以不能直接设所求的两位数.本题中2个等量关系为:十位数字=2×个位数字+1;(10×十位数字+个位数字)﹣36=10×个位数字+十位数字.根据这两个等量关系可列出方程组.【解答】解:设这个两位数的十位数字为x,个位数字为y.则,解得.故选:D.【点评】解题关键是弄清题意,合适的等量关系,列出方程组.本题涉及一个常识问题:两位数=10×十位数字+个位数字,并且在求两位数或三位数时,一般是不能直接设这个两位数或三位数的,而是设它各个数位上的数字为未知数.二.填空题(共10小题,满分30分,每小题3分)11.科学家发现一种病毒的直径为0.000104米,用科学记数法表示为 1.04×10﹣4米.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000104=1.04×10﹣4,故答案为:1.04×10﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.若分式的值为零,则x的值为3.【分析】分式的值为零:分子等于零,且分母不等于零,由此得到3﹣|x|=0且x+3≠0,从而得到x的值.【解答】解:依题意得:3﹣|x|=0且x+3≠0,解得x=3.故答案是:3.【点评】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.13.如图,用直尺和三角尺作出直线AB、CD,得到AB∥CD的理由是同位角相等,两直线平行.【分析】根据同位角相等,两直线平行解答即可.【解答】解:用直尺和三角尺作出直线AB、CD,得到AB∥CD的理由是同位角相等,两直线平行;故答案为:同位角相等,两直线平行.【点评】此题主要考查了平行线的判定,熟练掌握平行线的判定是解题关键.14.如图,一次数学测试后,老师将全班学生的成绩整理后绘制成频数分布直方图,若72分及以上成绩为及格,由图得出该班这次测试成绩的及格率是90%.【分析】分析频数直方图可得:72分及以上的人数与总人数,相比可得该班这次测试成绩的及格率.【解答】解:由频数直方图可以看出:72分及以上成绩的人数=9+12+9+6=36人,总人数=1+3+9+12+9+6=40人,则该班这次测试成绩的及格率为36÷40=0.9=90%.故答案为90%.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.15.(20a n﹣2b n﹣14a n﹣1b n+1+8a2n b)÷(﹣2a n﹣3b)=﹣10ab n﹣1+7a2b n﹣4a n+3.【分析】多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加,据此求出算式(20a n﹣2b n﹣14a n﹣1b n+1+8a2n b)÷(﹣2a n﹣3b)的值是多少即可.【解答】解:(20a n﹣2b n﹣14a n﹣1b n+1+8a2n b)÷(﹣2a n﹣3b)=20a n﹣2b n÷(﹣2a n﹣3b)﹣14a n﹣1b n+1÷(﹣2a n﹣3b)+8a2n b÷(﹣2a n﹣3b)=﹣10ab n﹣1+7a2b n﹣4a n+3故答案为:﹣10ab n﹣1+7a2b n﹣4a n+3.【点评】此题主要考查了整式的除法,解答此题的关键是熟练掌握整式的除法法则:(1)单项式除以单项式,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式.(2)多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.16.若x2﹣16x+m2是一个完全平方式,则m=±8;若m﹣=9,则m2+=83.【分析】根据乘积二倍项和已知平方项确定出这两个数,再根据完全平方公式表示出另一个平方项求解即可;把已知条件直接平方然后整理即可.【解答】解:∵x2﹣16x+m2是完全平方式,∴16x=2×8•x,∴m2=82,解得m=±8;∵m﹣=9,∴(m﹣)2=m2﹣2+=81,解得m2+=81+2=83.【点评】本题是对完全平方公式的考查,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式;第二问中利用好m与互为倒数是求解的关键.17.已知:a+x2=2015,b+x2=2016,c+x2=2017,且abc=12,则﹣= 0.25.【分析】先将已知所给式子依次相减得:a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1;再把所求式子通分计算化成,为了将分子化成完全平方式,分子和分母同时乘以2,进行变形,再把所求的式子整体代入即可.【解答】解:由题意得:①﹣②得:a﹣b=﹣1①﹣③得:a﹣c=﹣2②﹣③得:b﹣c=﹣1∴﹣=====0.25故答案为:0.25【点评】本题综合考查了分式的加减法和完全平方公式,分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.就本类题而言,分式求值题中比较多的题型主要有三种:①转化已知条件后整体代入求值;②转化所求问题后将条件整体代入求值;③既要转化条件,也要转化问题,然后再代入求值.本题就是第三种情况,既要转化条件,把已知式依次相减,也要转化问题,对所求式子通分、配方等,然后再整体代入求值.18.若多项式x2+ax+b分解因式的结果为(x+1)(x﹣2),则a+b的值为﹣3.【分析】利用整式的乘法计算(x+1)(x﹣2),按二次项、一次项、常数项整理,与多项式x2+ax+b对应,得出a、b的值代入即可.【解答】解:(x+1)(x﹣2)=x2﹣2x+x﹣2=x2﹣x﹣2所以a=﹣1,b=﹣2,则a+b=﹣3.故答案为:﹣3.【点评】此题考查利用整式的计算方法,计算出的代数式与因式分解前代数式比较,得出结论,进一步解决问题.19.计算:①=,②=.【分析】①两个分式相乘,直接约分即可;②首先计算乘方,然后进行加法运算即可.【解答】解:①原式=;②原式=4+1﹣=.故答案是:,.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、等考点的运算.20.已知a=2005x+2006,b=2005x+2007,c=2005x+2008,则a2+b2+c2﹣ab﹣ac﹣bc=3.【分析】已知等式整理变形后,利用完全平方公式化简,将各自的值代入计算即可求出值.【解答】解:∵a=2005x+2006,b=2005x+2007,c=2005x+2008,∴a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,则原式=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a﹣b)2+(a﹣c)2+(b﹣c)2]=3.故答案为:3.【点评】此题考查了因式分解的应用,熟练掌握完全平方公式是解本题的关键.三.解答题(共6小题,满分50分)21.(8分)计算(1)÷+(﹣2)2×20160﹣()﹣2;(2)(x﹣y)2﹣(x+2y)(x﹣y).【分析】(1)原式利用二次根式除法法则,零指数幂、负整数指数幂法则,以及乘方的意义计算即可得到结果;(2)原式利用完全平方公式,以及多项式乘以多项式法则计算,去括号合并即可得到结果.【解答】解:(1)原式=+4×1﹣9=4+4﹣9=﹣1;(2)原式=x2﹣2xy+y2﹣x2+xy﹣2xy+2y2=﹣3xy+3y2.【点评】此题考查了多项式乘多项式,完全平方公式,零指数幂、负整数指数幂,以及实数的运算,熟练掌握运算法则是解本题的关键.22.(8分)解方程(组):(1).(2)【分析】(1)根据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论,依次计算可得;(2)利用加减法计算可得.【解答】解:(1)两边都乘以(x+1)(x﹣1),得:x(x﹣1)﹣(x﹣3)=(x+1)(x ﹣1),解得:x=2,当x=2时,(x+1)(x﹣1)=3≠0,所以原分式方程的解为x=2;(2)①+②,得:4x=12,解得:x=3,将x=3代入①,得:3+2y=5,解得:y=1,则方程组的解为.【点评】本题主要考查解分式方程和二元一次方程组的能力,解题的关键是熟练掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论及加减消元法解方程组的能力.23.(8分)因式分解(1)﹣2a3+12a2﹣18a(2)9a2(x﹣y)+4b2(y﹣x)【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式变形后,提取公因式,再利用平方差公式分解即可.【解答】解:(1)原式=﹣2a(a2﹣6a+9)=﹣2a(a﹣3)2;(2)原式=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.24.(8分)如图,DE⊥AO于E,BO⊥AO于O,FC⊥AB于C,∠1=∠2.(1)找出图中互相平行的线并加以说明;(2)DO和AB有怎样的位置关系并加以说明.【分析】(1)利用在同一平面内,垂直于同一直线的两直线平行得出DE∥BO,再结合已知条件求得∠1=∠3,从而证明DO∥CF;(2)主要是由平行线的判定及垂线的定义即可证明.由两直线平行,同位角相等得到∠BCF=∠BDO,由已知条件得到∠BDO=90°,所以两直线垂直.【解答】解:(1)DE∥BO,DO∥CF,理由如下:∵DE⊥AO,BO⊥AO(已知),∴DE∥BO(在同一平面内,垂直于同一直线的两直线平行),∴∠2=∠3(两直线平行,内错角相等),∵∠1=∠2(已知),∴∠1=∠3(等量代换),∴DO∥CF(同位角相等,两直线平行);(2)DO⊥AB,理由如下:由(1)得:DO∥CF,∴∠BCF=∠BDO(两直线平行,同位角相等),∵FC⊥AB(已知),∴∠BCF=90°(垂直定义),∴∠BDO=90°(等量代换),∴DO⊥AB(垂直定义).【点评】此题主要考查了平行线的性质和判定,还考查了垂直的定义.25.(8分)典典同学学完统计知识后,随机调查了她家所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)扇形统计图中a=20%,b=12%;并补全条形统计图;(2)若该辖区共有居民3500人,请估计年龄在0~14岁的居民的人数.(3)一天,典典知道了辖区内60岁以上的部分老人参加了市级门球比赛,比赛的老人们分成甲、乙两组,典典很想知道甲乙两组的比赛结果,王大爷告诉说,甲组与乙组的得分和为110,甲组得分不低于乙组得分的1.5倍,甲组得分最少为多少?【分析】(1)根据“15~40”的百分比和频数可求总数,进而求出b和a的值.利用总数和百分比求出频数再补全条形图;(2)用样本估计总体即可;(3)首先设甲组得x分,则乙组得(110﹣x)分,由题意得不等关系:甲组得x分≥乙组得x分×1.5,根据不等关系列出不等式,解不等式即可.【解答】解:(1)总人数:230÷46%=500(人),100÷500×100%=20%,60÷500×100%=12%;500×22%=110(人),如图所示:(2)3500×20%=700(人);(3)设甲组得x分,则乙组得(110﹣x)分,由题意得:x≥1.5(110﹣x),解得:x≥66.答:甲组最少得66分.【点评】此题主要考查了扇形统计图与条形统计图,以及一元一次不等式的应用,正确读图,能从图中得到正确的信息是解决问题的关键.26.(10分)某中学将组织七年级学生春游一天,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格,公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了5辆45座和2辆60座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗”甲、乙两同学想了一下,都说知道了价格.聪明的你知道45座和60座的客车每辆每天的租金各是多少元吗?(2)公司经理问:“你们准备怎样租车”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在﹣旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗”?如果是你,你该如何设计租车方案,并说明理由.【分析】根据题意可知,本题中的相等关系是“60座的客车每辆每天的租金比45座的贵100元”和“5辆45座和2辆60座的客车,一天的租金为1600元”,列方程组求解即可.【解答】解:(1)设45座客车每天租金x元,60座客车每天租金y元,则解得故45座客车每天租金200元,60座客车每天租金300元;(2)设学生的总数是a人,则=+2解得:a=240所以租45座客车4辆、60座客车1辆,费用1100元,比较经济.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.本题还需注意“60座的客车每辆每天的租金比45座的贵100元”和“5辆45座和2辆60座的客车,一天的租金为1600元”的关系.四.解答题(共2小题,满分20分,每小题10分)27.(10分)已知直线AB∥CD.(1)如图1,直接写出∠BME、∠E、∠END的数量关系为∠E=∠END﹣∠BME;(2)如图2,∠BME与∠CNE的角平分线所在的直线相交于点P,试探究∠P与∠E之间的数量关系,并证明你的结论;(3)如图3,∠ABM=∠MBE,∠CDN=∠NDE,直线MB、ND交于点F,则=.【分析】(1)由AB∥CD,即可得到∠END=∠EFB,再根据∠EFB是△MEF的外角,即可得出∠E=∠EFB﹣∠BME=∠END﹣∠BME;(2)由平行线的性质以及三角形外角性质,即可得到∠NPM=∠NGB+∠PMA=∠CNP+∠PMA,再根据三角形内角和定理,即可得到∠E+2∠PMA+2∠CNP=180°,即∠E+2(∠PMA+∠CNP)=180°,即可得到∠E+2∠NPM=180°;(3)延长AB交DE于G,延长CD交BF于H,由平行线的性质以及三角形外角性质,即可得到∠E=∠ABE﹣∠AGE=∠ABE﹣∠CDE;依据∠CHB是△DFH的外角,即可得到∠F=∠CHB﹣∠FDH=∠ABE﹣∠CDE=(∠ABE﹣∠CDE),进而得出∠F=∠E.【解答】解:(1)如图1,∵AB∥CD,∴∠END=∠EFB,∵∠EFB是△MEF的外角,∴∠E=∠EFB﹣∠BME=∠END﹣∠BME,故答案为:∠E=∠END﹣∠BME;(2)如图2,∵AB∥CD,∴∠CNP=∠NGB,∵∠NPM是△GPM的外角,∴∠NPM=∠NGB+∠PMA=∠CNP+∠PMA,∵MQ平分∠BME,PN平分∠CNE,∴∠CNE=2∠CNP,∠FME=2∠BMQ=2∠PMA,∵AB∥CD,∴∠MFE=∠CNE=2∠CNP,∵△EFM中,∠E+∠FME+∠MFE=180°,∴∠E+2∠PMA+2∠CNP=180°,即∠E+2(∠PMA+∠CNP)=180°,∴∠E+2∠NPM=180°;(3)如图3,延长AB交DE于G,延长CD交BF于H,∵AB∥CD,∴∠CDG=∠AGE,∵∠ABE是△BEG的外角,∴∠E=∠ABE﹣∠AGE=∠ABE﹣∠CDE,①∵∠ABM=∠MBE,∠CDN=∠NDE,∴∠ABM=∠ABE=∠CHB,∠CDN=∠CDE=∠FDH,∵∠CHB是△DFH的外角,∴∠F=∠CHB﹣∠FDH=∠ABE﹣∠CDE=(∠ABE﹣∠CDE),②由①代入②,可得∠F=∠E,即.故答案为:.【点评】本题主要考查了平行线的性质和角平分线的定义、三角形内角和的运用,解决问题的关键是作辅助线构造同位角以及内错角,依据平行线的性质及三角形外角性质进行推导计算.28.(10分)已知a、b、c满足a﹣b=8,ab+c2+16=0,求2a+b+c的值.【分析】本题乍看下无法代数求值,也无法进行因式分解;但是将已知的两个式子进行适当变形后,即可找到本题的突破口.由a﹣b=8可得a=b+8;将其代入ab+c2+16=0得:b2+8b+c2+16=0;此时可发现b2+8b+16正好符合完全平方公式,因此可用非负数的性质求出b、c的值,进而可求得a的值;然后代值运算即可.【解答】解:因为a﹣b=8,所以a=b+8.(1分)又ab+c2+16=0,所以(b+8)b+c2+16=0.即(b+4)2+c2=0.又(b+4)2≥0,c2≥0,则b=﹣4,c=0.(4分)所以a=4,(5分)所以2a+b+c=4.(6分)【点评】本题既考查了对因式分解方法的掌握,又考查了非负数的性质以及代数式求值的方法.。
17-18第二学期期末测试七年级数学答案

2017~2018学年度第二学期期末学业水平调研测试七年级数学及答案说明:1、本试卷共4页,共25小题,考试时间为100分钟,满分120分.2、考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己的考生号,并用2B 铅笔把对应号码的标号涂黑,在指定位置填写学校,姓名,试室号和座位号.3、选择题每小题选出答案后,用2B 铅笔把答题卡对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案.4、非选择题必须在指定区域内,用黑色字迹的签字笔或钢笔作答,如需改动,先划掉原来答案,然后再写上新答案;不准使用铅笔或涂改液,不按以上要求作答的答案无效.5、考生务必保持答题卡的整洁,不折叠答题卡,考试结束后,只交回答题卡.一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选选项涂黑.1、如图,直线a ,b 与直线l 相交,则下列说法错误的是( ) A 、1∠与2∠互为对顶角 B 、1∠与3∠互为邻补角 C 、1∠与4∠是一对同旁内角 D 、2∠与4∠是一对内错角2、计算 4的值,结果是( )A 、2B 、-2C 、±2D 、2±3、在平面直角坐标系中,第二象限的点P 到x 轴的距离为3,到y 轴的距离为4,则点P 的坐标是( )A 、(3,4)B 、(-3,4)C 、(4,3)D 、(-4,3) 4、如图,点O 是直线AB 外的点,点C ,D 在AB 上,且AB OC ⊥,若5=OA ,4=OB ,2=OC ,3=OD ,则点O 到直线AB 的距离是( )A 、5B 、4C 、2D 、35、已知关于x ,y 的二元一次方程53=+y kx 有一组解为⎩⎨⎧==12y x ,则k 的值为( )A 、1B 、2C 、3D 、4lba 3 12 4第1题图OA第4题图BEAD第10题图OBEA CD 第14题图6、已知1-<a ,则下列不等式中,错误的是( ) A 、33-<a B 、33<-a C 、12<+a D 、32>-a7、经调查,某班同学上学所用的交通工具中,自行车占60%,公交车占30%,其它占10%,用扇形图描述以上统计数据,则公交车对应的扇形的圆心角的度数是( )A 、︒216B 、︒120C 、︒108D 、︒60 8、下列说法正确的是( )A 、无限小数都是无理数B 、无理数都是无限小数C 、带根号的数都是无理数D 、无理数能写成分数形式 9、下列说法错误的是( )A 、在同一平面内,过一点有且只有一条直线与已知直线垂直B 、连接直线外一点与直线上各点的所有线段中,垂线段最短C 、在同一平面内,不重合的两条直线互相平行D 、经过直线外一点,有且只有一条直线与这条直线平行10、如图,在三角形ABC 中,点D 是AB 上的点,由条件AC DE ⊥于点E ,DE ∥BC 得出的下列结论中,不正确的是( )A 、CDE BCD ∠=∠B 、︒=∠90ACBC 、B ADE ∠=∠D 、DCE BDC ∠=∠二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11、7-的相反数是 . 12、计算:=-+3)32( . 13、不等式1152<+x 的解集是 .14、如图,直线AB 与CD 相交于点O ,OA 平分COE ∠,若︒=∠30AOE ,则DOE ∠的度数是 .15、在直角坐标系中,线段CD 是由线段AB 平移得到,点A (-3,-2)的对应点为C (2,1),则点B (-1,2)的对应点D 的坐标是 .第18题图1PBAB A CD第18题图216、如图,8块相同的长方形地砖拼成一个长方形,则每块长方形地砖的面积是 2cm .答案:一、选择题 C A D C A B C B C D二、填空题 11、7 12、2 13、3<x 14、︒120 15、(4,5) 16、675 三、解答题(一)(本大题3小题,每小题6分,共18分) 17、计算:53325161643-+-+.34533534+=-++=(评分说明:计算364占1分,计算25161-,533-各占2分,答案正确占1分)18、画图题:(1)如图1,已知点P 是直线AB 外一点,用三角尺画图:过点P 作AB PM ⊥,垂足为M ; (2)如图2,已知直线AB 与CD ,请画出直线EF ,使EF 与直线AB 、CD 都相交,在所构成的八个角中,用数字表示其中的一对同位角.解:(1)评分说明:准确画出图形给3分,其中会过点P 作直线、用直角画出垂直线、标注垂足各占1分;(2)共3分.其中画出EF ,用数字表示同位角,写出结果各占1分.19、已知四个点的坐标,A (-3,-2),B (2,-2),C (3,1),D (-2,1). (1)在直角坐标系中描出A ,B ,C ,D 四个点;(2)连结AB 、CD ,写出线段AB ,CD 的位置关系和数量关系.解:(1)略 4分(准确描出一个点1分)(2)AB ∥CD,CD AB =; 6分(每个结论占1分)第16题图四、解答题(二)(本大题3小题,每小题7分,共21分) 20、解方程组:⎩⎨⎧=-=+112312y x y x .解:①+②得,124=x , 2分3=x , 3分把3=x 代入①得,123=+y ,1-=y , 6分∴这个方程组的解是⎩⎨⎧-==13y x . 7分或由①得,y x 21-=③, 1分 代入②得,112)21(3=--y y , 3分 解得1-=y , 4分 把1-=y 代入③得,3)1(21=-⨯-=x , 6分∴这个方程组的解是⎩⎨⎧-==13y x . 7分21、解不等式组:⎪⎩⎪⎨⎧-<--≥+-x x x x 6)1(31324,并求该不等式组的正整数解.解:不等式x x ≥+-324的解是2≤x , 2分 不等式x x -<--6)1(31的解是1->x , 4分 ∴不等式组的解是21≤<-x , 6分 ∴不等式组的正整数解是1,2. 7分22、某校为了解该校七年级同学对排球、篮球和足球三种球类运动项目的喜爱情况(每位同学必须且只须选择最喜爱的一种运动项目),进行了随机抽样调查,并将调查结果统计后,绘制成如下表和不完整的统计图表.(1)填空:=m ,=n ,=p ; (2)补全条形统计图;(3)若七年级学生总人数为900人,请你估计七年级学生喜爱足球运动项目的人数.解:(1)50=m ,14=n ,%20=p ; 3分 (2)略 5分 (3)900×20%=180(人) 7分五、解答题(三)(本大题3小题,每小题9分,共27分)23、某养牛场每天可用的饲料不超过1000kg ,原有30头大牛和15头小牛,1天要用饲料675kg ;一周后又购进12头大牛和5头小牛,这时1天要用饲料940kg .(1)求每头大牛和每头小牛1天各用饲料多少kg ?(2)一段时间后,大牛已全部上市出售,原来的小牛也长成大牛,需要再购进大牛和小牛若干头继续饲养.经测算,养牛场养牛数刚好80头,且尽量多养大牛将获得最大效益,问养牛场应购进多少头大牛和小牛才获得最大效益?解:(1)设每头大牛1天用饲料x kg ,每头小牛1天用饲料y kg , 1分依题意得,⎩⎨⎧=+=+94020426751530y x y x , 3分解得,⎩⎨⎧==520y x , 5分 答:每头大牛1天用饲料20kg ,每头小牛1天用饲料5kg ; 6分 (2)设最多购进m 头大牛,第24题图BA CD123依题意得,1000)60(5)20(20≤-++m m , 7分 解得,20≤m , 8分答:最多购进20头大牛,此时需购进40头小牛,使养牛数刚好80头牛并获得最大效益, 9分24、(1)在下面括号内,填上推理的根据,并完成下面的证明:如图,在四边形ABCD 中,BD 平分ABC ∠,31∠=∠.求证:AD ∥BC . 证明:∵BD 平分ABC ∠,∴21∠=∠( ), 又∵31∠=∠(已知),∴∠ ∠= ( ), ∴AD ∥BC ( );(2)请根据本题给出的图形举出反例,判定命题“相等的角是对顶角”是假命题;(3)命题“在四边形ABCD 中,AB ∥CD ,AD ∥BC ,那么C A ∠=∠”是真命题吗?如果是,写出推理过程(要求写出每一步的推理依据),如果不是,请举出反例.解:(1)分别填写:角平分线的定义、32∠=∠、等量代换、内错角相等,两直线平行 每个1分,共4分(2)BD 平分ABC ∠,21∠=∠,但它们不是对顶角, 5分 ∴命题“相等的角是对顶角”是假命题; 6分 (3)命题是真命题,证明如下: ∵AB ∥CD ,∴︒=∠+∠180C ABC (两直线平行,同旁内角互补), 7分 ∵AD ∥BC ,∴︒=∠+∠180A ABC (两直线平行,同旁内角互补), 8分 ∴C A ∠=∠(等角的补角相等). 9分 若证明过程正确给2分,但推理根据没有写或有写错的,全部扣1分25、如图,在直角坐标系中,点O 为坐标原点,直线AB 与两条坐标轴交于点A 、B ,OB OA <,过OB 的中点C 作直线CD 交AB 于点D ,使1∠=∠CDB ,过点D 作AB DE ⊥交x 轴于点E ,交y 轴于点F .已知直线AB 上的点的坐标是二元一次方程2443=+y x 的解.(1)写出点A 、B 、C 的坐标;(2)证明:OB CD ⊥(要求写出每一步的推理依据);(3)若点D 、E 的坐标都是方程734=-y x 的解,求四边形OADE 的面积. 解:(1)A (0,6),B (8,0),C (4,0); 3分 (2)∵OAB ∠=∠1(对顶角相等), 4分 又1∠=∠CDB (已知),∴CDB OAB ∠=∠(等量代换), ∴CD ∥y 轴(同位角相等,两直线平行), 5分 ∴︒=∠=∠90AOB DCB (两直线平行,同位角相等), ∴OB DC ⊥(垂直的定义); 6分 (3)由OB DC ⊥,得点D 的横坐标为4, 7分 ∴D (4,3),E (47,0), ∴425478=-=EB , 8分 ∴四边形OADE 的面积81173425216821=⨯⨯-⨯⨯=S . 9分。
浙教版 2017-2018学年第二学期七年级数学期末测试卷 及答案

2017-2018学年七年级(下)期末数学试题班级_____________姓名____________学号______________得分_____________ 一、选择题(每小题3分,共30分)1.若1x y k =⎧⎨=⎩,是二元一次方程23x y -=的一个解,则k 的值是( )A .-1B .0C .1D .22.如图,已知∠1=70°,要使AB ∥CD ,则须具备另一个条件( )A .∠2=70°B .∠2=100°C .∠2=110°D .∠3=70°[来源:学。
科。
网]3.若⎩⎨⎧-==12y x 是二元一次方程组的解,则这个方程组是( )A 、⎩⎨⎧=+=-5253y x y x B 、⎩⎨⎧=--=523x y x y C 、⎩⎨⎧=+=-152y x y x D 、⎩⎨⎧+==132y x yx4.因式分解(x -1)2-9的结果是( )A. (x +8)(x +1)B. (x +2)(x -4)C. (x -2)(x +4)D. (x -10)(x +8)5.下面是小马虎同学在一次数学测验中的计算摘录,其中正确的是( )A .()()23a a a -=-÷- B .()523a a =C .()532623xxx -=-⋅D .()623ab ab =6.若分式1x 2x x 2+--的值为零,那么x 的值为( )A .x =-1或x =2B .x =0C .x =2D .x =-17.图是某校初中各年级人数占初中总人数的比例统计图,已知八年级有学生360人,那么七年级有学生数 ( )A .900人 B. 315人 C .225人 D. 360人 8.下列各式计算正确的是( )A.222a ab b a b b a -+=--;B.2232()x xy y x y x y ++=++ C.23546x x y y ⎛⎫= ⎪⎝⎭; D.11x y x y -=-+-9.如图,AB ∥CD ∥EF ,若∠ABC =50°,∠CEF =150°,则∠BCE =( ) A.60° B.50° C.30° D.20°F EDCB AG 1FEDCBA(第9题) (第13题) (第18题) 10.若分式方程a x ax =-+1无解,则a 的值是 ( ) A.-1 B. 1 C. ±1 D.-2 二、填空题(每小题3分,共30分) 11.计算:534515a b c a b -÷=12.因式分解:=+-m mx mx 2422;13.如图,AB ⊥EF ,CD ⊥EF ,∠1=∠F =45°,那么与∠FCD 相等的角有___个,它们分别是____。
zjm┃精选3套试卷┃2018届浙江省名校七年级下学期数学期末监测试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列图形具有稳定性的是( )A .B .C .D .【答案】A【解析】根据三角形具有稳定性,四边形具有不稳定性进行判断即可得.【详解】A 、具有稳定性,符合题意;B 、不具有稳定性,故不符合题意;C 、不具有稳定性,故不符合题意;D 、不具有稳定性,故不符合题意,故选A .【点睛】本题考查了三角形的稳定性和四边形的不稳定性,正确掌握三角形的性质是解题关键. 2.在绘制频数分布直方图时,一个容量为80的样本最大值是143,最小值是50,取组距为10,则可以分成( )组;A .10B .9C .8D .不能确定【答案】A【解析】最大值减去最小值,再除以组距即可求解.【详解】()14350109.3-÷=故可以分成10组故答案为:A .【点睛】本题考查了频数分布直方图的问题,掌握求组数的方法是解题的关键.3.下列说法正确的是( )A .两点确定一条直线B .不相交的两条直线叫做平行线C .过一点有且只有一条直线与已知直线平行D .两点间的距离是指连接两点间的线段【答案】A【解析】依据直线的性质、平行公理、两点间的距离的概念进行判断即可.【详解】A 、两点确定一条直线,本选项正确;B 、在同一平面内不相交的两条直线叫做平行线,本选项错误;C、过直线外一点有且只有一条直线与已知直线平行,本选项错误;D、两点间的距离是指连接两点间的线段的长度,本选项错误;故选A.【点睛】本题主要考查了直线的性质、平行公理、两点间的距离,解题时注意:经过直线外一点,有且只有一条直线与这条直线平行.4.对任意实数x,点P(x,x2-2x)一定不在( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】根据点在平面直角坐标系中各个象限坐标的符号特点解答即可,注意分情况讨论.解:(1)当0<x<2时,x>0,x2-2x=x(x-2)<0,故点P在第四象限;(2)当x>2时,x>0,x2-2x=x(x-2)>0,故点P在第一象限;(3)当x<0时,x2-2x>0,点P在第二象限.故对任意实数x,点P可能在第一、二、四象限,一定不在第三象限,故选C.5.在探究平行线的判定——基本事实:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行时,老师布置了这样的任务:请同学们分组在学案上(如图),用直尺和三角尺画出过点P与直线AB平行的直线PQ;并思考直尺和三角尺在画图过程中所起的作用.小菲和小明所在的小组是这样做的:他们选取直尺和含有45°角的三角尺,用平移三角尺的画图方法画出AB的平行线PQ,并将实际画图过程抽象出平面几何图形(如图).以下是小菲和小明所在小组关于直尺和三角尺作用的讨论:①在画平行线的过程中,三角尺由初始位置靠着直尺平移到终止位置,实际上就是先画∠BMD=45°,再过点P画∠BMD=45°②由初始位置的三角尺和终止位置的三角尺各边所在直线构成一个“三线八角图”,其中QP为截线③初始位置的三角尺和终止位置的三角尺在“三线八角图”中构成一组同位角④在画图过程中,直尺可以由直线CD代替⑤在“三线八角图”中,因为AB和CD是截线,所以,可以下结论“两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行”其中,正确的是()A.①②⑤B.①③④C.②④⑤D.③④⑤【答案】B【解析】这种画法就是画同位角∠DMB和∠DEP相等,从而判断PQ∥AB,从而根据平行线的判定定理对各小题进行判断.【详解】在画平行线的过程中,三角尺由初始位置靠着直尺平移到终止位置,实际上就是先画∠BMD=45°,再过点P画∠BMD=45°,所以①正确;由初始位置的三角尺和终止位置的三角尺各边所在直线构成一个“三线八角图”,其中CD为截线,所以②错误;初始位置的三角尺和终止位置的三角尺在“三线八角图”中构成一组同位角,所以③正确;在画图过程中,直尺可以由直线CD代替,所以④正确;⑤在“三线八角图”中,因为AB和PQ是一组平行线,CD为截线,所以,可以下结论“两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行”,所以⑤错误.故选:B.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行线的判定.6.如图,已知AB∥CD,AD平分∠BAE,∠D=38°,则∠AEC的度数是A.76°B.38°C.19°D.72°【答案】A【解析】根据平行线的性质得出∠CEA=∠EAB,∠D=∠BAD=38°,求出∠EAB,即可求出∠AEC.【详解】解:∵CD∥AB,∴∠CEA=∠EAB,∠D=∠BAD=38°,∵AD平分∠BAE,∴∠EAB=2∠DAB=76°,∴∠AEC=∠EAB=76°,故选:A .【点睛】本题考查了平行线的性质和角平分线性质,关键是求出∠EAB 的度数,题目比较好,难度适中. 7.某种细胞的直径是0.0067毫米,数字0.0067用科学记数法表示为( )A .B .C .D . 【答案】B【解析】根据科学计数法的表示即可求解.【详解】0.0067=故选B.【点睛】此题主要考查科学计数法的表示,解题的关键是熟知负指数幂的应用.8.以下说法中正确的是( )A .若a >|b|,则a 2>b 2B .若a >b ,则1a <1bC .若a >b ,则ac 2>bc 2D .若a >b ,c >d ,则a ﹣c >b ﹣d 【答案】A【解析】分析:根据实数的特点,可确定a 、|b|、a 2、b 2均为非负数,然后根据不等式的基本性质或特例解答即可.详解:A 、若a >|b|,则a 2>b 2,正确;B 、若a >b ,当a=1,b=﹣2时,则1a >1b ,错误; C 、若a >b ,当c 2=0时,则ac 2=bc 2,错误;D 、若a >b ,c >d ,如果a=1,b=﹣1,c=﹣2,d=﹣4,则a ﹣c=b ﹣d ,错误;故选A .点睛:此题主要考查了不等式的性质,利用数的特点,结合不等式的性质进行判断即可,关键是注意不等式性质应用时乘以或除以的是否为负数或0.9.下列等式变形正确的是( )A .若﹣3x =5,则x =35B .若1132x x -+=,则2x +3(x ﹣1)=1 C .若5x ﹣6=2x +8,则5x +2x =8+6D .若3(x +1)﹣2x =1,则3x +3﹣2x =1 【答案】D【解析】选项A. 若35x -=,则53x =-.错误. 选项B. 若1132x x -+=,则()2316x x +-=.错误. 选项C. 若5628x x -=+,则5286x x -=+ .错误.选项 D. 若()3121x x +-=,则3321x x +-=.正确.故选D.点睛:解方程的步骤:(1)去分母 (2)去括号 (3)移项(4)合并同类项 (5) 化系数为1.易错点:(1)去分母时,要给方程两边的每一项都乘以最小公倍数,特别强调常数项也必须要乘最小公倍数.(2)乘最小公倍数的时候,一定要与每一个字母进行相乘,不要漏掉某一个分母.(3)如果某字母项或某常数项前面是有符号的,那么乘最小公倍数的时候,这个符号不要10.22018-22019的值是( )A .12B .-12C .-22018D .-2【答案】C【解析】直接利用提取公因式法分解因式得出答案.【详解】1-22019=1×(1-2)=-1.故选C .【点睛】此题主要考查了提取公因式法分解音质,正确找出公因式是解题关键.二、填空题题11.如图,ABC MDE ∆∆≌,BC 的延长线交DA 于F ,交DE 于G ,25D ∠=︒,105E ∠=︒,16DAC ∠=︒,则DGB ∠的度数为_________.【答案】66°【解析】根据全等三角形对应角相等可得ACB E ∠=∠,再求出ACF ∠,然后根据三角形的内角和定理列式计算即可得解.【详解】解:ABC ADE ∆≅∆,105ACB E ∴∠=∠=︒,18010575ACF ∴∠=︒-︒=︒,在ACF ∆和DGF ∆中,D DGB DAC ACF ∠+∠=∠+∠,即251675DGB ︒+∠=︒+︒,解得66DGB ∠=︒.故答案为:66︒.【点睛】本题考查了全等三角形的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.12.若3,4a b b c -=-+=,则2()2()b a b c b a ---=_________.【答案】-24【解析】先将原式变形为2(a-b )(b+c ),然后将(a-b )和(b+c )的值代入上式中进行求解即可.【详解】原式=2b(a−b)+2c(a−b)=2(a−b)(b+c)∵a−b=−3,b+c=4,∴原式=2(a−b)(b+c)=2×(−3)×4=−24,故答案为:-24【点睛】此题考查因式分解的应用,掌握运算法则是解题关键13.已知关于x 的一元一次不等式10ax ->的解集是3x >,则a 的值是______. 【答案】13. 【解析】先解不等式10ax ->,然后根据不等式10ax ->的解集是3x >求出a 的值即可.【详解】解:10ax ->移项得1ax >当0a <时,系数化为1得1x a <,舍去; 当0a >时,系数化为1得1x a> ∵不等式10ax ->的解集是3x > ∴13a =,即13a =,故本题填13. 【点睛】本题考查根据不等式的解集求字母的值,在解决本题时需注意,系数化为1时需分情况讨论a 的正负,因为a 的正负决定系数化为1时改不改变不等号的方向.14.(2016福建省莆田市)在大课间活动中,同学们积极参加体育锻炼,小红在全校随机抽取一部分同学就“一分钟跳绳”进行测试,并以测试数据为样本绘制如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图,若“一分钟跳绳”次数不低于130次的成绩为优秀,全校共有1200名学生,根据图中提供的信息,估计该校学生“一分钟跳绳”成绩优秀的人数为__________人.【答案】1.【解析】试题分析:总人数是:10÷20%=50(人),第四小组的人数是:50﹣4﹣10﹣16﹣6﹣4=10,所以该校九年级女生“一分钟跳绳”成绩为优秀的人数是:106450++×1200=1,故答案为1. 考点:频数(率)分布直方图;用样本估计总体;扇形统计图.15.不等式组62{132x xx ->-<的解集为__________. 【答案】26x << 【解析】62{132x x x ->-<①② 由①得:x>2,由②得:x<1,所以不等式组的解集为2<x<1;故答案是2<x<1.点睛:求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小无解. 16.一个等腰三角形的两条边的长为4和5,则这个等腰三角形的周长为_____.【答案】14或1.【解析】分4为底边或腰两种情况进行分类讨论.【详解】当4为等腰三角形的底边时,腰为5,符合三角形的三边关系,等腰三角形的周长=4+5+5=14; 当4为等腰三角形的腰时,底边长为5,符合三角形的三边关系,等腰三角形的周长=4+4+5=1. 故答案为:14或1.【点睛】本题考查了等腰三角形的性质,解题时要注意进行分类讨论.17.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点,观察图中每一个正 方形(实线)四条边上的整点的个数,请你猜测由里向外第 20 个正方形(实线)四条边上的整 点个数共有____个.【答案】80【解析】从内到外的正方形依次编号为1,2,3,……,n,则有:正方形的序号正方形四边上的整点的个数12×4-4=4;23×4-4=8;34×4-4=12;…………n4(n+1)-4=4n.由里向外第 20 个正方形(实线)四条边上的整点个数共有4×20=80.故答案为80.三、解答题18.已知AB∥CD,点M、N分别是AB、CD上两点,点G在AB、CD之间,连接MG、NG.(1)如图1,若GM⊥GN,求∠AMG+∠CNG的度数;(2)如图2,若点P是CD下方一点,MG平分∠BMP,ND平分∠GNP,已知∠BMG=30°,求∠MGN+∠MPN 的度数;(3)如图3,若点E是AB上方一点,连接EM、EN,且GM的延长线MF平分∠AME,NE平分∠CNG,2∠MEN+∠MGN=105°,求∠AME的度数.【答案】(1)∠AMG+∠CNG=90°;(2)∠MGN+∠MPN=90°;(3)∠AME=50°.【解析】(1)过G作GH∥AB,依据两直线平行,内错角相等,即可得到∠AMG+∠CNG的度数;(2)过G作GK∥AB,过点P作PQ∥AB,设∠GND=α,利用平行线的性质以及角平分线的定义,求得∠MGN=30°+α,∠MPN=60°-α,即可得到∠MGN+∠MPN=30°+α+60°-α=90°;(3)过G作GK∥AB,过E作ET∥AB,设∠AMF=x,∠GND=y,利用平行线的性质以及角平分线的定义,可得∠MEN=∠TEN-∠TEM=90°-12y-2x,∠MGN=x+y,再根据2∠MEN+∠MGN=105°,即可得到2(90°-12y-2x)+x+y=105°,求得x=25°,即可得出∠AME=2x=50°.【详解】(1)如图1,过G作GH∥AB,∵AB∥CD,∴GH∥AB∥CD,∴∠AMG=∠HGM,∠CNG=∠HGN,∵MG⊥NG,∴∠MGN=∠MGH+∠NGH=∠AMG+∠CNG=90°;(2)如图2,过G作GK∥AB,过点P作PQ∥AB,设∠GND=α,∵GK∥AB,AB∥CD,∴GK∥CD,∴∠KGN=∠GND=α,∵GK∥AB,∠BMG=30°,∴∠MGK=∠BMG=30°,∵MG平分∠BMP,ND平分∠GNP,∴∠GMP=∠BMG=30°,∴∠BMP=60°,∵PQ∥AB,∴∠MPQ=∠BMP=60°,∵ND平分∠GNP,∴∠DNP=∠GND=α,∵AB∥CD,∴PQ∥CD,∴∠QPN=∠DNP=α,∴∠MGN=30°+α,∠MPN=60°﹣α,∴∠MGN+∠MPN=30°+α+60°﹣α=90°;(3)如图3,过G作GK∥AB,过E作ET∥AB,设∠AMF=x,∠GND=y,∵AB,FG交于M,MF平分∠AME,∴∠FME=∠FMA=∠BMG=x,∴∠AME=2x,∵GK∥AB,∴∠MGK=∠BMG=x,∵ET∥AB,∴∠TEM=∠EMA=2x,∵CD∥AB∥KG,∴GK∥CD,∴∠KGN=∠GND=y,∴∠MGN=x+y,∵∠CND=180°,NE平分∠CNG,∴∠CNG=180°﹣y,∠CNE=12∠CNG=90°﹣12y,∵ET∥AB∥CD,∴ET∥CD,∴∠TEN=∠CNE=90°﹣12 y,∴∠MEN=∠TEN﹣∠TEM=90°﹣12y﹣2x,∠MGN=x+y,∵2∠MEN+∠MGN=105°,∴2(90°﹣12y﹣2x)+x+y=105°,∴x=25°,∴∠AME=2x=50°.【点睛】本题主要考查了平行线的性质与判定的综合运用,解决问题的关键是作辅助线构造内错角,利用平行线的性质以及角的和差关系进行推算.19.解不等式组:4261139x xx x>-⎧⎪-+⎨≤⎪⎩,并把解集在数轴上表示出来.【答案】-3<x≤2.【解析】试题分析:先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.试题解析:426 {1139x xx x--+≤>①②∵解不等式①得:x>-3,解不等式②得:x≤2,∴不等式组的解集为-3<x≤2,在数轴上表示不等式组的解集为:.考点:1.解一元一次不等式组;2.在数轴上表示不等式的解集.20.已知:直线MN,PQ被射线BA截于A,B两点,且MN∥PQ,点D是直线MN上一定点,C是射线BA上一动点,连结CD,过点C作CE⊥CD交直线PQ于点E.(1)若点C在线段AB上.①依题意,补全图形;②请写出∠ADC和∠CEB的数量关系,并证明.(2)若点C在线段BA的延长线上,直接写出∠ADC和∠CEB的数量关系,不必证明.【答案】(1)①见解析;②∠ADC和∠CEB的数量关系:∠ADC+∠CEB=90°;证明见解析;(2)∠ADC+∠CEB=90°或∠CEB-∠ADC=90或∠ADC-∠CEB=90°【解析】(1)①连接CD,作CE⊥CD,交PQ于E即可;②根据两直线平行,内错角相等可知∠DCH=∠ADC,∠ECH=∠CEB,由∠DCH+∠ECH=90°,可知∠ADC+∠CEB=90°;(2)利用平行线的性质,三角形外角的性质,平角的定义列式即可求得.【详解】(1)①补全图形,如图.②∠ADC和∠CEB的数量关系:∠ADC+∠CEB=90°.证明:如图1,过点C作CH∥MN.∴∠DCH=∠ADC,∠ECH=∠CEB.∵CD⊥CE,∴∠DCE=90°,即∠DCH+∠ECH=90°.∴∠ADC+∠CEB=90°.(2)如图2①,∵CE⊥CD,∴∠1+∠ADC=90°,∵MN∥PQ,∴∠1=∠CEB,∴∠ADC+∠CEB=90°;如图2②,∵CE⊥CD,∴∠1+∠ADC=90°,∵MN∥PQ,∴∠1=∠2,∵∠2+∠CEB=180°,∴90°-∠ADC+∠CEB=180°,∴∠CEB-∠ADC=90°;如图2③,∵CE⊥CD,∴∠ECD=90°,∵MN∥PQ,∴∠1=∠CEB,∵∠ADC=∠ECD+∠1,∴∠ADC=90°+∠CEB∴∠ADC-∠CEB=90°;综上,∠ADC和∠CEB的数量关系为:∠ADC+∠CEB=90°或∠CEB-∠ADC=90°或∠ADC-∠CEB=90°.【点睛】本题考查了平行线的性质,平角的定义,三角形外角的定义,是基础题.21.阅读理解:请你参与下面探究过程,完成所提出的问题.(I)问题引入:如图①,在中,点是和平分线的交点,若,则度;若,则(用含的代数式表示);(II)类比探究:如图②,在中,,,.试探究:与的数量关系(用含的代数式表示),并说明理由.(III)知识拓展:如图③,、分别是的外角,的等分线,它们的交于点,,,,求的度数(用含、的代数式表示).【答案】(1);;(2),理由见解析;(3)【解析】(1)根据三角形的内角和可得到,根据角平分线的性质得到=(),再根据∠A=70°即可求解;同理可得到时的度数;(2)利用,同理根据三角形的内角和进行计算求解;(3)根据题意发现规律,同理即可得到结论.【详解】解:(I)=. 故时,; 若,则;(II ).理由如下:.(III ).【点睛】此题主要考查角度的计算,解题的关键是熟知三角形的内角和,根据题意找到规律进行换算求解. 22.如图,在ABC ∆中,点M 、N 是ABC ∠与ACB ∠三等分线的交点,连接MN(1)求证:MN 平分BMC ∠;(2)若60A ∠=︒,求BMN ∠的度数.【答案】(1)见解析;(2)50°.【解析】(1)过点N 作NG ⊥BC 于G ,NE ⊥BM 于E ,FN ⊥CM 于F ,根据角平分线上的点到角的两边的距离相等可得FG=FM=FN ,再根据到角的两边距离相等的点在角的平分线上判断出MN 平分∠BMC(2)根据三角形内角和等于180°求出∠ABC+∠ACB ,再根据角的三等分求出∠EBC+∠ECB 的度数,然后利用三角形内角和定理求出∠BEC 的度数,从而得解【详解】(1)如图,过点N 作NG ⊥BC 于G ,NE ⊥BM 于E ,FN ⊥CM 于F ,∵∠ABC 的三等分线与∠ACB 的三等分线分别交于点M,N ,∴BN 平分∠MBC ,CN 平分∠MCB ,∴CN=EN ,CN=FN ,∴EN=FN ,∴MN 平分BMC ∠;(2)∵MN 平分BMC ∠;∴∠BMN=12∠BMC , ∵∠A=60∘,∴∠ABC+∠ACB=180°−∠A=180°−60°=120°根据三等分,∠MBC+∠MCB=23 (∠ABC+∠ACB)=23×120°=80° 在△BMC 中,∠BMC=180°−(∠MBC+∠MCB)=180°−80°=100°∴BMN ∠=12×100°=50°【点睛】此题主要考查三角形的角度计算,解题的关键是熟知角平分线的判定与性质及三角形的内角和. 23.小丽想用一块面积为400cm 2的正方形纸片,沿着边的方向裁出一块面积为300cm 2的长方形纸片,使它的长宽之比为3:2,小丽能用这块纸片裁出符合要求的纸片吗?通过计算说明.【答案】不能剪出符合要求的纸片;理由见解析.【解析】首先设长方形的长为3xcm ,则宽为2xcm ,根据面积求出矩形的长和宽,然后与正方形的边长进行比较大小,如果大于正方形边长则不能剪出.【详解】解:设长方形的长为3xcm,则宽为2xcm,根据题意得:3x·2x=300解得:x=52cm则3x=152cm 2x=102cm∵正方形的面积为4002cm∴边长为20cm∵152cm>20cm ∴不能剪出符合要求的纸片.24.已知2a﹣3x+1=0,3b﹣2x﹣16=0.(1)用含x的代数式分别表示a,b;(2)当a≤4<b时,求x的取值范围.【答案】(1)312xa-=,2163xb+=;(2)﹣2<x≤1.【解析】(1)直接利用已知将原式变形求出答案;(2)利用a≤4<b得出关于x的不等式求出答案.【详解】解:(1)由2a﹣1x+1=0,得312xa-=,由1b﹣2x﹣16=0,得2163xb+ =;(2)∵a≤4<b,∴312xa-=≤4,2163xb+=>4,解得:﹣2<x≤1.【点睛】此题主要考查了不等式的性质,直接将原式变形是解题关键.25.李师傅要给-块长9米,宽7米的长方形地面铺瓷砖.如图,现有A和B两种款式的瓷砖,且A款正方形瓷砖的边长与B款长方形瓷砖的长相等, B款瓷砖的长大于宽.已知一块A款瓷砖和-块B款瓷砖的价格和为140元; 3块A款瓷砖价格和4块B款瓷砖价格相等.请回答以下问题:(1)分别求出每款瓷砖的单价.(2)若李师傅买两种瓷砖共花了1000 元,且A款瓷砖的数量比B款多,则两种瓷砖各买了多少块?(3)李师傅打算按如下设计图的规律进行铺瓷砖.若A款瓷砖的用量比B款瓷砖的2倍少14块,且恰好铺满地面,则B款瓷砖的长和宽分别为_ 米(直接写出答案).【答案】(1)A款瓷砖单价为80元,B款单价为60元.(2)买了11块A款瓷砖,2块B款;或8块A款瓷砖,6块B款.(3)B款瓷砖的长和宽分别为1,34或1,15.【解析】(1)设A款瓷砖单价x元,B款单价y元,根据“一块A款瓷砖和一块B款瓷砖的价格和为140元;3块A款瓷砖价格和4块B款瓷砖价格相等”列出二元一次方程组,求解即可;(2)设A款买了m块,B款买了n块,且m>n,根据共花1000 元列出二元一次方程,求出符合题意的整数解即可;(3)设A款正方形瓷砖边长为a米,B款长为a米,宽b米,根据图形以及“A款瓷砖的用量比B款瓷砖的2倍少14块”可列出方程求出a的值,然后由92bb-+是正整教分情况求出b的值.【详解】解: (1)设A款瓷砖单价x元,B款单价y元,则有14034x yx y+=⎧⎨=⎩,解得8060 xy=⎧⎨=⎩,答: A款瓷砖单价为80元,B款单价为60元;(2)设A款买了m块,B款买了n块,且m>n,则80m+60n=1000,即4m+3n=50∵m,n为正整数,且m>n∴m=11时n=2;m=8时,n=6,答:买了11块A款瓷砖,2块B款瓷砖或8块A款瓷砖,6块B款瓷砖;(3)设A款正方形瓷砖边长为a米,B款长为a米,宽b米.由题意得:7997 22114 22b ba ab a b a--⎛⎫⨯⨯=+⨯-⎪++⎝⎭,解得a=1.由题可知,92bb-+是正整教.设92bkb-=+(k为正整数),变形得到921kbk-=+,当k=1时,77(122b=>,故合去),当k=2时,55(133b=>,故舍去),当k=3时,34b=,当k=4时,15b=,答: B款瓷砖的长和宽分别为1,34或1,15.【点睛】本题主要考查了二元一次方程组的实际应用,(1)(2)较为简单,(3)中利用数形结合的思想,找出其中两款瓷砖的数量与图形之间的规律是解题的关键.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列调查,适合用普查方式的是( )A .了解义乌市居民年人均收入B .了解义乌市民对“低头族”的看法C .了解义乌市初中生体育中考的成绩D .了解某一天离开义乌市的人口流量【答案】C【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A 、了解义乌市居民年人均收入适合抽样调查,不符合题意;B 、了解义乌市民对“低头族”的看法适合抽样调查,不符合题意;C 、了解义乌市初中生体育中考的成绩适合全面调查,符合题意;D 、了解某一天离开义乌市的人口流量适合抽样调查,不符合题意;故选:C .【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.要使33(4)4a a -=-成立,则a 的取值范围是( )A .a≤4B .a≤-4C .a≥4D .一切实数【答案】D【解析】∵a 取任意实数时均有33a a =成立,故33(4)4a a -=-成立时,a 取任意实数都可以. 3.如图,数轴所表示的不等式的解集是( )A .1x >B .1x <C .1x ≥D .1x ≤ 【答案】D【解析】根据不等式的解集在数轴上表示方法即可求出不等式的解集.【详解】解:如图所示,数轴所表示的不等式的解集是,x≤1.故选:D .【点睛】本题考查了不等式的解集在数轴上表示的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.4.在平面直角坐标系中,若点P(m﹣2,m+1)在第二象限,则m的取值范围是()A.m<﹣1 B.m>2 C.﹣1<m<2 D.m>﹣1【答案】C【解析】分析:根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组求解即可.详解:∵点P(m-1,m+1)在第二象限,∴2010mm-⎧⎨+⎩<>,解得-1<m<1.故选C.点睛:本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5.某校七年级统计30名学生的身高情况(单位:cm),其中身高最大值为175,最小值为149,在绘制频数分布直方图时取组距为3,则组数为()A.7 B.8 C.9 D.10【答案】C【解析】计算最大值与最小值的差,除以组距即可求得.【详解】解:(175-149)÷3=26÷3≈9组.故答案为:C.【点睛】此题考查的是组数的确定方法,组数=极差÷组距.6.12xy=⎧⎨=⎩是二元一次方程2x + ay = 4 的一组解,则 a 的值是()A.1 B.0 C.2 D.-1 【答案】A【解析】把x与y的值代入方程计算即可求出a的值.【详解】把12xy==⎧⎨⎩代入方程得:2+2a=4,解得:a=1,故选A.【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.7.《九章算术》有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三,人出七,不足四.问人数,物价各几何?译文:现有一些人共买一个物品,每人出8元,还盈余3元,每人出7元,还差4元,人数和价格各是多少?若设有x人,物品价格是y元,则所列方程组正确的是()A.8374x yx y+=⎧⎨-=⎩B.8374x yx y-=⎧⎨+=⎩C.8473x yx y+=⎧⎨-=⎩D.8473x yx y-=⎧⎨+=⎩【答案】B【解析】根据条件列出方程组即可.【详解】由题意可得:8374x yx y-=⎧⎨+=⎩.故选:B.【点睛】本题考查列方程组,找准未知数之间的关系即可. 8.已知|3x+y﹣2|+(2x+3y+1)2=0,则xy的值为()A.1 B.﹣1 C.12D.2【答案】B【解析】根据非负数的性质可得32231x yx y+=⎧⎨+=-⎩,解方程组求得x,y的值,即可求得xy的值.【详解】∵|3x+y﹣2|+(2x+3y+1)2=0,∴32231x yx y+=⎧⎨+=-⎩,解得:11 xy=⎧⎨=-⎩,∴xy=﹣1,故选B.【点睛】本题考查了非负数的性质和解二元一次方程组,熟知非负数的性质是解决问题的关键.9.在平面直角坐标系中,点(﹣6,2)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】根据平面直角坐标系中,点在各象限中的符号特征进行分析.即:第一(+,+),第二(-,+),第三(-,-),第四(+,-).【详解】在平面直角坐标系中,点(﹣6,2)在第二象限.故选B【点睛】本题考核知识点:平面直角坐标系.解题关键点:熟记点的坐标与位置特点.10.下面是手机里的常见的4个图标,其中是轴对称图形的是()A.B.C.D.【答案】A【解析】根据轴对称图形的定义进行判断.【详解】A、是轴对称图形,符合题意;B、C、D都不是轴对称图形,不符合题意;故选A.【点睛】本题考查轴对称图形的定义,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.二、填空题题11.如图,D是△ABC的边BC上任意一点,E、F分别是线段AD、CE的中点.若△ABC的面积为m,则△BEF 的面积为_____.【答案】14m.【解析】根据三角形的中线把三角形分成两个面积相等的三角形解答即可.【详解】∵点E是AD的中点,∴S△ABE=12S△ABD,S△ACE=12S△ADC,∴S△ABE+S△ACE=12S△ABC=12m,∴S△BCE=12S△ABC=12m,∵点F是CE的中点,∴S△BEF=12S△BCE=12×12m=14m.故答案为14 m.【点睛】本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.12.若不等式组0,x bx a-<⎧⎨+>⎩的解集为2<x<3,则关于x,y的方程组521ax yx by+=⎧⎨-=⎩的解为___________.【答案】43 xy=-⎧⎨=-⎩【解析】分析:根据已知解集确定出a与b的值,代入方程组求出解即可.详解:根据题意得:a=-2,b=3,代入方程组得:25 231x yx y-+⎧⎨-⎩=①=②,①+②得:-2y=6,即y=-3,把y=-3代入①得:x=-4,则方程组的解为43 xy-⎧⎨-⎩==,故答案为:43 xy-⎧⎨-⎩==点睛:此题考查了解二元一次方程组,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.13.一次普法知识竞赛共有30道题,规定答对一题得4分,答错或者不答倒扣一份,在这次竞赛中.小明获得优秀(90分或90分以上),则小明至少答对了___道题.【答案】1.【解析】试题分析:设小明答对了x题.故(30-x)×(-1)+4x≥90,解得:x≥1.考点:一元一次不等式的应用.14.如图所示,等边△ABC中,D、E分别是AB、AC上的点,将△ADE沿直线DE翻折后,点A落在点A'处,且点A'在△ABC的外部,若原等边三角形的边长为a,则图中阴影部分的周长为_____.【答案】3a【解析】根据轴对称的性质,得AD=A′D,AB=A′B,则阴影部分的周长即为等边三角形的周长.【详解】根据轴对称的性质,得AD=A′D,AB=A′B.则阴影部分的周长即为等边三角形的周长,即3a.故答案为:3a【点睛】此题主要是运用了轴对称的性质.15.若关于x,y的二元一次方程组23122x y kx y+-⎧⎨+-⎩==的解满足x-y>4,则k的取值范围是__.【答案】k>1.【解析】把方程组的解求出,即用k表示出x、y,代入不等式x-y>4,转化为关于k的一元一次不等式,可求得k的取值范围.【详解】23122x y kx y=①=②+-⎧⎨+-⎩,由①+②可得:3(x+y)=3k-3,所以:x+y=k-1③①-③得:x=2k,②-③得:y=-k-1,代入x-y>4可得:2k+k+1>4,解得:k>1,故填:k>1.【点睛】本题考查了二元一次方程组的解法,一元一次不等式的解法,解题的关键是求出方程组的解代入不等式可化为关于k的一元一次不等式求解.16.为了了解荆州市2017年3.6万名考生的数学中考成绩,从中抽取了1名考生的成绩进行统计,在这个问题中,下列说法:①这3.6万名考生的数学中考成绩的全体是总体;②每个考生数学中考成绩是个体;③从中抽取的1名考生的数学中考成绩是总体的一个样本;④样本容量是1.其中说法正确的有(填序号)______【答案】①②③④【解析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】①这3.6万名考生的数学中考成绩的全体是总体,正确;②每个考生数学中考成绩是个体,正确;③从中抽取的1名考生的数学中考成绩是总体的一个样本,正确;。
2018年初一下学期,期末数学试题,word版含答案

2018年初一数学第二学期期末考试试卷注意事项:1、本试卷共三大题29小题,满分130分,考试时间120分钟°考生作答时,将答案答在规定的答题纸范围内,答在本试卷上无效。
2、答题时使用0.5毫米黑色中性(签字)笔书写,字体工整、笔迹清楚。
一、选择题(本大题共8小题,每小题3分,共24分)把下列各题中正确答案前面的字母填涂在答题纸上.1.下列事件是必然事件的是A .三角形的内角和是360°B .打开电视机,正在直播足球比赛C .1+3 >2D .抛掷1个均匀的骰子,6点向上2.甲型H1N1.流感病毒的直径大约为0.00000008米,用科学记数法表示为A .0.8×10-7米B .8×10-8米C .8×10-9米D .8×10-7米3.下面是一名学生所做的4道练习题:①(-3)0=1;②a 3+a 3=a 6;③4m -4=414m;④(xy 2)3=x 3y 6,他做对的个数是 A .0 B .1 C .2 D .34.把一张宽度相等的纸条按如图所示的方式折叠,则∠1的度数等于A .65°B .55°C .45°D .50°5.学校为了了解300名初一学生的体重情况,从中抽取30名学生进行测量,下列说法正确的是A .总体是300B .样本容量为30C .样本是30名学生D .个体是每个学生6.下列长度的三条线段,能组成三角形的是A .1,2,3B .1,4,2C .2,3,4D .6,2,37.如果100x 2-kxy +9y 2是一个完全平方式,那么K 的值为A .3600B .60C .±100D .±608.如图,在AB 、AC 上各取一点E 、D ,使AE =AD ,连结BD 、CE 相交于点O ,再连结AO 、BC ,若∠1=∠2,则图中全等三角形共有A .5对B .6对C .7对D .8对二、填空题(本大题共10小题,每小题3分,共30分)9.若一个多边形的内角和是它外角和的3倍,则这个多边形是 ▲ 边形.10.分解因式:a4-1=▲.11.计算:(-2a5)÷(-a)2=▲.12.如图,AB//CD,∠B=75°,∠D=35°,则∠E的度数为=▲.13.已知二元一次方程2x+3y=4,用x的代数式表示y,则y=▲.14.如图,△ABC中,∠C=90°,DB平分∠ABC,E为AB中点,DE⊥AB,若BC=5 cm,则AB=▲ cm.15.已知关于x、y的方程组3326x ayx by-=⎧⎨+=⎩的解是21xy=⎧⎨=⎩则a+b=▲.16.化简:(x+y)2-3(x2-2y2)=▲.17.如果2x÷16y=8,则2x-8y=▲.18.三角形的两边长分别是3和6,第三边长为偶数,则三角形的周长为▲.三、解答题(本大题共11小题,共76分)19.计算:(本题共2小题,每小题4分,满分8分)(1)-3(a4)3+(-2a3)2·(-a2)3(2)(-14)0+(-2)2+(13)-220.因式分解(本题共2小题,每小题4分,满分8分)(1)3a(x-y)-5b(y-x)(2)a3b+2a2b-3ab21.解下列方程组:(本题共2小题,每小题4分,满分8分)(1)5616795x yx y+=⎧⎨-=⎩(2)1226310x y zx y zx y z++=⎧⎪+-=⎨⎪-+=⎩22.(本题满分5分)作图与探究(不写作法,保留作图痕迹,并用0.5毫米黑色签字笔描深痕迹)如图,∠DBC和∠ECB是△ABC的两个外角°(1)用直尺和圆规分别作∠DBC和∠ECB的平分线,设它们相交于点P;(2)过点P分别画直线AB、AC、BC的垂线段PM、PN、PQ,垂足为M、N、Q;(3) PM、PN、PQ相等吗?(直接写出结论,不需说明理由)23.(本题满分5分)如图,AB=AD,AC=AE,∠BAD=∠CAE,则∠B与∠D相等吗?请说明理由.24.(本题共2小题,每小题5分,满分10分)(1)先化简,再求值:(2a+b)(2a-b)+3(2a-b)2+(-3a)(4a-3b),其中a=-1,b=2.(2)已知:a m=2,a n=4,a k=32,求a3m+2n-k的值25.(本题满分6分)把一堆书分给几名学生,如果每人分到4本,那么多4本;如果每人分到5本,那么最后1名学生只分到3本.问:一共有多少名学生?多少本书?26.(本题满分6分)如图,线段AC、BD相交于点O,OA=OC,OB=OD.(1)求证:△OAB≌△OCD;(2)过点O任意作一条与AB、CD都相交的直线MN,交点分别为M、N,试问:OM=ON成立吗?若成立,请进行证明;若不成立,请说明理由.27.(本题满分7分)某初中对该校八年级学生的视力进行了检查,发现学生患近视的情况严重.为了进一步查明情况,校方从患近视的16岁学生中随机抽取了一个样本,对他们初患近视的年龄进行了调查,并制成频率分布表和频率分布直方图(部分),如图所示(各组含最大年龄,不含最小年龄).(1)频率分布表中a、b、c的值分别为a=▲,b=▲,c=▲;(2)补全频率分布直方图;(3)初患近视两年内属于假性近视,若及时矫正,则视力可恢复正常.请你计算在抽样的学生中,经矫正可以恢复正常视力的人数占总人数的百分比.28.(本题满分6分)某公园的门票价格如下表所示:某中学七年级(1)、(2)两个班计划去游览该公园,其中(I)班的人数较少,不足50人;(2)班人数略多,有50多人.如果两个班都以班为单位分别购票,则一共应付1172元,如果两个班联合起来,作为一个团体购票,则需付1078元.(1)列方程求出两个班各有多少学生;(2)如果两个班联合起来买票,是否可以买单价为9元的票?你有什么省钱的方法来帮他们买票呢?请给出最省钱的方案.29.(本题满分7分)已知CD是经过∠BCA顶点C的一条直线,CA=CB.E、F分别是直线CD上两点(不重合),且∠BEC=∠CFA=∠a(1)若直线CD经过∠BCA的内部,且E、F在射线CD上,请解决下面问题:①若∠BCA=90°,∠a=90°,请在图1中补全图形,并证明:;BE=CF,EF=BE AF②如图2,若0°<∠BCA<180°,请添加一个关于∠a与∠BCA关系的条件▲,使①中的两个结论仍然成立;(2)如图3,若直线CD经过∠BCA的外部,∠a=∠BCA,请写出EF、BE、AF三条线段数量关系(不要求证明).。
2018年第二学期期末考试七年级数学试卷(word版有答案)6

数学期末考试试卷一、选择题(共10小题,每小题3分,共30分)1、若点A (a ,2)在第二象限,则( )A 、a ≤ 0B 、a ≥0C 、a<0D 、a>02、不等式组2010x x -<⎧⎨+≥⎩的解集是( )A 、x ≥-1B 、x<2C 、-1≤ x<2D 、x>23、要调查下面几个问题,你认为应该作全面调查的是( )A 、鞋厂检查生产的鞋底能承受的弯折次数B 、调查市场上某种食品的色素含量是否符合国家标准C 、了解全班同学每周体育锻炼的时间D 、检测某城市的空气质量4、下列四个实数:-2,13,0.8,0.5050050005……(相邻两个5之间依次多一个0),其中无理数的个数有( )A 、4个B 、3个C 、2个D 、1个5、若a>b ,则下列不等式的变形错误..的是( ) A 、-8+a>-8+b B 、-3a>-3bC 、a+5>b+5D 、2211a b m m >++ 6、在等式y=kx+4中,当x=2,y=-6,则k 的值为( )A 、-5B 、-1C 、1D 、57、若3220x y -++=,则x y 的值等于( )A 、-36B 、-64C 、36D 、648、已知(3n n ≥,且n 为整数)条直线中只有两条直线平行,且任何三条直线都不交于同一个点,如图,当n=3时,共有2个交点;当n=4时,共有5个交点;当n=5时,共有9个交点;……依此规律,当n=8时,共有交点个数为( )A 、20B 、27C 、28D 、359、“戒烟一小时,健康亿人行”。
今年国际无烟日,小华就公众对餐厅吸烟的态度进行了随机抽样调查,主要有四种态度:A .顾客出面制止;B .劝说进吸烟室;C .餐厅老板出面制止;D .无所谓.他将调查结果绘制了两幅不完整的统计图.以下结论:①这次抽样的公众有200人;②“餐厅老板出门制止”部分的人数是60人;③在扇形统计图中“无所谓”部分对应的圆心角是18°,其中正确的结论有()A、3个B、2个C、1个D、0个10、如图,在平面直角坐标系xOy中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一种实数a,将得到的点先向右平移m个单位,再向上平移n个单位(m>0,n>0).得到正方形A′B′C′D′及其内部的点,其中点A、B的对应点分别为A′,B′.已知正方形ABCD内部的一个点F经过上述操作后得到的对应点F′与点F重合,则点F的坐标为( )A、-1B、0C、2D、1二、填空题(共有6小题,每小题3分,共18分)11、用不等式表示:a与3的和是负数。
_浙江省杭州市余杭区2018-2019年七年级下学期数学期末考试试卷(含答案解析)

…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………浙江省杭州市余杭区2018-2019年七年级下学期数学期末考试试卷考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 四 总分 核分人 得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共15题)1. 在下列图形中,∠1与∠2是同位角的是( )A .B .C .D .2. 世界上最小的开花结果植物是澳大利亚的山水浮萍,它的果实像一粒微小的无花果,质量只有0.000 000 07克.数据0.000 000 07用科学记数法表示为( ) A . 0.7×10-7 B . 7× 10-7 C . 7× 10-8 D . 7× 10-93. 某市有9个区,为了解该市初中生的视力情况,小圆设计了四种调查方案.你认为比较合理的是( ) A . 测试该市某一所中学初中生的视力 B . 测试该市某个区所有初中生的视力 C . 测试全市所有初中生的视力D . 每区各抽5所初中,测试所抽学校学生的视力答案第2页,总15页…○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…○…………内…………○…………装…………○…………订…………○…………线…………○…………4. 下列计算正确的是( )A . a 3+a 3=a 6B . a 4 . a=a 4C . a 6÷a 3=a 2D . (-a 3)2=a 65. 下列各组数中,是二元一次方程3x -2y=12的解的是( ) A . B .C .D .6. 下列多项式可以用平方差公式分解因式的是( ) A . 4x 2+y 2 B . -4x 2+y 2 C . -4x 2-y 2 D . 4x 3-y 27. 将公式v=v 0+at(a≠0)变形成已知v ,v 0 , a ,求t 的形式.下列变形正确的是( ) A . t=B . t=C . t=a(v -v 0)D . t=a(v 0-v)8. 下图是七年级二班参加社团活动人数的扇形统计图(每位同学只参加其中一个社团).根据统计图提供的信息,下列结论正确的是( )A . 参加摄影社的人数占总人数的12%B . 参加篆刻社的扇形的圆心角度数是70°C . 参加种植社的同学比参加舞蹈社的多8人D . 若参加书法社的人数是6人,则该班有50人9. 己知a ,b 是常数,若化简(-x+a)(2x 2+bx -3)的结果不含x 的二次项,则36a -18b -1的值为( )A . -1B . 0C . 17D . 3510. 小江去商店购买签字笔和笔记本(签字笔的单价相同,笔记本的单价相同).若购买20支签字笔和15本笔记本,则他身上的钱会不足25元;若购买19支签字笔和13本笔记本,则他身上的钱会剩下15元.若小江购买17支签字笔和9本笔记本,则( )A . 他身上的钱会不足95元B . 他身上的钱会剩下95元…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………C . 他身上的钱会不足105元D . 他身上的钱会剩下105元11. 计算:()0= ,()-2= .12. 要使分式 有意义,x 的取值应满足 .13. 如图,梯子的各条横档互相平行,若∠1=∠2+20°,则∠3= 。
浙江省杭州市七年级下学期数学期末考试试卷

浙江省杭州市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)如图,AB∥CD,点E在CB的延长线上,若∠ABE=60°,则∠ECD的度数为()A . 120°B . 100°C . 60°D . 20°2. (2分)为了判断甲、乙两名学生数学测试成绩哪个更稳定,通常需要知道两人多次数学测试成绩的()A . 平均数B . 方差C . 众数D . 最高分3. (2分)如图,若∠A与()互补,可判定AB∥CD.A . ∠BB . ∠CC . ∠DD . 以上都不是4. (2分)定义:直线a与直线b相交于点O,对于平面内任意一点M,点M到直线a与直线b的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数是()A . 1B . 2C . 3D . 45. (2分) (2017七下·钦南期末) 下列调查中,适合用全面调查的是()A . 调査某批次汽车的抗撞击能力B . 鞋厂检测生产鞋底能承受的弯折次数C . 了解某班学生的身髙情况D . 调査市场上某种产品的色素含量是否符备国家标准6. (2分)(2012·梧州) 如图,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A . ∠3=∠4B . ∠D=∠DCEC . ∠1=∠2D . ∠D+∠ACD=180°7. (2分)贵阳市今年5月份的最高气温为27℃,最低气温为18℃,已知某一天的气温为t℃,则下面表示气温之间的不等关系正确的是()A . 18<t<27B . 18≤t<27C . 18<t≤27D . 18≤t≤278. (2分)随着我国三农问题的解决,小明家近两年的收入发生了变化.经测算前年棉花收入占48%,粮食收入占29%,副业收入占23%;去年棉花收入占36%,粮食收入占33%,副业收入占31%(如图).下列说法正确的是()A . 棉花收入前年的比去年多B . 粮食收入去年的比前年多C . 副业收入去年的比前年多D . 棉花收入哪年多不能确定9. (2分) (2017七下·柳州期末) 若方程组的解为,则点P(a,b)所在的象限为()A . 第一象限B . 第二象限C . 第三象限D . 第四象限10. (2分)若点M(a+2,3-2a)在y轴上,则点M的坐标是().A . (-2,7)B . (0,3)C . (0,7)D . (7,0)11. (2分)(2017·淳安模拟) 下列命题中是真命题的是()A . 经过直线外一点,有且仅有一条直线与一线与已知直线垂直B . 平分弦的直径垂直于弦C . 对角线互相平分且垂直的四边形是菱形D . 反比例函数y= ,当k<0时,y随x的增大而增大12. (2分) (2017七下·苏州期中) 如图,宽为50 cm的长方形图案由10个一样的小长方形拼成,其中一个小长方形的面积为()A . 400 cm2B . 500 cm2C . 600 cm2D . 4000 cm2二、填空题 (共6题;共6分)13. (1分)已知方程8x﹣y=10,用x表示y的式子为________.14. (1分) (2018七上·杭州期中) 64的算术平方根是________.15. (1分)某地区随机抽查了一部分市民进行法律知识测试,测试成绩(得分取整数,每组数据含最小值不含最大值)整理后,得到如图所示的频数分布直方图,写出一条你从图中所获得的信息:________16. (1分)(2012·锦州) 已知三角形的两条边长分别是7和3,第三边长为整数,则这个三角形的周长是偶数的概率是________.17. (1分)(2017·滨州) 如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在AB边上的E处,EQ与BC相交于点F,若AD=8,AE=4,则△EBF周长的大小为________.18. (1分) (2016七下·高密开学考) 小明与小刚规定了一种新运算*:若a、b是有理数,则a*b=3a﹣2b.小明计算出2*5=﹣4,请你帮小刚计算2*(﹣5)=________.三、解答题 (共8题;共61分)19. (10分)(2018·吴中模拟)(1)解方程:x2-6x+4=0;(2)解不等式组20. (5分)已知实数a,b,c满足不等式|a|≥|b+c|,|b|≥|c+a|,|c|≥|a+b|,求证:a+b+c=0.21. (12分) (2020七下·江阴月考) 如图1,点A、B分别在射线OM、ON上运动(不与点O重合),AC、BC 分别是∠BAO和∠ABO的角平分线,BC延长线交OM于点G.(1)若∠MON=60°,则∠ACG=________°;若∠MON=90°,则∠ACG=________°;(2)若∠MON=n°,请求出∠ACG的度数;(用含n的代数式表示)(3)如图2,若∠MON=n°,过C作直线与AB交于F,若CF∥OA时,求∠BGO-∠ACF的度数.(用含n的代数式表示).22. (12分)(2018·北京) 某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息..A课程成绩的频数分布直方图如下(数据分成6组:,,,,,);.A课程成绩在这一组是:70 71 71 71 76 76 77 78 79 79 79.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数AB 7083根据以上信息,回答下列问题:(1)写出表中的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是________(填“A”或“B”),理由是________;(3)假设该年级学生都参加此次测试,估计A课程成绩超过分的人数.23. (5分)(2016·南京模拟) 解不等式组,并把解集在数轴上表示出来.24. (5分)如下图中的蝶形图案上的点的坐标分别是(2,5),(3,1),(4,2),(5,2),(6,1),(7,5),(5,4),(4,4),将图案向上平移5个单位,作出相应的图案,并写出平移后相应点的坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
杭州市拱墅区2017-2018学年七年级下学期期末数学试卷一、选择题(本大题有10小题,每小题3分,共30分)1.已知人体红细胞的平均直径是0.00072cm ,用科学记数法可表示为( ).A .37.210cm -⨯B .47.210cm -⨯C .57.210cm -⨯D .67.210cm -⨯2.为调查6月份某厂生产的100000件手机电池的质量,质检部门共抽检了其中3个批次,每个批次100件的手机电池进行检验,在这次抽样调查中,样本的容量是( ).A .100000B .3C .100D .3003.下列运算结果为6x 的是( ).A .33x x +B .33()xC .5x x ⋅D .122x x ÷4.下列式子直接能用完全平方公式进行因式分解的是( ).A .21681a a ++B .239a a -+C .2441a a +-D .2816a a --5.已知直线1l ,2l ,3l ,(如图),5∠的内错角是( ).A .1∠B .2∠C .3∠D .4∠6.下列分式中,最简分式是( ). A .22xx y+B .23x xy xy-C .224x x +- D .2121xx x --+7.已知2(3)a -=-,1(3)b -=-,0(3)c =-,那么a ,b ,c 之间的大小关系是( ).A .a b c >>B .a c b >>C .c b a >>D .c a b >>8.对x ,y 定义一种新运算“※”,规定:y m ny x x =+※(其中m ,n 均为非零常数),若114=※, 123=※.则21※的值是( ). A .3 B .5 C .9 D .1112345l 2l 1l 39.对某厂生产的一批轴进行检验,检验结果中轴的直径的各组频数、频率如表(每组含前一个边界值,不含后一个边界值).且轴直径的合格标准为20150.15100ϕ+-(单位:mm ).有下列结论: ①这批被检验的轴总数为50根; ②0.44a b +=且x y =;③这批轴中没有直径恰为100.15mm 的轴;④这一批轴的合格率是82%,若该厂生产1000根这样的轴.则其中恰好有180根不合格,其中正确的有( ).A .1个B .2个C .3个D .4个10.某市在“五水共治”中新建成一个污水处理厂.已知该厂库池中存有待处理的污水a 吨,另有从城区流入库池的待处理污水(新流入污水按每小时b 吨的定流量增加).若污水处理厂同时开动2台机组,需30小时处理完污水;若同时开动3台机组.需15小时处理完污水.现要求用5个小时将污水处理完毕,则需同时开动的机组数为( ).A .4台B .5台C .6台D .7台二、填空填(本大题有6小题,每小题4分,共24分)11.要使分式11x x +-有意义,x 的取值应满足__________. 12.已知二元一次方程142x y+=.若用含x 的代数式表示y ,可得y =__________;方程的正整数解是__________.13.如图,有下列条件:①12∠=∠;②34∠=∠;③5B ∠=∠;④180B BAD ∠+∠=︒.其中能得到AB CD ∥的是__________(填写编号).-0.15+0.14φ14.分解因式:34ab ab -=__________. 15.若分式方程23111k x x-=--有增根,则k =__________. 16.如图所示,一个大长方形刚好由n 个相同的小长方形拼成,其上、下两边各有2个水平放置的小长 方形,中间恰好用若干个小长方形平放铺满,若这个大长方形的长是宽的1.75倍,则n 的值是__________.三、解答题(本大题有7小题,共66分)17.(6分)如图,在每格边长为1的网格上.平移格点三角形ABC ,使三角形ABC 的顶点A 平移到格点D 处.(1)请画出平移后的图形三角形DEF (B ,C 的对应点分别为点E ,F ),并求三角形DEF 的面积.(2)写出线段AD 与线段BF 之间的关系. 18.(8分)计算: (1)22132xy x y-;(2)2(2)(4)62m n n m n m m ⎡⎤+-++÷⎣⎦DA BCE1234519.(8分)先化简,再求值:2213312113x x x x x x ---+÷+++,其中9101(3)3x ⎛⎫=-⨯- ⎪⎝⎭.20.(10分)解方程(组)(1)5,325;x y x y +=-⎧⎨-=⎩ (2)2210442x x x x+-=-+-.21.(10分)如图,已知AB CD EF ∥∥,30CMA ∠=︒,80CNE ∠=︒,CO 平分MCN ∠.求MCN ∠,DCO ∠的度数(要求有简要的推理说明).22.(12分)以下是某网络书店1~4月关于图书销售情况的两个统计图:某网络书店14-月销售总额统计图绘本类图书销售额占该书店 当月销售总额的百分比统计图(1)求1月份该网络书店绘本类图书的销售额.(2)若已知4月份与1月份这两个月的绘本类图书销售额相同,请补全统计图2. (3)有以下两个结论:图1图2①该书店第一季度的销售总额为182万元.②该书店1月份到3月份绘本类图书销售额的月增长率相等. 请你判断以上两个结论是否正确,并说明理由.23.(12分)通过对某校营养午餐的检测,得到如下信息:每份营养午餐的总质量400g ;午餐的成分为蛋白质、碳水化合物、脂肪和矿物质,其组成成分所占比例如图1所示;其中矿物质的含量是脂肪含量的1.5倍,蛋白质和碳水化合物含量占80%.某校营养午餐组成成分统计图某校营养午餐组成统计图(1)设其中蛋白质含量是(g)x .脂肪含量是(g)y ,请用含x 或y 的代数式分别表示碳水化合物和矿物质的质量.(2)求每份营养午餐中蛋白质、碳水化合物、脂肪和矿物质的质量. (3)参考图1,请在图2中完成这四种不同成分所占百分比的扇形统计图.教师卷图1碳水化合物矿物质45%蛋白质脂肪55%图2杭州市拱墅区2017-2018学年七年级下学期期末数学试卷一、选择题(本大题有10小题,每小题3分,共30分)1.已知人体红细胞的平均直径是0.00072cm ,用科学记数法可表示为( ).A .37.210cm -⨯B .47.210cm -⨯C .57.210cm -⨯D .67.210cm -⨯【答案】B 【解析】科学记数法:将数写成10n a ⨯,110a <≤.2.为调查6月份某厂生产的100000件手机电池的质量,质检部门共抽检了其中3个批次,每个批次100件的手机电池进行检验,在这次抽样调查中,样本的容量是( ). A .100000B .3C .100D .300【答案】D 【解析】3100300⨯=.3.下列运算结果为6x 的是( ).A .33x x +B .33()xC .5x x ⋅D .122x x ÷【答案】C 【解析】解析:3332x x x +=,339()x x =,56x x x ⋅=,12210x x x ÷=.4.下列式子直接能用完全平方公式进行因式分解的是( ).A .21681a a ++B .239a a -+C .2441a a +-D .2816a a --【答案】A 【解析】221681(41)a a a ++=+.5.已知直线1l ,2l ,3l ,(如图),5∠的内错角是( ).A .1∠B .2∠C .3∠D .4∠【答案】B 【解析】内错角的定义.6.下列分式中,最简分式是( ).A .22xx y+B .23x xy xy-C .224x x +- D .2121xx x --+【答案】A12345l 2l 1l 3【解析】233x xy x yxy y--=,22214(2)(2)2x x x x x x ++==-+--,2211121(1)1x x x x x x --==-+--.7.已知2(3)a -=-,1(3)b -=-,0(3)c =-,那么a ,b ,c 之间的大小关系是( ).A .a b c >>B .a c b >>C .c b a >>D .c a b >>【答案】D 【解析】21(3)9a -=-=,11(3)3b -=-=-,0(3)1c =-=,∴b a c <<.8.对x ,y 定义一种新运算“※”,规定:y m ny x x =+※(其中m ,n 均为非零常数),若114=※,123=※.则21※的值是( ). A .3 B .5 C .9 D .11【答案】C 【解析】114m n =+=※,1223m n =+=※, ∴5m =,1n =-,∴1292m n =+=※.9.对某厂生产的一批轴进行检验,检验结果中轴的直径的各组频数、频率如表(每组含前一个边界值,不含后一个边界值).且轴直径的合格标准为20150.15100ϕ+-(单位:mm ).有下列结论: ①这批被检验的轴总数为50根; ②0.44a b +=且x y =;③这批轴中没有直径恰为100.15mm 的轴;④这一批轴的合格率是82%,若该厂生产1000根这样的轴.则其中恰好有180根不合格,其中正确的有( ).A .1个B .2个C .3个D .4个【答案】C【解析】总数为50.150÷=(根), 20500.4b =÷=,10.10.420.40.040.04a =----=,0.44a b +=.b 对应20个,所以2x =,4x y +=,x y =,由表知,没有直径恰好100,15mm 的轴,合格率为0.420.40.8282%+==,-0.15+0.14φ生产1000根中不合格的估计有1000(182%)180⨯-=(根),不一定恰好, 故正确的为①②③,共3个.10.某市在“五水共治”中新建成一个污水处理厂.已知该厂库池中存有待处理的污水a 吨,另有从城区流入库池的待处理污水(新流入污水按每小时b 吨的定流量增加).若污水处理厂同时开动2台机组,需30小时处理完污水;若同时开动3台机组.需15小时处理完污水.现要求用5个小时将污水处理完毕,则需同时开动的机组数为( ). A .4台 B .5台 C .6台 D .7台【答案】D【解析】依题意:有30230,15315,a b a b +=⨯⎧⎨+=⨯⎩则30.1.a b =⎧⎨=⎩设需x 台机组,则55a b x +=,∴7x =.二、填空填(本大题有6小题,每小题4分,共24分)11.要使分式11x x +-有意义,x 的取值应满足__________. 【答案】1x ≠【解析】要使11x x +-有意义,则10x -≠,∴1x ≠.12.已知二元一次方程142x y+=.若用含x 的代数式表示y ,可得y =__________;方程的正整数解是__________. 【答案】22x -2x =,1y =【解析】∵142x y +=, ∴21242x x y ⎛⎫=⨯-=- ⎪⎝⎭,正整数解为2,1.x y =⎧⎨=⎩.13.如图,有下列条件:①12∠=∠;②34∠=∠;③5B ∠=∠;④180B BAD ∠+∠=︒.其中能得到AB CD ∥的是__________(填写编号).【答案】②③【解析】平行线的判定.14.分解因式:34ab ab -=__________.DA BCE12345【答案】(21)(21)ab b b +-【解析】324(41)(21)(21)ab ab ab b ab b b -=-=+-.15.若分式方程23111k x x -=--有增根,则k =__________. 【答案】32-【解析】23111k x x-=--等式两边同乘(1)x -,231k x +=-得24x k =+, ∵方程有增根,∴10x -=即241k +=,∴32k =-.16.如图所示,一个大长方形刚好由n 个相同的小长方形拼成,其上、下两边各有2个水平放置的小长方形,中间恰好用若干个小长方形平放铺满,若这个大长方形的长是宽的1.75倍,则n 的值是__________.【答案】32【解析】依题意,设小长方形的长为a ,宽为b , 则大长方形长为2a ,宽为2b a +, 则2 1.75(2)a b a =+解得14a b =,∴大长方形有142432⨯+=(个)小长方形拼成.三、解答题(本大题有7小题,共66分)17.(6分)如图,在每格边长为1的网格上.平移格点三角形ABC ,使三角形ABC 的顶点A 平移到格点D 处.(1)请画出平移后的图形三角形DEF (B ,C 的对应点分别为点E ,F ),并求三角形DEF 的面积.(2)写出线段AD 与线段BF 之间的关系. 【答案】见解析【解析】解:(1)图略111342412234222DEF ABC S S ==⨯-⨯⨯-⨯⨯-⨯⨯=△△.(2)AD BE ∥且AD BE =. 18.(8分)计算: (1)22132xy x y-;(2)2(2)(4)62m n n m n m m ⎡⎤+-++÷⎣⎦【答案】见解析【解析】解:(1)2222222323222x y x yx y x y x y --=. (2)2(2)(4)62m n n m n m m ⎡⎤+-++÷⎣⎦222(4446)2m mn n mn n m m =++--+÷2(46)223m m m m =+÷=+.19.(8分)先化简,再求值:2213312113x x x x x x ---+÷+++,其中9101(3)3x ⎛⎫=-⨯- ⎪⎝⎭.【答案】见解析 【解析】解:原式2(1)(1)3(1)3(1)11x x x x x x +--=+++-198711111x x x x x x -+=+==+++++9101(3)33x ⎛⎫=-⨯-=- ⎪⎝⎭时,原式751312=+=--+.20.(10分)解方程(组) (1)5,325;x y x y +=-⎧⎨-=⎩(2)2210442x x x x+-=-+-.【答案】见解析 【解析】解:(1)5,325,x y x y +=-⎧⎨-=⎩①②,【注意有①②】2⨯①+②得55x =-,∴1x =-,代入①得4y =-,∴1,4.x y =-⎧⎨=-⎩.(2)2210442x x x x+-=-+-.化简得2210(2)2x x x ++=--,左右同乘2(2)x -, 得220x x ++-=,∴0x =,经检验,0x =为原分式方程的解.21.(10分)如图,已知AB CD EF ∥∥,30CMA ∠=︒,80CNE ∠=︒,CO 平分MCN ∠.求MCN ∠,DCO ∠的度数(要求有简要的推理说明).【答案】25︒【解析】解:∵AB CD ∥,∴30MCD AMC ∠=∠=︒,同理,80NCD CNE ∠=∠=︒,∴110MCN MCD NCD ∠=∠+∠=︒. ∵CO 平分MCN ∠,∴1552NCO MCN ∠=∠=︒,∴25DCO NCD NCO ∠=∠-=︒.22.(12分)以下是某网络书店1~4月关于图书销售情况的两个统计图:某网络书店14-月销售总额统计图 绘本类图书销售额占该书店当月销售总额的百分比统计图(1)求1月份该网络书店绘本类图书的销售额.(2)若已知4月份与1月份这两个月的绘本类图书销售额相同,请补全统计图2. (3)有以下两个结论:①该书店第一季度的销售总额为182万元.②该书店1月份到3月份绘本类图书销售额的月增长率相等.请你判断以上两个结论是否正确,并说明理由.【答案】见解析【解析】解:(1)1月份绘本类图书的销售额为706% 4.2⨯=(万元). (2)4月份绘本类图书销售总额占的百分比为4.2607%÷=.图略. (3)第一季度销售总额为706250182-+=(万元).①正确.1月份到2月份,绘本类图书销售额增长率为(628%706%) 4.20.76 4.218.1%⨯-⨯÷=÷≈.2月份到3月份增长率为(5010%628%)628%()0.8%⨯-⨯÷⨯≈.②错误. D A BC E FO MN 图1图223.(12分)通过对某校营养午餐的检测,得到如下信息:每份营养午餐的总质量400g ;午餐的成分为蛋白质、碳水化合物、脂肪和矿物质,其组成成分所占比例如图1所示;其中矿物质的含量是脂肪含量的1.5倍,蛋白质和碳水化合物含量占80%.某校营养午餐组成成分统计图 某校营养午餐组成统计图(1)设其中蛋白质含量是(g)x .脂肪含量是(g)y ,请用含x 或y 的代数式分别表示碳水化合物和矿物质的质量.(2)求每份营养午餐中蛋白质、碳水化合物、脂肪和矿物质的质量. (3)参考图1,请在图2中完成这四种不同成分所占百分比的扇形统计图.【答案】见解析【解析】解:(1)由题可知,矿物质的质量为1.5(g)y .碳水化合物的质量为40045% 1.5180 1.5(g)y y ⨯-=-.(2)40055%,180 1.540080%,x y x y +=⨯⎧⎨+-=⨯⎩,解得188,32,x y =⎧⎨=⎩蛋白质质量为188g . 碳水化合物质量为180 1.532132g -⨯=,脂肪质量为32g ,矿物质质量为1.53248g ⨯= (3)蛋白质:188100%47%400⨯=,碳水化合物:80%47%33%-=, 脂肪:55%47%8%-=矿物质:45%33%12%-=.图略.图1碳水化合物矿物质45%蛋白质脂肪55%图2。