解三角形章节复习

合集下载

高中数学解三角形章末复习课

高中数学解三角形章末复习课

知识网络 要点归纳 题型研修
题型研修
第一章 解三角形
(2)由 S=12absin C=10 3,C=π3,得 ab=40.① 由余弦定理得:c2=a2+b2-2abcos C, 即 c2=(a+b)2-2ab(1+cos 3π), ∴72=(a+b)2-2×40×1+12.∴a+b=13.② 由①②得 a=8,b=5 或 a=5,b=8.
知识网络 要点归纳 题型研修
题型研修
第一章 解三角形
例 2 在△ABC 中,角 A,B,C 的对边分别为 a,b,c,且满 足(2a-b)cos C=c·cos B,△ABC 的面积 S=10 3,c=7. (1)求角 C; (2)求 a,b 的值.
知识网络 要点归纳 题型研修
题型研修
第一章 解三角形
高中知数识学网·必络修5·人教A版
章末复习
第一章 解三角形
目标:正弦定理、余弦定理,解三角形与三角函数的综合问题 重点:解三角形与三角函数结合 难点:正弦定理、余弦定理,解三角形与三角函数的综合问题
知识网络 要点归纳 题型研修
知识网络
第一章 解三角形
知识网络 要点归纳 题型研修
要点归纳
第一章 解三角形
所以 sin A=sin(π-B-C)=sin34π-B
=sin
3π 4 cos
B-cos
3π 4 sin
B=7102.
由正弦定理,得 c=assiinnAC=170,
所以 S=12acsin B=12×2×170×45=87.
知识网络 要点归纳 题型研修
题型研修
第一章 解三角形
例3 (2015·课标全国Ⅱ)如图,在△ABC中,D是BC上的点, AD平分∠BAC,△ABD面积是△ADC面积的2倍.

《解三角形》全章知识复习与巩固

《解三角形》全章知识复习与巩固

《解三角形》全章知识复习与巩固【学习目标】1.正弦定理和余弦定理 掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题2.应用 能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题【知识网络】【要点梳理】要点一:正弦定理 在一个三角形中,各边和它所对角的正弦比相等,即:sin sin sin a b c A B C == 要点诠释:(1)正弦定理适合于任何三角形,且2sin sin sin a b c R A B C===(R 为ABC ∆的外接圆半径); (2)应用正弦定理解决的题型:①已知两角和一边,求其它②已知两边和一边的对角,求其它.(3)在已知两边和一边的对角,求其它的类型中,可能出现无解、一解或两解,应结合“三角形中大边对大角”定理及几何作图来帮助理解.要点二:余弦定理在△ABC 中,A bc c b a cos 2222-+=,B ac c a b cos 2222-+=,C ab b a c cos 2222-+=变形为:bc a c b A 2cos 222-+=,ac b c a B 2cos 222-+=,abc b a C 2cos 222-+=要点诠释:(1)应用余弦定理解决的题型:①已知三边,求各角②已知两边和一边的对角,求其它③已知两边和夹角,求其它;(2)正、余弦定理的实质是一样的,从而正弦定理能解的问题余弦定理也一定能解,反之亦然;只是方便程度有别;(3)正、余弦定理可以结合使用.要点三:三角形的面积公式 (1) 111222a b c S ah bh ch ===,其中,,a b c h h h 为,,a b c 边上的高 (2)B ac A bc C ab S sin 21sin 21sin 21===(3)S =2a b c p ++= 要点四:三角形形状的判定方法设△ABC 的三边为a 、b 、c ,对应的三个角为A 、B 、C ,解斜三角形的主要依据是:(1)角与角关系:由于A +B +C = π,所以sin(A+B)=sinC ;cos(A+B)=-cosC ;tan(A+B)=-tanC ;2sin 2cos ,2cos 2sin C B A C B A =+=+; (2)边与边关系:a + b > c ,b + c > a ,c + a > b ,a -b < c ,b -c < a ,c -a < b ;(3)边与角关系:正弦定理、余弦定理常用两种途径:(1)由正余弦定理将边转化为角;(2)由正余弦定理将角转化为边.要点诠释:①化简中将三角形内角和、三角同角基本关系式、诱导公式、两角和与差的三角公式等综合结合起来.②在△ABC 中,熟记并会证明:∠A ,∠B ,∠C 成等差数列的充分必要条件是∠B=60°;△ABC 是正三角形的充分必要条件是∠A ,∠B ,∠C 成等差数列且a ,b ,c 成等比数列.要点五:解三角形应用的分类(1)距离问题:一点可到达另一点不可到达;两点都不可到达;(2)高度问题(最后都转化为解直角三角形);(3)角度问题;(4)面积问题.【典型例题】类型一:正、余弦定理的基本应用例1.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,A+C =2B .(1)求cos B 的值;(2)若b 2=ac ,求sin A sin C 的值.【思路点拨】由题设“A+C =2B ”易知B =60°,又由边之间的关系“b 2=ac ”,如何求“sin A sin C ”的值?正、余弦定理的运用都可以求出值.【解析】(1)由已知2B =A+C ,A+B+C =180°,解得B =60°,所以1cos 2B =. (2)解法一:由已知2b ac =,及1cos 2B =, 根据正弦定理得2sin sin sin B A C =, 所以23sin sin 1cos 4A C B =-=. 解法二:由已知2b ac =,及1cos 2b =,根据余弦定理得22cos 2a c ac B ac+-=, 解得a =c ,所以A =C =B =60°,故3sin sin 4A C =. 【总结升华】利用正弦定理和余弦定理求解三角形中的边、角等基本量是考试的重点,注意灵活利用三角形中的内角和定理,实现角的互化,灵活利用正、余弦定理的变形.举一反三:【变式1】在△ABC 中,a =1,b =2,41C cos =,则c = ;sinA = . 【答案】∵在△ABC 中,a =1,b =2,41C cos =, ∴由余弦定理得:c 2=a 2+b 2-2abcosC =1+4-1=4,即c =2; ∵41C cos =,C 为三角形内角, ∴415C cos 1C sin 2=-= ∴由正弦定理Asin C sin a c =得:81524151C sin A sin =⨯==c a . 故答案为:2;815【变式2】在△ABC 中,若2a =,7b c +=,1cos 4B =-,则b =___________. 【答案】在ABC ∆中,得用余弦定理 22214()()47()cos 2444a c b c b c b c b B ac c c+-++-+-=⇒-==,化简得8740c b -+=,与题目条件7b c +=联立,可解得2,4,3a b c ===. 故答案为4.类型二:正、余弦定理的综合应用例2. 在△ABC 中,内角A 、B 、C 的对边分别为a ,b ,c ,且a >c ,已知→→BC BA ·=2,cosB =31,b =3,求:(Ⅰ)a 和c 的值;(Ⅱ)cos(B -C)的值.【答案】(Ⅰ) a =3,c =2,(Ⅱ)2723. 【思路点拨】(1)由平面向量的数量积,易求出ac=6,然后利用余弦定理求出即可;(2)画出简易图,将已知条件在图上标出来,运用正弦定理求得角C 的正弦值.【解析】(Ⅰ)∵→→BC BA ·=2,cosB =31, ∴c •acosB =2,即ac =6①,∵b =3,∴由余弦定理得:b 2=a 2+c 2-2accosB ,即9=a 2+c 2-4,∴a 2+c 2=13②,联立①②得:a =3,c =2;(Ⅱ)在△ABC 中,sinB =322)31(1cos 122=-=-B , 由正弦定理C c B b sin sin =得:sinC =b c sinB =92432232=⨯, ∵a =b >c ,∴C 为锐角,∴cosC =97)924(1sin 122=-=-C , 则cos(B -C)=cosBcosC +sinBsinC =31×97+2723924322=⨯. 【总结升华】解答该类题目要注意以下几个方面:(1)借助图形标注已知和所求;(2)利用三角形的性质把相关条件化归到同一个三角形中;(3)注意灵活利用正、余弦定理,实施边、角互化.举一反三:【变式1】设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若三边的长为连续的三个正整数,且A >B >C ,3b=20acosA ,则sinA :sinB :sinC 为( )A .4:3:2 B. 5:6:7 C. 5:4:3 D. 6:5:4【答案】由于a ,b ,c 三边的长为连续的三个正整数,且A >B >C ,可设三边长分别为 a 、a-1、a-2.由余弦定理可得 222222(1)(2)5cos 22(1)(2)2(2)b c a a a a a A bc a a a +--+---===--- 又3b=20acosA ,可得33(1)5cos 20202(2)b a a A a a a --===- 解得6a =,故三边是6,5,4.由正弦定理可得sinA :sinB :sinC=6:5:4【变式2】已知△ABC 中cos cos a A b B =,试判断△ABC 的形状.【答案】方法一:用余弦定理化角为边的关系 由cos cos a A b B =得22222222b c a a c b a b bc ac+-+-⋅=⋅, 整理得22222222()()a b c a b a c b +-=+-,即22222()()0a b a b c -+-=,当220a b -=时,ABC ∆为等腰三角形;当2220a b c +-=即222a b c +=时,则ABC ∆为直角三角形;综上:ABC ∆为等腰或直角三角形。

§8.解三角形复习专题

§8.解三角形复习专题

§8.解三角形1、三角形中的性质:①π=++C B A ⇒C B A sin )sin(=+, .cos )cos(C B A -=+222C B A -=+π⇒2cos 2sin C B A =+, .2sin 2cos C B A =+ ②c b a >+; c b a <-③b a +⇔B A >⇔B A sin sin >⇔B A cos cos <.2、正弦定理:2sin sin sin a b c R C===A B .R 为C ∆AB 的外接圆的半径. 3、正弦定理的变形公式:①边化角公式:2sin a R =A ,2sin b R =B ,2sin c R C =;②角化边公式:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin sin sin sin sin sin sin a b c a b a c b c a b c C A B A C B C C +++++======A +B ++++A B . 4、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B . 5、余弦定理: 2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,2222cos c a b abC =+-.角化边公式:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos 2a b c C ab+-=. 6、解三角形 (1)利用正弦定理,可以解决以下两类有关三角形的问题: ①已知两角和任一边,求其他两边和一角; ②已知两边和其中一边的对角,求另一边的对角(2)利用余弦定理,可以解决以下两类有关三角形的问题:①已知三边,求三个角; ②已知两边和它们的夹角,求第三边和其他两个角7、判断三角形的形状:(1)根据所给条件确定三角形的形状,常用正弦余弦定理实施边角转化,主要有两种途径: ①化边为角;②化角为边。

解三角形一轮复习

解三角形一轮复习

解三角形一、基本知识点1内角和定理:在错误!不能通过编辑域代码创建对象。

中,错误!不能通过编辑域代码创建对象。

错误!不能通过编辑域代码创建对象。

;错误!不能通过编辑域代码创建对象。

错误!不能通过编辑域代码创建对象。

;错误!不能通过编辑域代码创建对象。

错误!不能通过编辑域代码创建对象。

错误!不能通过编辑域代码创建对象。

错误!不能通过编辑域代码创建对象。

面积公式:错误!不能通过编辑域代码创建对象。

错误!不能通过编辑域代码创建对象。

=错误!不能通过编辑域代码创建对象。

2正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等.形式一:错误!不能通过编辑域代码创建对象。

(解三角形的重要工具)形式二:错误!不能通过编辑域代码创建对象。

(边角转化的重要工具)3余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍..形式一:错误!不能通过编辑域代码创建对象。

错误!不能通过编辑域代码创建对象。

(解三角形的重要工具)错误!不能通过编辑域代码创建对象。

形式二:错误!不能通过编辑域代码创建对象。

错误!不能通过编辑域代码创建对象。

;错误!不能通过编辑域代码创建对象。

错误!不能通过编辑域代码创建对象。

;cosC=错误!不能通过编辑域代码创建对象。

二、基本考点及应用(一):利用正弦余弦定理求未知量1在△ABC中,已知a=3,b=2,B=45°,求A、C和c.2在△ABC的内角A、B、C的对边分别为a、b、c,若c=2,b=6,B=120°,则a等于3在错误!不能通过编辑域代码创建对象。

中,A、B的对边分别是错误!不能通过编辑域代码创建对象。

,且错误!不能通过编辑域代码创建对象。

,求B4若错误!不能通过编辑域代码创建对象。

中,错误!不能通过编辑域代码创建对象。

,求角C5在△ABC中,角A、B、C所对的边分别为a、b、c.若(3b-c)cos A=a cos C,求cos A6在△ABC 中,A =120°,AB =5,BC =7,则CB sin sin 的值7在△ABC 中,A =60°,AB =5,BC =7,则△ABC 的面积8在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边, 错误!不能通过编辑域代码创建对象。

高考数学:解三角形(复习学案)

高考数学:解三角形(复习学案)

专题09 解三角形(一) 三角形中的求值问题1.例题【例1】设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =23,cos A =32,且b <c ,则b =( )A . 3B .2C .2 2D .3【例2】在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,若1a =,cos )cos 0A C C b A ++=,则角A =( )A .23π B .3π C .6π D .56π 【例3】在ABC ∆中,角A ,B ,C 的对边分别是a ,b ,c ,4a =,b =cos (2)cos c B a b C =-,则ABC ∆的面积为______.【例4】(2017·全国高考真题(理))△ABC 的内角、、A B C 的对边分别为a b c 、、, 已知△ABC 的面积为23sin a A.(1)求sin sin B C ;(2)若6cos cos 1,3,B C a ==求△ABC 的周长.【例5】如图,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos ∠ADC =17.(1)求sin ∠BAD ; (2)求BD ,AC 的长.2.巩固提升综合练习【练习1】(2019·全国高考真题)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则bc =( )A .6B .5C .4D .3【练习2】(2018·全国高考真题)△ABC 的内角A , B , C 的对边分别为a , b , c ,已知bsinC +csinB =4asinBsinC ,b 2+c 2−a 2=8,则△ABC 的面积为________. 【练习3】 在ABC ∆中,已知AB 边上的中线1CM =,且1tan A ,1tan C ,1tan B成等差数列,则AB 的长为________.【练习4】在△ABC 中,已知AB =2,AC =5,tan ∠BAC =-3,则BC 边上的高等于( ) A .1 B .2 C . 3 D .2【练习5】已知圆内接四边形ABCD 的边长AB =2,BC =6,CD =DA =4,求四边形ABCD 的面积S .【练习6】 △ABC 的内角A ,B ,C 的对边分别为a ,b ,c 已知c cos B =(3a -b )cos C . (1)求sin C 的值;(2)若c =26,b -a =2,求△ABC 的面积.(二)三角形中的最值或范围问题1.例题【例1】在△ABC中,已知c=2,若sin2A+sin2B-sin A sin B=sin2C,则a+b的取值范围为________.【例2】已知在锐角ABC∆中,角A,B,C的对边分别为a,b,c,若2cos cosb Cc B=,则111tan tan tanA B C++的最小值为()A B C D.【例3】已知△ABC的外接圆半径为R,角A,B,C所对的边分别为a,b,c,若a sin B cos C +32c sin C=2R,则△ABC面积的最大值为( )A.25B.45C.255D.125【例4】在ABC∆中,角A,B,C的对边分别为a,b,c,且cos Ccos cos cos2ab Ac A B+=,ABC∆,则ABC∆周长的最小值为______.2.巩固提升综合练习【练习1】 设锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c ,若2,2a B A ==,则b 的取值范围为( )A .(0,4)B .(2,C .D .4)【练习2】 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若bc =1,b +2c cos A =0,则当角B 取得最大值时,△ABC 的周长为( ) A .2+3 B .2+2 C .3D .3+2【练习3】已知ABC ∆1,且满足431tan tan A B+=,则边AC 的最小值为_______.【练习4】在ABC ∆中,23BAC π∠=,已知BC 边上的中线3AD =,则ABC ∆面积的最大值为__________.(三)解三角形的实际应用必备知识:实际测量中的有关名称、术语南偏西60°指以正南方向为始边,转向目标方向线形成的角1.例题【例1】在海岸A处,发现北偏东45°方向,距离A处(3-1)n mile的B处有一艘走私船,在A处北偏西75°的方向,距离A 2 n mile的C处的缉私船奉命以10 3 n mile的速度追截走私船.此时,走私船正以10 n mile/h的速度从B处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?【例2】如图,A,B两点在河的同侧,且A,B两点均不可到达,测出A,B的距离,测量者可以在河岸边选定两点C,D,测得CD=a,同时在C,D两点分别测得∠BCA=α,∠ACD=β,∠CDB=γ,∠BDA=δ.在△ADC和△BDC中,由正弦定理分别计算出AC和BC,再在△ABC中,应用余弦定理计算出AB.若测得CD=32km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,求A,B两点间的距离.【例3】某人在点C测得塔顶A在南偏西80°,仰角为45°,此人沿南偏东40°方向前进100米到D,测得塔顶A的仰角为30°,则塔高为____________米.2.巩固提升综合练习【练习1】甲船在A处,乙船在甲船正南方向距甲船20海里的B处,乙船以每小时10海里的速度向正北方向行驶,而甲船同时以每小时8海里的速度由A处向北偏西60°方向行驶,问经过多少小时后,甲、乙两船相距最近?【练习2】如图,一艘船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这艘船航行的速度为( )A.1762海里/时B .346海里/时 C.1722海里/时D .342海里/时【练习3】某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度:A 、B 、C 三地位于同一水平面上,在C 处进行该仪器的垂直弹射,观测点A 、B 两地相距100米,∠BAC =60°,在A 地听到弹射声音的时间比在B 地晚217秒.在A 地测得该仪器弹至最高点H 时的仰角为30°,求该仪器的垂直弹射高度CH .(声音的传播速度为340米/秒)1.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若a ,b ,c 成等比数列,且a 2=c 2+ac -bc ,则cb sin B =( )A .32B .233C .33D .32.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,a =3,c =23,b sin A =a cos ⎪⎭⎫⎝⎛+6πB 则b =( ) A .1 B.2 C.3D.53.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =2,c =32,tan B =2tan A ,则△ABC 的面积为( ) A .2 B .3 C .32D .423.如图,在△ABC 中,∠C =π3,BC =4,点D 在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足.若DE =22,则cos A 等于( ) A .223B .24C .64D .634.在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若B =2A ,则2ba的取值范围是( ) A .(2,2) B .(2,6) C .(2,3)D .(6,4)5.在ΔABC 中,角A 、B 、C 所对的边分别为a ,b ,c ,a =2,B =45°,若三角形有两解,则b 的取值范围是_______.6.已知a ,b ,c 是△ABC 中角A ,B ,C 的对边,a =4,b ∈(4,6),sin 2A =sin C ,则c 的取值范围为________.7.设△ABC 的内角A ,B ,C 的对边a ,b ,c 成等比数列,cos(A -C )-cos B =12,延长BC至点D ,若BD =2,则△ACD 面积的最大值为________.8.(2019·高考全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若b =6,a =2c ,B =π3,则△ABC 的面积为________. 9.若满足3ABC π∠=, AC =3, ,BC m ABC =恰有一解,则实数m 的取值范围是______.10.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,外接圆的半径为1,且tan A tan B =2c -bb ,则△ABC 面积的最大值为________.11.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a 2+c 2-b 2=ab cos A +a 2cos B . (1)求角B ;(2)若b =27,tan C =32,求△ABC 的面积.12.已知ABC ∆中,角A B C 、、的对边分别为a b c ,,,若cos sin a b C c B =+(Ⅰ)求B ;(Ⅰ)若2b = ,求ABC ∆面积的最大值。

【数学】第一章《解三角形复习》课件(新人教B版必修5)

【数学】第一章《解三角形复习》课件(新人教B版必修5)


A
A.
2 , B.
3 , C . 2, D .
5
4 6
1
本章知识框架图
正弦定理 解 三 角 形 余弦定理 应 用 举 例
课堂小结
1、正弦定理、余弦定理的简单应用; 2、利用正、余弦定理、三角形面积公式解
三角形问题;
3、解三角形的实际应用问题
练习
一、选择题:

2.在 A B C 中 , A 60 , a
A 6 , b 3, 则 A B C 解 得 情 况 是
C. 有两解,


A .无解, B. 有一解,
1、 在 A B C 中 , A C =
D. 不能确定 .

3 , A 45 , C 75 , 则 BC
变式 2、 已知 ABC 中 , s inA : sin B : sin C 1 :
7:
3 , 那么 B 等于 150° ____
变式 3、 已知 ABC 中 , b c) : (c a) : (a b) 4 : 5 : 6 , 那么 A 等于 ____ (
变式 4、 已知 ABC 中 ,a
必修5 解三角形复习
一、正弦定理及其变形:
a sin A b sin B
变 形

c sin C
2R
( R为 三 角 形 外 接 圆 半 径 )
a 2 R sin A b 2 R sin B c 2 R sin C
(sin A (sin B (sin C
a 2R b 2R c 2R
) ) )
a : b : c sin A : sin B : sin C

中考数学复习《解直角三角形》 知识讲解

《解直角三角形》全章复习与巩固(提高) 知识讲解【学习目标】1.了解锐角三角函数的概念,能够正确应用sinA 、cosA 、tanA 、cotA 表示直角三角形中两边的比;记忆30°、45°、60°的正弦、余弦、正切和余切的三角函数值,并能由一个特殊角的三角函数值说出这个角的度数.2.能够正确地使用计算器,由已知锐角求出它的三角函数值,由已知三角函数值求出相应的锐角;3.理解直角三角形中边与边的关系,角与角的关系和边与角的关系,会运用勾股定理、直角三角形的两个锐角互余、直角三角形斜边上中线等于斜边的一半,以及锐角三角函数解直角三角形,并会用解直角三角形的有关知识解决简单的实际问题.4.通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想;5.通过解直角三角形的学习,体会数学在解决实际问题中的作用.【知识网络】【要点梳理】要点一、直角三角形的性质(1) 直角三角形的两个锐角互余.(2) 直角三角形两直角边的平方和等于斜边的平方.(勾股定理)如果直角三角形的两直角边长分别为,斜边长为,那么.(3) 直角三角形斜边上的中线等于斜边的一半. 要点二、锐角三角函数1.正弦、余弦、正切、余切的定义如右图,在Rt △ABC 中,∠C=900,如果锐角A 确定:(1)∠A 的对边与斜边的比值是∠A 的正弦,记作sinA= ∠A 的对边斜边(2)∠A 的邻边与斜边的比值是∠A 的余弦,记作cosA = ∠A 的邻边斜边(3)∠A 的对边与邻边的比值是∠A 的正切,记作tanA = ∠A 的对边∠A 的邻边a b ,c 222a b c +=(4)∠A 的邻边与对边的比值是∠A 的余切,记作cotA = ∠A 的邻边∠A 的对边要点诠释:(1)正弦、余弦、正切、余切是在一个直角三角形中定义的,其本质是两条线段的比值,它只是一个数值,其大小只与锐角的大小有关,而与所在直角三角形的大小无关.(2)sinA 、cosA 、tanA 、cotA 是一个整体符号,即表示∠A 四个三角函数值,书写时习惯上省略符号“∠”,但不能写成sin ·A ,对于用三个大写字母表示一个角时,其三角函数中符号“∠”不能省略,应写成sin ∠BAC ,而不能写出sinBAC.(3)sin 2A 表示(sinA)2,而不能写成sinA 2. (4)三角函数有时还可以表示成等.2.锐角三角函数的定义锐角∠A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数. 要点诠释:1. 函数值的取值范围对于锐角A 的每一个确定的值,sinA 有唯一确定的值与它对应,所以sinA 是∠A 的函数.同样,cosA 、tanA 、cotA 也是∠A 的函数,其中∠A 是自变量,sinA 、cosA 、tanA 、cotA 分别是对应的函数.其中自变量∠A 的取值范围是0°<∠A <90°,函数值的取值范围是0<sinA <1,0<cosA <1,tanA >0,cotA >0.2.锐角三角函数之间的关系:余角三角函数关系:“正余互化公式” 如∠A+∠B=90°,那么:sinA=cosB ; cosA=sinB ; tanA=cotB, cotA=tanB. 同角三角函数关系:sin 2A +cos 2A=1;3.30°、45°、60°角的三角函数值∠A 30°45°60°sinAcosAtanA1cotA1在直角三角形中,如果一个角等于30°,那么它所对的直角边等于斜边的一半.sin cos 1tanA=,cot ,tan .cos sin cot A A A A A A A==30°、45°、60°角的三角函数值和解含30°、60°角的直角三角形、含45°角的直角三角形为本章的重中之重,是几何计算题的基本工具. 要点三、解直角三角形在直角三角形中,由已知元素求出未知元素的过程,叫做解直角三角形. 解直角三角形的依据是直角三角形中各元素之间的一些相等关系,如图:角角关系:两锐角互余,即∠A+∠B=90°; 边边关系:勾股定理,即;边角关系:锐角三角函数,即要点诠释:解直角三角形,可能出现的情况归纳起来只有下列两种情形: (1)已知两条边(一直角边和一斜边;两直角边);(2)已知一条边和一个锐角(一直角边和一锐角;斜边和一锐角).这两种情形的共同之处:有一条边.因此,直角三角形可解的条件是:至少已知一条边.Rt △ABC由求∠A ,∠B=90°-∠A ,由求∠A ,∠B=90°-∠A ,sin ,cos ,tan ,cot a b a b A A A A c c b a====sin ,cos ,tan ,cot b a b a B B B B c c a b====,∠B=90°-∠A,,∠B=90°-∠A,,要点四、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.1.解这类问题的一般过程(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.2.常见的应用问题类型(1) 仰角与俯角:(2)坡度:;坡角:.(3)方向角:要点诠释:1.用解直角三角形的知识解决实际问题的基本方法是:把实际问题抽象成数学问题(解直角三角形),就是要舍去实际事物的具体内容,把事物及它们的联系转化为图形(点、线、角等)以及图形之间的大小或位置关系.借助生活常识以及课本中一些概念(如俯角、仰角、倾斜角、坡度、坡角等)的意义,也有助于把实际问题抽象为数学问题.当需要求解的三角形不是直角三角形时,应恰当地作高,化斜三角形为直角三角形再求解.2.锐角三角函数的应用用相似三角形边的比的计算具有一般性,适用于所有形状的三角形,而三角函数的计算是在直角三角形中解决问题,所以在直角三角形中先考虑三角函数,可以使过程简洁。

《解直角三角形》全章复习与巩固(基础篇)九年级数学下册基础知识专项讲练

专题1.17《解直角三角形》全章复习与巩固(基础篇)(专项练习)一、单选题1.2sin60°的值等于()A .12B .3C .2D 2.如图,在Rt ABC △中,90B ∠=︒,下列结论中正确的是()A .sin BC A AB=B .cos BC A AC=C .tan AB C BC=D .cos AC C BC=3.如图,在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为6米,那么相邻两树在坡面上的距离AB 为()A .6cos αB .6cos αC .6sin αD .6sin α4.如图,为了测量河岸A 、B 两地间的距离,在与AB 垂直的方向上取点C ,测得AC =a ,ABC α∠=,那么A 、B 两地的距离等于()A .tan a αB .tan a α⋅C .sin a α⋅D .cos a α⋅5.点()sin 60,cos30︒︒关于y 轴对称的点的坐标是().A .12⎛- ⎝⎭B .1,2⎛ ⎝⎭C .22⎛⎫- ⎪ ⎪⎝⎭D .⎝⎭6.如图,在平面直角坐标系中,点A 的坐标为(﹣1,2),以点O 为圆心,将线段OA 逆时针旋转,使点A 落在x 轴的负半轴上点B 处,则点B 的横坐标为()AB C D7.已知,斜坡的坡度i =1:2,小明沿斜坡的坡面走了100米,则小明上升的距离是()A .B .20米C .D .1003米8.为扩大网络信号的辐射范围,某通信公司在一座小山上新建了一座大型的网络信号发射塔.如图,在高为12米的建筑物DE 的顶部测得信号发射塔AB 顶端的仰角∠FEA =56°,建筑物DE 的底部D 到山脚底部C 的距离DC =16米,小山坡面BC 的坡度(或坡比)i =1:0.75,坡长BC =40米(建筑物DE 、小山坡BC 和网络信号发射塔AB 的剖面图在同一平面内,信号发射塔AB 与水平线DC 垂直),则信号发射塔AB 的高约为()(参考数据:sin56°≈0.83,cos56°≈0.56,tan56°≈1.48)A .71.4米B .59.2米C .48.2米D .39.2米9.如图,在ABC ∆中,90ACB ∠=︒.边BC 在x 轴上,顶点,A B 的坐标分别为()2,6-和()7,0.将正方形OCDE 沿x 轴向右平移当点E 落在AB 边上时,点D 的坐标为()A .3,22⎛⎫ ⎪⎝⎭B .()2,2C .11,24⎛⎫ ⎪⎝⎭D .()4,210.某车库出口安装的栏杆如图所示,点A 是栏杆转动的支点,点E 是栏杆两段的联结点.当车辆经过时,栏杆AEF 最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中AB ⊥BC ,EF ∥BC ,∠AEF =143°,AB =1.18米,AE =1.2米,那么适合该地下车库的车辆限高标志牌为()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A .B .C .D .二、填空题11.在Rt △ABC 中,∠C =90°,AB =2,BC sin2A=_____.12.若关于x 的方程x 2+sin α=0有两个相等的实数根,则锐角α的度数为___.13.如图,P (12,a )在反比例函数60y x=图象上,PH ⊥x 轴于H ,则tan ∠POH 的值为_____.14.如图,在矩形ABCD 中,DE AC ⊥,垂足为点E .若4sin 5ADE ∠=,4=AD ,则AB 的长为______.15.如图所示的网格是正方形网格,图形的各个顶点均为格点,则∠1+∠2=_____.16.如图,在ABC ∆中,1sin 3B =,tan C =3AB =,则AC 的长为_____.17.如图,ABC 的顶点B C 、的坐标分别是(1,0)、,且90,30ABC A ∠=︒∠=︒,则顶点A 的坐标是_____.18.如图,在菱形ABCD 中,∠A =60°,AB =6.折叠该菱形,使点A 落在边BC 上的点M 处,折痕分别与边AB ,AD 交于点E ,F .当点M 与点B 重合时,EF 的长为________;当点M 的位置变化时,DF 长的最大值为________.三、解答题19.计算:(1sin 602︒;(2)26tan 30cos30tan 602sin 45cos 60︒-︒︒-︒+︒ .20.如图,在Rt △ABC 中,∠C =90°,D 是BC 边上一点,AC =2,CD =1,设∠CAD =α.(1)求sin α、cos α、tan α的值;(2)若∠B =∠CAD ,求BD 的长.21.如图,为了测得旗杆AB 的高度,小明在D 处用高为1m 的测角仪CD ,测得旗杆顶点A 的仰角为45°,再向旗杆方向前进10m ,又测得旗杆顶点A 的仰角为60°,求旗杆AB 的高度.22.如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A (2,2),B (4,0),C (4,﹣4).(1)请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1;(2)以点O为位似中心,将△ABC缩小为原来的12,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.23.如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D 处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=80m,DE=10m,求障碍物B,C两点间的距离.(结果保留根号)24.如图,某校教学楼AB后方有一斜坡,已知斜坡CD的长为12米,坡角α为60°.根据有关部门的规定,∠α≤39°时,才能避免滑坡危险.学校为了消除安全隐患,决定对斜坡CD进行改造,在保持坡脚C不动的情况下,学校至少要把坡顶D向后水平移动多少米才能保证教学楼的安全?(结果取整数)(参考数据:sin 39°≈0.63,cos 39°≈0.78,tan 39°≈0.81,≈1.41)参考答案1.D【分析】根据特殊锐角三角函数值代入计算即可.解:2sin60°=故选:D .【点拨】本题考查特殊角三角函数值,熟知sin60°的值是正确计算的关键.2.C【分析】根据锐角三角函数的定义解答.解:在Rt △ABC 中,∠B =90°,则sin ,cos ,tan ,cos BC AB AB BCA A C C AC AC BC AC====.故选:C .【点拨】本题考查锐角三角函数,熟练掌握锐角三角函数的定义是解题关键.3.B【分析】根据余弦的定义计算,判断即可.解:在Rt △ABC 中,6BC =米,ABC α∠=,∵cos BCABC AB∠=,∴6cos BC AB ABC coa α==∠,故选:B .【点拨】本题考查的是解直角三角形的应用坡度坡角问题,掌握坡度坡角的概念、熟记锐角三角函数的定义是解题的关键.4.A【分析】根据正切的定义计算选择即可.解:∵tanα=ACAB,∴AB =tan tan AC aαα=,故选A .【点拨】本题考查了正切的定义即对边比邻边,熟练掌握正切的定义是解题的关键.5.C【分析】先利用特殊角的三角函数值得出点的坐标,再写出其关于y 轴对称的坐标即可.解:∵sin60°cos30°,)关于y 轴对称的点的坐标是(.故选:C .【点拨】本题考查了特殊角的三角函数值和关于坐标轴对称的点的特征,掌握特殊角的三角函数值是解决本题的关键.6.C【分析】利用勾股定理求出OA ,可得结论.解:∵A (﹣1,2),∴OA由旋转的性质可知,OB =OA∴B 0).故选:C .【点拨】本题考查坐标与图形变化-旋转,解直角三角形等知识,解题的关键是利用勾股定理求出OA 即可.7.A【分析】根据坡度意思可知1tan 2A ∠=,设BC h =米,则2AC h =米,由勾股定理可得:222AB AC BC =+,即2221004h h =+,求出h 即可.解:如图:由题意可知:1tan 2A ∠=,100AB =米,设BC h =米,则2AC h =米,由勾股定理可得:222AB AC BC =+,即2221004h h =+,解得:h =米,h =-.故选:A【点拨】本题考查勾股定理,坡度坡比问题,解题的关键是理解坡度的意思,找出BC ,AC之间的关系.8.D【分析】延长EF交AB于点H,DC⊥AB于点G,可得四边形EDGH是矩形,根据小山坡面BC的坡度i=1:0.75,即43BGCG=,求得BG=32,CG=24,再根据三角函数即可求出信号发射塔AB的高.解:如图,延长EF交AB于点H,DC⊥AB于点G,∵ED⊥DG,∴四边形EDGH是矩形,∴GH=ED=12,∵小山坡面BC的坡度i=1:0.75,即43 BGCG=,设BG=4x,CG=3x,则BC x,∵BC=40,∴5x=40,解得x=8,∴BG=32,CG=24,∴EH=DG=DC+CG=16+24=40,BH=BG﹣GH=32﹣12=20,在Rt△AEH中,∠AEH=56°,∴AH=EH•tan56°≈40×1.48≈59.2,∴AB=AH﹣BH=59.2﹣20=39.2(米).答:信号发射塔AB的高约为39.2米.故选:D.【点拨】本题主要考查解直角三角形,熟练掌握三角函数是解题的关键.9.B【分析】先画出E 落在AB 上的示意图,如图,根据锐角三角函数求解O B '的长度,结合正方形的性质,从而可得答案.解:由题意知:()2,0,C - 四边形COED 为正方形,,CO CD OE ∴==90,DCO ∠=︒()()2,2,0,2,D E ∴-如图,当E 落在AB 上时,()()2,6,7,0,A B - 6,9,AC BC ∴==由tan ,AC EO ABC BC O B'∠=='62,9O B∴='3,O B '∴=734,2,OO OC ''∴=-==()2,2.D ∴故选.B 【点拨】本题考查的是平移的性质的应用,同时考查了正方形的性质,图形与坐标,锐角三角函数,掌握以上知识是解题的关键.10.A【分析】延长BA 、FE ,交于点D ,根据AB ⊥BC ,EF ∥BC 知∠ADE =90°,由∠AEF =143°知∠AED =37°,根据sin ∠AED AD AE=,AE =1.2米求出AD 的长,继而可得BD 的值,从而得出答案.解:如图,延长BA 、FE ,交于点D .∵AB ⊥BC ,EF ∥BC ,∴BD ⊥DF ,即∠ADE =90°.∵∠AEF =143°,∴∠AED =37°.在Rt △ADE 中,∵sin ∠AED AD AE=,AE =1.2米,∴AD =AE •sin ∠AED =1.2×sin37°≈0.72(米),则BD =AB +AD =1.18+0.72=1.9(米).故选:A .【点拨】本题考查了解直角三角形的应用,解题的关键是结合题意构建直角三角形,并熟练掌握正弦函数的概念.11.12【分析】根据∠A 的正弦求出∠A =60°,再根据30°的正弦值求解即可.解:∵sin BC A AB ==∴∠A =60°,∴1sin sin 3022A ︒==.故答案为12.【点拨】本题考查了特殊角的三角函数值,熟记30°、45°、60°角的三角函数值是解题的关键.12.30°##30度解:∵关于x 的方程2sin 0x α+=有两个相等的实数根,∴(241sin 0 ,α=-⨯⨯=解得:1sin 2α=∴锐角α的度数为30°.故答案为∶30°13.512解:∵P (12,a )在反比例函数60y x =图象上,∴a=6012=5,∵PH ⊥x 轴于H ,∴PH=5,OH=12,∴tan ∠POH=512,故答案为512.14.3【分析】在Rt ADE △中,由正弦定义解得165AE =,再由勾股定理解得DE 的长,根据同角的余角相等,得到sin sin ADE ECD ∠=∠,最后根据正弦定义解得CD 的长即可解题.解:在Rt ADE △中,4sin 5AE ADE AD ∠==4AD = 165AE ∴=125DE ∴===DE AC⊥ 90ADE EDC EDC ECD ∴∠+∠=∠+∠=︒ADE ECD∴∠=∠4sin sin 5DE ADE ECD CD ∴∠=∠==534CD DE ∴=⋅=在矩形ABCD 中,3AB CD ==故答案为:3.【点拨】本题考查矩形的性质、正弦、勾股定理等知识,是重要考点,难度较易,掌握相关知识是解题关键.15.45°【分析】根据等角的正切值相等得出∠1=∠3,再根据特殊角的三角函数值即可得出答案.解:如图所示:由题意可得:11tan 3,tan 122BC CF AB EF ∠==∠==∴∠1=∠3,tan 1FM FAM AM∠== 122345FAM ∴∠+∠=∠+∠=∠=︒故答案为:45°.【点拨】本题考查了特殊角的三角函数以及等角三角函数关系,由图得出∠1=∠3是解题的关键.16【分析】过A 作AD 垂直于BC ,在直角三角形ABD 中,利用锐角三角函数定义求出AD 的长,在直角三角形ACD 中,利用锐角三角函数定义求出CD 的长,再利用勾股定理求出AC 的长即可.解:过A 作AD BC ⊥,在Rt ABD ∆中,1sin 3B =,3AB =,∴sin 1AD AB B =⋅=,在Rt ACD ∆中,tan 2C =,∴AD CD =CD ,根据勾股定理得:AC =.【点拨】此题考查了解直角三角形,涉及的知识有:锐角三角函数定义,以及勾股定理,熟练掌握各自的性质是解本题的关键.17.【分析】根据B C 、的坐标求得BC 的长度,60CBO ∠=︒,利用30度角所对的直角边等于斜边的一半,求得AC 的长度,即点A 的横坐标,易得//AC x 轴,则C 的纵坐标即A 的纵坐标.解:B C 、的坐标分别是(1,0)、2BC ∴=tan OC CBOOB∴∠==60CBO ∴∠=︒90,30ABC A ∠=︒∠=︒60,24ACB AC BC ∴∠=︒==//AC x ∴轴A ∴.故答案为:.【点拨】本题考查了含30°角的直角三角形,用到的知识点有特殊角的三角函数,在直角三角形中,30度角所对的直角边等于斜边的一半,熟记特殊角的三角函数是解题的关键.18.6-【分析】当点M 与点B 重合时,EF 垂直平分AB ,利用三角函数即可求得EF 的长;根据折叠的性质可知,AF =FM ,若DF 取最大值,则FM 取最小值,即为边AD 与BC 的距离DG ,即可求解.解:当点M 与点B 重合时,由折叠的性质知EF 垂直平分AB ,∴AE =EB =12AB =3,在Rt △AEF 中,∠A =60°,AE =3,tan60°=EF AB,∴EF当AF 长取得最小值时,DF 长取得最大值,由折叠的性质知EF 垂直平分AM ,则AF =FM ,∴FM ⊥BC 时,FM 长取得最小值,此时DF 长取得最大值,过点D 作DG ⊥BC 于点C ,则四边形DGMF 为矩形,∴FM =DG ,在Rt △DGC 中,∠C =∠A =60°,DC =AB =6,∴DG =DC∴DF 长的最大值为AD -AF =AD -FM =AD -DG故答案为:【点拨】本题考查了菱形的性质,折叠的性质,解直角三角形,解题的关键是灵活运用所学知识解决问题.19.(1(2)1【分析】(1)根据二次根式与特殊角的三角函数值即可求解;(2)根据特殊角的三角函数值即可求解.解:(1)原式=11232-=16(2)原式21316221222=⨯-⨯=--=-【定睛】此题主要考查实数的运算。

解三角形复习资料(上课)

解三角形专题复习解三角形基本知识一、正弦定理:1.正弦定理:R CcB b A a 2sin sin sin ===(其中R 是三角形外接圆的半径) 2.变形:①C B A c b a sin :sin :sin ::=②角化边 C R c B R b A R a sin 2sin 2sin 2===③边化角 RcC R b B R a A 2sin 2sin 2sin === 如:△ABC 中,①B b A a cos cos =②B a A b cos cos =3.三角形内角平分线定理:如图△ABC 中,AD 是A ∠4.△ABC 中,已知锐角A ,边b ,则 ①A b a sin <时,a 无解;②A b a sin =或b a ≥时,a 有一个解; ③b a A b <<sin 时,a 有两个解。

二、三角形面积 1.B ac A bc C ab S ABC sin 21sin 21sin 21===∆ 2. r c b a S ABC)(21++=∆,其中r 是三角形内切圆半径. 注:由面积公式求角时注意解的个数三、余弦定理1.余弦定理:)cos 1(2)(cos 22222A bc c b A bc c b a +-+=-+= )cos 1(2)(cos 22222B ac c a B ac c a b +-+=-+= )cos 1(2)(cos 22222C ab b a C ab b a c +-+=-+= 注:后面的变形常与韦达定理结合使用。

2.变形:bc a c b A 2cos 222-+= ac b c a B 2cos 222-+= abc b a C 2cos 222-+=注意整体代入,如:21cos 222=⇒=-+B ac b c a3.三角形中线:△ABC 中, D 是BC 的中点,则222221BC AC AB AD -+= 4.三角形的形状①若222c b a >+时,角C 是锐角 ②若222c b a =+时,角C 是直角③若222c b a <+时,角C 是钝角如:锐角三角形的三边为x ,2,1,求x 的取值范围; 钝角三角形的三边为x ,2,1,求x 的取值范围; 5.应用①用余弦定理求角时只有一个解 ②已知32,2,60===O b a A ,求边c课后作业一、选择题1.在ABC ∆中,6=a , 30=B ,120=C ,则ABC ∆的面积是( )A .9B .18C .39D .3182.在ABC ∆中,若bBa A cos sin =,则B 的值为( ) A . 30 B . 45 C . 60 D .903.在ABC ∆中,若B a b sin 2=,则这个三角形中角A 的值是( )A . 30或 60B . 45或 60C . 60或 120D .30或 150 4.在ABC ∆中,根据下列条件解三角形,其中有两个解的是( )A .10=b , 45=A , 70=CB .60=a ,48=c ,60=BC .7=a ,5=b , 80=AD .14=a ,16=b ,45=A5.已知三角形的两边长分别为4,5,它们夹角的余弦是方程02322=-+x x 的根,则第三边长是( )A .20B .21C .22D .61 6.在ABC ∆中,如果bc a c b c b a 3))((=-+++,那么角A 等于( )A .30 B .60 C .120 D .1507.在ABC ∆中,若60=A ,16=b ,此三角形面积3220=S ,则a 的值是( )A .620B .75C .51D .49 8.在△ABC 中,AB=3,BC=13,AC=4,则边AC 上的高为( )A .223B .233 C .23 D .339.在ABC ∆中,若12+=+c b , 45=C ,30=B ,则( )A .2,1==c bB .1,2==c bC .221,22+==c bD .22,221=+=c b 10.如果满足60=∠ABC ,12=AC ,k BC =的△ABC 恰有一个,那么k 的取值范围是( )A .38=kB .120≤<kC .12≥kD .120≤<k 或38=k11.在ABC ∆中,若6:2:1::=c b a ,则最大角的余弦值等于_________________.12.在ABC ∆中,5=a , 105=B ,15=C ,则此三角形的最大边的长为_________. 13.在ABC ∆中,已知3=b ,33=c ,30=B ,则=a __________________. 14.在ABC ∆中,12=+b a , 60=A ,45=B ,则=a _________,=b _________.15、已知△ABC 中,22(sin 2A -sin 2C )=(a -b )sin B ,△ABC 外接圆半径为2. (1)求∠C ; (2)若2=b ,求△ABC 的面积.17、在△ABC 中,角A ,B ,C 所对的边分别为c b a ,,,已知22sin 2sin 22c A b B a =+。

解三角形复习与练习

解三角形【Ⅰ】、解三角形知识点1、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,,则有2sin sin sin a b cR C ===A B (R 为C ∆AB 的外接圆的半径) 2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =;②sin 2aRA =,sin 2b RB =,sin 2cC R =;③::sin :sin :sin a b c C =A B ;利用正弦定理,可以解决以下两类有关三角形的问题. (1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边的对角.(从而进一步求出其他的边和角)3、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B . 4、余弦定理:在C ∆AB 中,有2222cos ab c bc =+-A ,推论:222cos 2+-A =b c a bc利用余弦定理,可以解决以下两类有关三角形的问题: (1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两个角.【Ⅱ】、典型例题: 一、利用正弦定理解题1、在△ABC 中,由已知条件解三角形,其中有两解的是( ) A .b =20,A =45°,C =80° B .a =30,c =28,B =60° C .a =14,b =16,A =45°D .a =12,c =15,A =1202、301205,, 在中,已知,解三角形。

ABC A B b ∆===3、已知122tan ,tan ,ABC B C ∆==-面积为1,求ABC ∆的边长以及外接圆的面积。

二、利用余弦定理解题1、在ABC ∆中,若其面积222S =,则C ∠=_______。

2、边长为5,7,8的三角形的最大角与最小角的和是( ) A .090 B .0120 C .0135 D .01503、在ABC ∆中,32104,,cos ,.C A a c A b =+==求三、三角形形状的判定1、在△ABC 中,若)sin()()sin()(2222B A b a B A b a +-=-+,请判断三角形的形状。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解 如图所示,某人在 C 处, AB 为塔高, 他沿 CD 前进 ,CD= 40,此时∠ DBF= 45° , 过点 B 作 BE⊥ CD 于 E,则∠ AEB= 30° , 在△ BCD 中, CD= 40,∠ BCD= 30° , ∠ DBC= 135° , CD BD 由正弦定理,得 = , sin∠ DBC sin∠ BCD 40sin 30° ∴ BD= = 20 2.∠ BDE= 180° - 135° - 30° = 15° . sin 135° 在 Rt△ BED 中, 6- 2 BE= DBsin 15° = 20 2× = 10( 3- 1). 4 在 Rt△ ABE 中, ∠ AEB= 30° , 10 ∴ AB= BEtan 30° = (3- 3)(米 ). 3 10 故所求的塔高为 (3- 3)米. 3
规律总结:(1)根据所给等式的结 构特点利用余弦定理将角化边进 行变形是迅速解答本题的关键. (2)熟练运用余弦定理及其推论, 同时还要注意整体思想、方程思 想在解题过程中的运用.
题型二 正、余弦定理的综合应用 例 2 在△ABC 中,内角 A,B,C 所对的边长分别是 a,b,c. π (1)若 c=2,C= ,且△ABC 的面积为 3,求 a,b 的值; 3 (2)若 sin C+sin(B-A)=sin 2A,试判断△ABC 的形状.
例 1 在△ABC 中,a、b、c 分别是角 A、B、C 的对边, cos B b 且 =- . cos C 2a+c (1)求角 B 的大小; (2)若 b= 13,a+c=4,求△ABC 的面积.
思维启迪
cos B b 由cos C=- , 2a+c
利用余弦定理转化为边的关系求解.

a2+c2-b2 (1)由余弦定理知:cos B= , 2ac
变式训练 在△ABC 中,a,b,c 分别为内角 A,B,C 的对边, 且 2asin A=(2b+c)sin B+(2c+b)sin C. (1)求 A 的大小; (2)若 sin B+sin C=1,试判断△ABC 的形状.
思维启迪
(1)正弦定理 a=2Rsin A,b=2Rsin B,c=2Rsin C 将
思维启迪 由于 AB=5, ∠ADB=45° , 因此要求 BD, 可在△ABD 中,由正弦定理求解,关键是确定∠BAD 的正弦值.在△ABC 中, AB = 5 , AC = 9 , ∠ACB = 30° ,因此可用正弦定理求出 sin∠ABC,再依据∠ABC 与∠BAD 互补确定 sin∠BAD 即可.
53+ 3· sin 45° = sin 105° 53+ 3· sin 45° = sin 45° cos 60° +cos 45° sin 60° 5 3 3+ 1 = =10 3(海里). 3+ 1 2
又∠DBC=∠DBA+∠ABC=30° +(90° -60° )=60° , BC=20 3海里, 在△DBC 中,由余弦定理得

在 △ ABC 中, AB= 5, AC= 9, ∠ BCA= 30° . AB AC 由正弦定理,得 = , sin∠ BCA sin∠ ABC AC· sin∠BCA 9sin 30° 9 sin∠ ABC= = = . AB 5 10 ∵ AD∥ BC,∴∠BAD= 180° -∠ ABC, 9 于是 sin∠ BAD= sin∠ ABC= . 10 9 同理,在△ ABD 中, AB= 5, sin∠BAD= , 10 AB BD ∠ ADB= 45° ,由正弦定理: = , sin∠ BDA sin∠ BAD 9 2 9 2 解得 BD= .故 BD 的长为 . 2 2 规律总结:要利用正、余弦定理解决问题,需将多边形
(2)第一课时主要是闯关训练,同时完成例1和变式训练,比较顺 利;
(3)第二课时完成例2、例3及其变式训练,时间刚好。其中3班龚 凯峰提出例1的第(1)问 还可以用正弦定理,正好印证了两大定理各展所长,各有利弊,王 洋提出例3可以过D作AC的平行线,从而在三角形BDE中直接用正 弦定理可以求出BD的长; (4)第三课时讲了例4、例5及例4的变式训练,重点是引导启发学 生画出示意图,将实际问题能很快转化为解三角形的问题,例5后 面的变式训练未进行。
a2+b2-c2 cos B b cos C = .将上式代入 =- 得: 2ab cos C 2a+c a2+c2-b2 2ab b ·2 =- , 2 2 2ac a +b -c 2a+c 整理得:a2+c2-b2=-ac. a2+c2-b2 -ac 1 ∴cos B= = =- . 2ac 2ac 2 2 ∵B 为三角形的内角,∴B= π. 3 2 (2)将 b= 13, a+ c= 4, B= π 代入 b2= a2+ c2- 3 2accos B,得 b2=(a+c)2-2ac-2accos B, 1 ∴13=16-2ac1-2,∴ac=3. 1 3 3 ∴S△ABC= acsin B= . 2 4
由已知,A1B1=20,∠B1A1B2=105° -60° =45° , 在△A1B2B1 中,由余弦定理, B1B22=A1B12+A1B22-2A1B1· A1B2· cos 45° 2 =20 +(10 2) -2×20×10 2× =200. 2
2 2
∴B1B2=10 2. 因此,乙船的速度的大小为 10 2 20 ×60=30 2(海里/小时). 即乙船每小时航行 30 2海里.
解析:
如图所示,连结
A 1 B 2,
由已知 A 2 B 2 = 10 2 ,
20 A 1 A 2 = 30 2 × = 10 2 , ∴ A 1 A 2= A 2 B 2 , 60
又 ∠ A 1 A 2 B 2 = 180° - 120° = 60° , ∴△ A 1 A 2 B 2 是等边三角形, ∴ A 1 B 2 = A 1 A 2 = 10 2 ,
规律总结
布置作业:
1、课本P64总复习参考题 2、练习册第二章测试题
(1)章节复习计划用两课时,实际上用了三课时,原来采用的是 让学生自己归纳总结本章的知识内容和数学思想方法,由于本章只 有两个定理,设计的公式不多,故采用让学生闯关的方法来回顾主 要的数学知识和方法,然后和学生一起探讨例题和变式训练,最后 由学生完成,训练学生的动手能力;
章节复习(三课时)
知识梳理
[难点正本 疑点清源] 解三角形时,三角形解的个数的判断 在△ABC 中,已知 a、b 和 A 时,解的情况如下: A 为锐角 A 为钝角 或直角
图形
关系式 a=bsin A 解的个 数 一解
bsin A <a<b 两解
a≥b 一解
a>b 一解
题型一
利用正、余弦定理求解三角形

π (1)∵c=2,C=3,
∴由余弦定理 c2=a2+b2-2abcos C 得 a2+b2-ab=4.又∵△ABC 的面积为 3, 1 ∴2absin C= 3,ab=4.
a2+b2-ab=4, 联立方程组 ab=4,
解得 a=2,b=2.
(2)由 sin C+sin(B-A)=sin 2A, 得 sin(A+B)+sin(B-A)=2sin Acos A, 即 2sin Bcos A=2sin Acos A, ∴cos A· (sin A-sin B)=0, ∴cos A =0 或 sin A-sin B=0, 当 cos A=0 时,∵0<A<π, π ∴A= ,△ABC 为直角三角形; 2 当 sin A-sin B=0 时,得 sin B=sin A,由正弦定理得 a=b,即 △ABC 为等腰三角形. ∴△ABC 为等腰三角形或直角三角形.
规律总结:在已知关系式中,若既含有边又含有角.通常的 思路是:将角都化成边或将边都化成角,再结合正、余弦定 理即可求角.
题型三 正、余弦定理在平面几何中的综合应用 例 3 如图所示,在梯形 ABCD 中, AD∥BC,AB=5,AC=9, ∠BCA=30° ,∠ADB=45° , 求 BD 的长.
• 例5(2010·陕西卷)如图,A,B是海面上位 于东西方向相距5(3+ 3 )海里的两个观测 点,现位于A点北偏东45°,B点北偏西 60°的D点有一艘轮船发出求救信号,位 于B点南偏西60°且与B点相距20海里的C 点的救援船立即前往营救,其航行速度为 30海里/时,该救援船到达D点需要多长时 间?
题型4 正余弦定理在实际生活中的应用
变式训练 某人在塔的正东沿着南偏西 60° 的方向前进 40 米后,望见塔 在东北方向,若沿途测得塔顶的最大仰角为 30° ,求塔高.
思维启迪 依题意画图,某人在 C 处,AB 为塔
高,他沿 CD 前进,CD=40 米,此时∠DBF= 45° ,从 C 到 D 沿途测塔的仰角,只有 B 到测 试点的距离最短时,仰角才最大,这是因为 AB tan∠AEB=BE,AB 为定值,BE 最小时,仰角 最大.要求出塔高 AB,必须先求 BE,而要求 BE,需先求 BD(或 BC).
角化为边. (2)利用正弦定理将边化为角表示.
解 (1)由已知,根据正弦定理得 2a2=(2b+c)b+(2c+b)c, 即 a2=b2+c2+bc. 由余弦定理得 a2=b2+c2-2bccos A, 1 故 cos A=-2,又∵0° <A<180° ,∴A=120° . ①
(2)由①得 sin2A=sin2B+sin2C+sin Bsin C. 3 ∴ =(sin B+sin C)2-sin Bsin C, 4 又 sin B+sin C=1, 1 ∴sin Bsin C= . 4 1 解②③联立的方程组,得 sin B=sin C= . 2 因为 0° <B<60° ,0° <C<60° ,故 B=C. 所以△ABC 是等腰的钝角三角形 3)海里, ∠DBA=90° -60° =30° ,∠DAB=90° -45° =45° , ∴∠ADB=180° -(45° +30° )=105° . DB AB 在△DAB 中,由正弦定理得 = , sin∠DAB sin∠ADB AB· sin∠DAB ∴DB= sin∠ADB
相关文档
最新文档