华东师大初中数学中考冲刺:创新、开放与探究型问题--知识讲解(基础)

合集下载

华东师大初中数学中考冲刺:观察、归纳型问题--知识讲解(基础)【推荐】.doc

华东师大初中数学中考冲刺:观察、归纳型问题--知识讲解(基础)【推荐】.doc

中考冲刺:观察、归纳型问题—知识讲解(基础)【中考展望】主要通过观察、实验、归纳、类比等活动,探索事物的内在规律,考查学生的逻辑推理能力,一般以解答题为主.归纳猜想型问题在中考中越来越被命题者所注重.这类题要求根据题目中的图形或者数字,分析归纳,直观地发现共同特征,或者发展变化的趋势,据此去预测估计它的规律或者其他相关结论,使带有猜想性质的推断尽可能与现实情况相吻合,必要时可以进行验证或者证明,以此体现出猜想的实际意义.【方法点拨】观察、归纳猜想型问题对考生的观察分析能力要求较高,经常以填空等形式出现,解题时要善于从所提供的数字或图形信息中,寻找其共同之处,这个存在于个例中的共性,就是规律.其中蕴含着“特殊——一般——特殊”的常用模式,体现了总结归纳的数学思想,这也正是人类认识新生事物的一般过程.相对而言,猜想结论型问题的难度较大些,具体题目往往是直观猜想与科学论证、具体应用的结合,解题的方法也更为灵活多样:计算、验证、类比、比较、测量、绘图、移动等等,都能用到.考查知识分为两类:①是数字或字母规律探索型问题;②是几何图形中规律探索型问题.1.数式归纳题型特点:通常给定一些数字、代数式、等式或不等式,然后观察猜想其中蕴含的规律,归纳出用某一字母表示的能揭示其规律的代数式或按某些规律写出后面某一项的数或式子.解题策略:一般是先写出数或式的基本结构,然后通过横比(比较同一等式中不同部分的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式.2.图形变化归纳题型特点:观察给定图形的摆放特点或变化规律,归纳出下一个图形的摆放特点或变化规律,或者能用某一字母的代数式揭示出图形变化的个数、面积、周长等规律特点.解题策略:多方面、多角度进行观察比较得出图形个数、面积、周长等的通项,再分别取n =1,2,3…代入验证,都符合时即为正确结论.【典型例题】类型一、数式归纳1.试观察下列各式的规律,然后填空:2(1)(1)1x x x -+=-;23(1)(1)1x x x x -++=-;324(1)(1)1x x x x x -+++=-;…;则109(1)(x x x -++…1)x ++=________.【思路点拨】根据前几个等式的规律,不难得出1(1)(n n x x x--++…11)1n x x +++=-. 【答案与解析】答案:111x -.【总结升华】此题归纳方法很多,注意每行数字的变化规律和符号规律.举一反三:【变式1】观察下列各式:(x -1)(x +1)=x 2-1;(x -1)(x 2+x +1)=x 3-1;(x -1)(x 3+x 2+x +1)=x 4-1;… … …(1)根据规律填空 (x-1)(x n+x n-1+…+x+1)=__ __________.(2)根据规律计算 2100+299+298+297+…+22+2 +1= . 【答案】(1) x n+1-1 ;(2) 2101-1.【高清课堂:观察、归纳型问题例1】【变式2】按一定规律排列的一列数依次为:14916,,,,,3579按此规律排列下去,这列数中的第5个数是,第n个数是.【答案】2 25n;. 112n+1类型二、图形变化归纳2.(招远市期末)如图是一个装饰连续旋转闪烁所成的四个图形,照此规律闪烁,第2012次闪烁呈现出来的图形是()A.B.C.D.【思路点拨】从所给四个图形中可以得出每旋转一次的度数,根据阴影所处的位置的规律即可算出2012次之后的图形.【答案与解析】解:易得每旋转一次,旋转角为90°,即每4次旋转一周,∵2012÷4=503,即第2012次与第4次的图案相同.故选B.【总结升华】找到图形的变化规律是解题的关键.举一反三:【变式】如图是今年元宵花灯展中一款五角星灯连续旋转闪烁所成的三个图形,照此规律闪烁,下一个呈现出来的图形是()A. B. C. D.【答案】A.3.(2015•海宁市模拟)操作:将一个边长为1的等边三角形(如图1)的每一边三等分,以居中那条线段为底边向外作等边三角形,并去掉所作的等边三角形的一条边,得到一个六角星(如图2),称为第一次分形.接着对每个等边三角形凸出的部分继续上述过程,即在每条边三等分后的中段向外画等边三角形,得到一个新的图形(如图3),称为第二次分形.不断重复这样的过程,就能得到雪花曲线.问题:(1)从图形的对称性观察,图4是图形(轴对称或中心对称图形)(2)图2的周长为;(3)试猜想第n次分形后所得图形的周长为.【思路点拨】(1)根据图形变化规律,图4仍然关于原三角形的对称轴成轴对称,关于对称中心成中心对称;(2)分形后,三角形的边长增加,变为原来的,再乘以3就是周长;(3)每一次分形后,边长都变为原来的,第n次分形后边长就变为原来的()n倍,再乘以3就是周长.【答案与解析】解:(1)图4是中心对称图形又是轴对称图形.(2)根据题意,边长为×4=,周长为×3=4;(3)n次分形,边长变为原来的()n倍,周长为3×()n×1=3×()n.故答案为:中心对称图形又是轴对称图形,4,3×()n.【总结升华】此题考查图形的变化规律,找出图形之间的联系,得出运算规律解决问题.类型三、数值、数量结果归纳4.在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点叫做整点.已知点A(0,4),点B是x轴正半轴上的整点,记△AOB内部(不包括边界)的整点个数为m.当m=3时,点B的横坐标的所有可能值是;当点B的横坐标为4n(n为正整数)时,m= (用含n的代数式表示).【思路点拨】根据题意画出图形,再找出点B的横坐标与△AOB内部(不包括边界)的整点m之间的关系即可求出答案.【答案与解析】解:如图:当点B 在(3,0)点或(4,0)点时,△AOB 内部(不包括边界)的整点为(1,1)(1,2)(2,1),共三个点,所以当m=3时,点B 的横坐标的所有可能值是3或4;因为△AOB 内部(不包括边界)的整点个数=[(点B 的横坐标-1)×(点A 的纵坐标-1)-3]÷2, 所以当点B 的横坐标为4n (n 为正整数)时,m=[(4n-1)×(4-1)-3]÷2=6n -3;故答案为:3或4,6n-3.【总结升华】此题考查了点的坐标,关键是根据题意画出图形,找出点B 的横坐标与△AOB 内部(不包括边界)的整点m 之间的关系,考查数形结合的数学思想方法.【高清课堂:观察、归纳型问题 例2】【变式】(2016秋•宝应县期中)我们常常用火柴棒搭几何图形探究其中的数学规律,如图是用火柴棒搭几何图形的学习实践活动,请根据几何图形思考并完成下列问题:(1)填表: 图形编号1 2 3 … 火柴棒根数 …(2)搭第n 个这样的图形需要 根火柴棒;(3)如果小红现有123根火柴棒,用它可搭出 个图1大小的梯形. 【答案】(1)图1有5根火柴棒,图2有9根火柴棒,图3有13根火柴棒;(2)搭第n 个这样的图形需要5n ﹣(n ﹣1)=1+4n 根火柴棒,故答案为:1+4n ;(3)设小红现有123根火柴棒可搭出n 个图1大小的梯形,则1+4n=123,解得:n=30,即小红现有123根火柴棒可搭出30个图1大小的梯形,故答案为:30.类型四、数形归纳5.在一平直河岸l 同侧有A ,B 两个村庄,A ,B 到l 的距离分别是3 km 和2 km ,AB =a km(a >1).现计划在河岸l 上建一抽水站P ,用输水管向两个村庄供水.方案设计某班数学兴趣小组设计了两种铺设管道方案:如图①所示是方案一的示意图,设该方案中管道长度为d 1 (km),且1d PB BA =+(km)(其中BP ⊥l 于点P);如图②所示是方案二的示意图,设该方案中管道长度为d 2,且2d PA PB =+(km)(其中点A ′与点A 关于l 对称,A ′B 与l 交于点P).观察计算(1)在方案一中,d 1=________km(用含a 的式子表示);(2)在方案二中,组长小宇为了计算d 2的长,作了如图③所示的辅助线,请你按小宇同学的思路计算,d 2=________km(用含a 的式子表示).探索归纳(1)①当a =4时,比较大小:d 1________d 2(填“>”、“=”或“<”);②当a =6时,比较大小:d 1________d 2(填“>”、“=”或“<”);(2)请你参考方框中的方法指导,就a(当a >1时)的所有取值情况进行分析,要使铺设的管道长度较短,应选择方案一还是方案二?【思路点拨】观察计算:(1)由题意可以得知管道长度为d 1=PB+BA (km ),根据BP ⊥l 于点P 得出PB=2,故可以得出d 1的值为a+2.(2)由条件根据勾股定理可以求出KB 的值,由轴对称可以求出′K 的值,在Rt △KBA ′由勾股定理可以求出A ′B 的值224a +就是管道长度.探索归纳:(1)①把a=4代入d 1=a+2和d 2=224a +就可以比较其大小;②把a=6代入d 1=a+2和d 2=224a +就可以比较其大小;(2)分类进行讨论当d 1>d 2,d 1=d 2,d 1<d 2时就可以分别求出a 的范围,从而确定选择方案.【答案与解析】解:观察计算(1)a+2;(2)224a +.探索归纳(1)①<;②>.(2)2222212(2)(24)420d d a a a -=+-+=-.①当4a-20>0,即a >5时,22120d d ->, ∴120d d ->.∴12d d >;②当4a-20=0,即a =5时,22120d d -=,∴120d d -=.∴d 1=d 2;③当4200a -<,即a <5时,22120d d -<,∴120d d -<.∴12d d <.综上可知:当a >5时,选方案二;当a=5时,选方案一或方案二;当l<a<5时,选方案一.【总结升华】本题根据课本中所熟知的背景,打破原有的条条框框,开展探究性学习,最后通过科学的计算,推导出新的结论,即当1<a<5时选方案一,体现了平时教学中,学生开展课题学习,培养质疑精神的可贵.。

中考数学创新开放探究型问题题两套资料2017培优教学案精编

中考数学创新开放探究型问题题两套资料2017培优教学案精编

中考冲刺:创新、开放与探究型问题—知识讲解(一)【中考展望】所谓开放探索型问题指的是有些数学问题的条件、结论或解决方法不确定或不唯一,需要根据题目的特点进行分析、探索,从而确定出符合要求的答案(一个、多个或所有答案)或探索出解决问题的多种方法.由于开放探究型问题对考查学生思维能力和创造能力有积极的作用,是近几年中考命题的一个热点.通常这类题目有以下几种类型:条件开放与探索,结论开放和探索,条件与结论都开放与探索及方案设计、命题组合型、问题开放型等.【方法点拨】由于开放探究型试题的知识覆盖面较大,综合性较强,灵活选择方法的要求较高,再加上题意新颖,构思精巧,具有相当的深度和难度,所以要求同学们在复习时,首先对于基础知识一定要复习全面,并力求扎实牢靠;其次是要加强对解答这类试题的练习,注意各知识点之间的因果联系,选择合适的解题途径完成最后的解答.由于题型新颖、综合性强、结构独特等,此类问题的一般解题思路并无固定模式或套路,但是可以从以下几个角度考虑:1.利用特殊值(特殊点、特殊数量、特殊线段、特殊位置等)进行归纳、概括,从特殊到一般,从而得出规律.2.反演推理法(反证法),即假设结论成立,根据假设进行推理,看是推导出矛盾还是能与已知条件一致.3.分类讨论法.当命题的题设和结论不唯一确定,难以统一解答时,则需要按可能出现的情况做到既不重复也不遗漏,分门别类加以讨论求解,将不同结论综合归纳得出正确结果.4.类比猜想法.即由一个问题的结论或解决方法类比猜想出另一个类似问题的结论或解决方法,并加以严密的论证.以上所述并不能全面概括此类命题的解题策略,因而具体操作时,应更注重数学思想方法的综合运用.【典型例题】类型一、探究规律1.观察下列各式:222211⨯=+,333322⨯=+,444433⨯=+,555544⨯=+,…想一想,什么样的两数之积等于这两数之和?设n表示正整数,用关于n的等式表示这个规律.【思路点拨】所给各式中的两个数中,一个是分数,一个是整数,且分数的分子比分母大1,分子与整数相等,因此得出规律.【总结升华】这个规律是否正确呢?可将等式左右两边分别化简,即能得出结论.对于“数字规律”的观察,要善于发现其中的变量与不变量,以及变量与项数之间的关系,将规律用代数式表示出来.举一反三:【变式】(2015秋•日照期中)如图,把一条绳子折成3折,用剪刀从中剪断,如果剪一刀得到4条绳子,如果剪两刀得到7条绳子,如果剪三刀得到10条绳子,…,依照这种方法把绳子剪n刀,得到的绳子的条数为()A.n B.4n+5 C.3n+1 D.3n+4类型二、条件开放型2.如图所示,四边形ABCD是矩形,O是它的中心,E,F是对角线AC上的点.(1)若________________________,则△DEC≌△BFA(请你填上能使结论成立的一个条件);(2)证明你的结论.【思路点拨】(1)已知了一边AD=BC,和一角(AD∥BC,∠DAC=∠BCA)相等.根据全等三角形的判定AAS、SAS、ASA等,只要符合这些条件的都可以.(2)按照(1)中的条件根据全等三角形的判定进行证明即可.【总结升华】这是一道探索条件、补充条件的开放型试题,解决这类问题的一般方法是:从结论出发,由果寻因,逆向推理,探寻出使结论成立的条件;有时也采取把可能产生结论的条件一一列出,逐个分析考察.举一反三:【变式】如图,飞机沿水平方向(A,B两点所在直线)飞行,前方有一座高山,为了避免飞机飞行过低,就必须测量山顶M到飞行路线AB的距离MN.飞机能够测量的数据有俯角和飞行距离(因安全因素,飞机不能飞到山顶的正上方N处才测飞行距离),请设计一个求距离MN的方案,要求:(1)指出需要测量的数据(用字母表示,并在图中标出);(2)用测出的数据写出求距离MN的步骤.类型三、结论开放型写出来并证明.【思路点拨】此题需分三种情况讨论:第一种相等CD=BE,第二种垂直AF⊥BD,第三种是平行DB∥CE.首先利用全等三角形的性质,再利用三角形全等的判定定理分别进行证明即可.【总结升华】本题考查了全等三角形的判定及性质;要对全等三角形的性质及三角形全等的判断定理进行熟练掌握、反复利用,达到举一反三.举一反三:【变式】数学课上,李老师出示了这样一道题目:如图1,正方形ABCD的边长为12,P为边BC延长线上的一点,E为DP的中点,DP的垂直平分线交边DC于M,交边AB的延长线于N.当CP=6时,EM与EN的比值是多少?经过思考,小明展示了一种正确的解题思路:过E作直线平行于BC交DC,AB分别于F,G,如图2,则可得:DF DEFC EP=,因为DE EP=,所以DF FC=.可求出EF和EG的值,进而可求得EM与EN的比值.(1) 请按照小明的思路写出求解过程.(2) 小东又对此题作了进一步探究,得出了DP MN=的结论.你认为小东的这个结论正确吗?如果正确,请给予证明;如果不正确,请说明理由.类型四、动态探究型4.(2016•平南县二模)已知:在△AOB与△COD中,OA=OB,OC=OD,∠AOB=∠CO D=90°.(1)如图1,点C、D分别在边OA、OB上,连结AD、BC,点M为线段BC的中点,连结OM,则线段AD与OM之间的数量关系是,位置关系是;(2)如图2,将图1中的△COD绕点O逆时针旋转,旋转角为α(0°<α<90°).连结AD、BC,点M为线段BC的中点,连结OM.请你判断(1)中的两个结论是否仍然成立.若成立,请证明;若不成立,请说明理由;(3)如图3,将图1中的△COD绕点O逆时针旋转到使△COD的一边OD恰好与△AOB的边OA在同一条直线上时,点C落在OB上,点M为线段BC的中点.请你判断(1)中线段AD与OM之间的数量关系是否发生变化,写出你的猜想,并加以证明.【思路点拨】(1)AD与OM之间的数量关系为AD=2OM,位置关系是AD⊥OM;(2)(1)中的两个结论仍然成立,利用中位线定理得到FC=2OM ,利用SAS 得到三角形AOD 与三角形FOC 全等,利用全等三角形的对应边相等得到FC=AD ,等量代换得到AD=2OM ;由OM 为三角形BCF 的中位线,利用中位线定理得到OM 与CF 平行,利用两直线平行同位角相等得到∠BOM=∠F ,由全等三角形的对应角相等得到∠F=∠OAD ,等量代换得到∠BOM=∠OAD ,根据∠BOM 与∠AOM 互余,得到∠OAD 与∠AOM 互余,即可确定出OM 与AD 垂直,得证;(3)(1)中线段AD 与OM 之间的数量关系没有发生变化,理由为:如图3所示,延长DC 交AB 于E ,连结ME ,过点E 作EN ⊥AD 于N ,由三角形COD 与三角形AOB 都为等腰直角三角形,利用等腰直角三角形的性质得到四个角为45度,进而得到三角形MCE 与三角形AED 为等腰直角三角形,根据EN 为直角三角形ADE 斜边上的中线得到AD=2EN ,再利用三个角为直角的四边形为矩形得到四边形OMEN 为矩形,可得出EN=OM ,等量代换得到AD=2OM .【总结升华】此题考查了几何变换综合题,涉及的知识有:全等三角形的判定与性质,等腰直角三角形的判定与性质,三角形的中位线定理,是一道多知识点探究性试题. 类型五、创新型5.认真观察图3的4个图中阴影部分构成的图案,回答下列问题:(1)请写出这四个图案都具有的两个共同特征.特征1:_________________________________________________; 特征2:_________________________________________________.(2)请在图4中设计出你心中最美丽的图案,使它也具备你所写出的上述特征 【思路点拨】本题主要考查轴对称图形,中心对称图形的知识点,以及学生的观察能力及空间想象能力.图3图4中考冲刺:创新、开放与探究型问题—巩固练习(基础)【巩固练习】一、选择题1.若自然数n使得三个数的加法运算“n+(n+1)+(n+2)”产生进位现象,则称n为“连加进位数”.例如:2不是“连加进位数”,因为2+3+4=9不产生进位现象;4是“连加进位数”,因为4+5+6=15产生进位现象;51是“连加进位数”,因为51+52+63=156产生进位现象.如果从0,1,2,…,99这100个自然数中任取一个数,那么取到“连加进位数”的概率是( )A.0.88 B.0.89 C.0.90 D.0.912.如图,点A,B,P在⊙O上,且∠APB=50°,若点M是⊙O上的动点,要使△ABM为等腰三角形,则所有符合条件的点M有( )A.1个 B.2个 C.3个 D.4个3.(2016秋•永定区期中)下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有1颗棋子,第②个图形一共有6颗棋子,第③个图形一共有16颗棋子,…,则第⑧个图形中棋子的颗数为()A.226 B.181 C.141 D.106二、填空题4.(2015秋•淮安校级期中)电子跳蚤游戏盘为△ABC,AB=8,AC=9,BC=10,如果电子跳蚤开始时在BC边上的P0点,BP0=4.第一步跳蚤跳到AC边上P1点,且CP1=CP0;第二步跳蚤从P1跳到AB边上P2点,且AP2=AP1;第三步跳蚤从P2跳回到BC边上P3点,且BP3=BP2;…跳蚤按上述规则跳下去,第2015次落点为P2016,则P3与P2016之间的距离为.5.下图为手的示意图,在各个手指间标记字母A,B,C,D,请你按图中箭头所指方向(如A→B→C →D→C→B→A→B→C→…的方式)从A开始数连续的正整数1,2,3,4,…,当数到12时,对应的字母是________;当字母C第201次出现时,恰好数到的数是________;当字母C第2n+1次出现时(n为正整数),恰好数到的数是________(用含n的代数式表示).6. (1)如图(a),∠ABC=∠DCB,请补充一个条件:________,使△ABC≌△DCB.(2)如图(b),∠1=∠2,请补充一个条件:________,使△ABC≌△ADE.三、解答题7.如图所示,已知在梯形ABCD中,AD∥BC,AB=DC,对角线AC和BD相交于点O,E是BC边上一个动点(点E不与B,C两点重合),EF∥BD交AC于点F,EG∥AC交BD于点G.(1)求证:四边形EFOG的周长等于2OB;(2)请你将上述题目的条件“梯形ABCD中,AD∥BC,AB=DC”改为另一种四边形,其他条件不变,使得结论“四边形EFOG的周长等于2OB”仍成立,并将改编后的题目画出图形,写出已知、求证,不必证明.8.如图所示,平面直角坐标系内有两条直线1l ,2l ,直线1l 的解析式为213y x =-+.如果将坐标纸折叠,使直线1l 与2l 重合,此时点(-2,0)与点(0,2)也重合.(1)求直线2l 的解析式;(2)设直线1l 与2l 相交于点M .问:是否存在这样的直线:l y x t =+,使得如果将坐标纸沿直线l 折叠,点M 恰好落在x 轴上?若存在,求出直线l 的解析式;若不存在,请说明理由. 9.(2015•黄陂区校级模拟)正方形ABCD 中,将一个直角三角板的直角顶点与点A 重合,一条直角边与边BC 交于点E (点E 不与点B 和点C 重合),另一条直角边与边CD 的延长线交于点F . (1)如图①,求证:AE=AF ;(2)如图②,此直角三角板有一个角是45°,它的斜边MN 与边CD 交于G ,且点G 是斜边MN 的中点,连接EG ,求证:EG=BE+DG ; (3)在(2)的条件下,如果=,那么点G 是否一定是边CD 的中点?请说明你的理由.10. (2016•天门)如图①,半圆O的直径AB=6,AM和BN是它的两条切线,CP与半圆O相切于点P,并于AM,BN分别相交于C,D两点.(1)请直接写出∠COD的度数;(2)求AC•BD的值;(3)如图②,连接OP并延长交AM于点Q,连接DQ,试判断△PQD能否与△ACO相似?若能相似,请求AC:BD的值;若不能相似,请说明理由.中考冲刺:创新、开放与探究型问题—知识讲解(二)【中考展望】所谓开放探索型问题指的是有些数学问题的条件、结论或解决方法不确定或不唯一,需要根据题目的特点进行分析、探索,从而确定出符合要求的答案(一个、多个或所有答案)或探索出解决问题的多种方法.由于开放探究型问题对考查学生思维能力和创造能力有积极的作用,是近几年中考命题的一个热点.通常这类题目有以下几种类型:条件开放与探索,结论开放和探索,条件与结论都开放与探索及方案设计、命题组合型、问题开放型等.【方法点拨】由于开放探究型试题的知识覆盖面较大,综合性较强,灵活选择方法的要求较高,再加上题意新颖,构思精巧,具有相当的深度和难度,所以要求同学们在复习时,首先对于基础知识一定要复习全面,并力求扎实牢靠;其次是要加强对解答这类试题的练习,注意各知识点之间的因果联系,选择合适的解题途径完成最后的解答.由于题型新颖、综合性强、结构独特等,此类问题的一般解题思路并无固定模式或套路,但是可以从以下几个角度考虑:1.利用特殊值(特殊点、特殊数量、特殊线段、特殊位置等)进行归纳、概括,从特殊到一般,从而得出规律.2.反演推理法(反证法),即假设结论成立,根据假设进行推理,看是推导出矛盾还是能与已3.分类讨论法.当命题的题设和结论不唯一确定,难以统一解答时,则需要按可能出现的情况做到既不重复也不遗漏,分门别类加以讨论求解,将不同结论综合归纳得出正确结果.4.类比猜想法.即由一个问题的结论或解决方法类比猜想出另一个类似问题的结论或解决方法,并加以严密的论证.以上所述并不能全面概括此类命题的解题策略,因而具体操作时,应更注重数学思想方法的综合运用.【典型例题】类型一、探索规律1.(2015•武汉校级二模)如图,△ABC面积为1,第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB,C1B=CB,C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,…按此规律,要使得到的三角形的面积超过2014,最少经过()次操作.A.7 B.6 C.5 D.4【思路点拨】先根据已知条件求出△A1B1C1及△A2B2C2的面积,再根据两三角形的倍数关系求解即可.【总结升华】考查了三角形的面积,此题属规律性题目,解答此题的关键是找出相邻两次操作之间三角形面积的关系,再根据此规律求解即可.举一反三:【变式】(2016•抚顺)如图,△A1A2A3,△A4A5A5,△A7A8A9,…,△A3n﹣2A3n﹣1A3n(n为正整数)均为等边三角形,它们的边长依次为2,4,6,…,2n,顶点A3,A6,A9,…,A3n均在y轴上,点O是所有等边三角形的中心,则点A2016的坐标为 .类型二、条件开放型、结论开放型2【思路点拨】(1)首先由BC在x轴上,在等腰△ABC中,即可过顶点A作AD⊥BC交BC于D,根据三线合一的性质,可得BD=CD,即B,C关于点D对称,则可求得满足条件的点B、点C的坐标;(2)连接OA,由等腰三角形ABC的顶点A的坐标为(2,2),易证得△AOB≌△AOC,则可知OB=OC,继而可得满足条件的点B、点C的坐标.【总结升华】此题考查了等腰三角形的性质,全等三角形的判定与性质等知识.此题难度适中,解题的关键是注意数形结合思想的应用,注意辅助线的作法.举一反三:【变式】在平面直角坐标系中,等腰三角形ABC的顶点A的坐标为(2,2).(1)若底边BC在x轴上,请写出一组满足条件的点B,点C的坐标:________________;设点B,点C的坐标分别为(m,0),(n,0),你认为m,n应满足怎样的条件?(2)若底边BC的两个端点分别在x轴,y轴上,请写出一组满足条件的点B,点C的坐标:______________;设点B,点C的坐标分别为(m,0),(0,n),你认为m,n应满足怎样的条件?类型三、条件和结论都开放的问题3.如图(1),四边形ABCD中,AD与BC不平行,现给出三个条件:①∠CAB=∠DBA,②AC=BD,③AD=BC.请你从上述三个条件中选择两个条件,使得加上这两个条件后能够推出ABCD是等腰梯形,并加以证明(只需证明一种情况).【思路点拨】有两种方法,第一种是:①∠CAB=∠DBA,②AC=BD;第二种是:②AC=BD,③AD=BC,均可利用等腰梯形的判定方法进行验证.【总结升华】此题一道开放性的题目,主要考查学生对等腰梯形的判定的掌握情况.举一反三:【变式】如图,ABCD是一张矩形纸片,AD=BC=1,AB=CD=5.在矩形ABCD的边AB上取一点M,在CD 上取一点N,将纸片沿MN折叠,使MB与DN交于点K,得到△MNK.(1)若∠1=70°,求∠MNK的度数.(2)△MNK的面积能否小于12?若能,求出此时∠1的度数;若不能,试说明理由.(3)如何折叠能够使△MNK的面积最大?请你利用备用图探究可能出现的情况,求出最大值.(备用图)类型四、动态探究型4.如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合,三角板的一边交CD于点F.另一边交CB的延长线于点G.(1)求证:EF=EG;(2)如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由:(3)如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B,其他条件不变,若AB=a、BC=b,求EFEG的值.【思路点拨】(1)由∠GEB+∠BEF=90°,∠DEF+∠BEF=90°,可得∠DEF=∠GEB,又由正方形的性质,可利用SAS 证得Rt△FED≌Rt△GEB,则问题得证;(2)首先点E分别作BC、CD的垂线,垂足分别为H、I,然后利用SAS证得Rt△FEI≌Rt△GEH,则问题得证;(3)首先过点E分别作BC、CD的垂线,垂足分别为M、N,易证EM∥AB,EN∥AD,则可证得△CEN ∽△CAD,△CEM∽△CAB,又由有两角对应相等的三角形相似,证得△GME∽△FNE,根据相似三角形的对应边成比例,即可求得答案..【总结升华】此题考查了正方形、矩形的性质,以及全等三角形与相似三角形的判定与性质.此题综合性较强,注意数形结合思想的应用.举一反三:【变式1】已知:如图(a),在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿BA 方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),解答下列问题:(1)当t为何值时,PQ∥BC?(2)设△AQP的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值.若不存在,说明理由;(4)如图(b),连接PC,并把△POC沿QC翻折,得到四边形PQP′C,那么是否存在某一时刻t,使四边形PQP′C为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.举一反三:【变式2】如图,点D,E在△ABC的边BC上,连接AD,AE. ①AB=AC;②AD=AE;③BD=CE.以此三个等式中的两个作为命题的题设,另一个作为命题的结论,构成三个命题:①②⇒③;①③⇒②;②③⇒①.(1)以上三个命题是真命题的为(直接作答);(2)请选择一个真命题进行证明(先写出所选命题,然后证明).ABD CE类型五、创新型5.先阅读下列材料,然后解答问题:从A B C ,,三张卡片中选两张,有三种不同选法,抽象成数学问题就是从3个元素中选取2个元素组合,记作2332C 321⨯==⨯.一般地,从m 个元素中选取n 个元素组合,记作:(1)(1)C (1)321n m m m m n n n --+=-⨯⨯⨯例从7个元素中选5个元素,共有5776543C 2154321⨯⨯⨯⨯==⨯⨯⨯⨯种不同的选法.问题:从某学习小组10人中选取3人参加活动,不同的选法共有 种. 【思路点拨】本题需要学生读懂m 个元素中选取n 个元素的计算规则,然后针对具体的从10人中选取3人参加的计算.【总结升华】本题构思精妙、情境新颖.从试题的情境来看,本题以初中数学中的整数的乘除运算等基本运算为素材,以高中数学中组合数的定义及其计算公式为背景,展示给学生的是一个全新的问题,试题具有较大的自由度和思维空间,考查了阅读理解、知识迁移等多种数学能力,体现了主动探究精神,呈现出研究性学习的特点,从而进一步考查了学生自学高中数学知识的能力.从试题的解答来看,直接以组合数的定义及其计算公式为背景的试题在各种复习资料和模拟试题中从未见过,解决这个问题没有现成的“套路”和“招式”,需要学生自主学习组合数的定义及其计算公式的定义,综合运用多种数学思想方法,才能解决问题.中考冲刺:创新、开放与探究型问题—巩固练习(提高)【巩固练习】一、选择题1.(2016•重庆校级二模)下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有1个空心小圆圈,第②个图形中一共有6个空心小圆圈,第③个图形中一共有13个空心小圆圈,…,按此规律排列,则第⑦个图形中空心圆圈的个数为()A.61 B.63 C.76 D.782.如图,直角三角形纸片ABC中,AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D重合,折痕与AD交与点P1;设P1D的中点为D1,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2,第3次将纸片折叠,使点A与点D2重合,折痕与AD交于点P3;…;设P n﹣1D n﹣2的中点为D n﹣1,第n次将纸片折叠,使点A与点D n﹣1重合,折痕与AD交于点P n(n>2),则AP6的长为()A.512532⨯B.69352⨯C.614532⨯D.711352⨯3.下面两个多位数1248624…、6248624…,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是( ) A.495 B.497 C.501 D.503二、填空题4.(2015•合肥校级三模)如图,一个3×2的矩形(即长为3,宽为2)可以用两种不同方式分割成3或6个边长是正整数的小正方形,即:小正方形的个数最多是6个,最少是3个.(1)一个5×2的矩形用不同的方式分割后,小正方形的个数可以是 个,最少是 个; (2)一个7×2的矩形用不同的方式分割后,小正方形的个数最多是 个,最少是 个; (3)一个(2n+1)×2的矩形用不同的方式分割后,小正方形的个数最多是 个;最少是 个.(n 是正整数)5. 一园林设计师要使用长度为4L 的材料建造如图1所示的花圃,该花圃是由四个形状、大小完全一样的扇环面组成,每个扇环面如图2所示,它是以点O 为圆心的两个同心圆弧和延长后通过O 点的两条直线段围成,为使得绿化效果最佳,还须使得扇环面积最大.(1)使图①花圃面积为最大时R -r 的值为 ,以及此时花圃面积为 ,其中R 、r 分别为大圆和小圆的半径;(2)若L =160 m ,r =10 m ,使图面积为最大时的θ值为 .6.如图所示,已知△ABC 的面积1ABC S =△,在图(a)中,若11112AA BB CC AB BC CA ===,则11114A B C S =△; 在图(b)中,若22213AA BB CC AB BC CA ===,则222A B C 13S =△; 在图(c),若33314AA BB CC AB BC CA ===,则333716A B C S =△. …按此规律,若88819AA BB CC AB BC CA ===,则888A B C S =△________.三、解答题7.(2016•丹东模拟)已知,点D为直线BC上一动点(点D不与点B、C重合),∠BAC=90°,AB=AC,∠DAE=90°,AD=AE,连接CE.(l)如图1,当点D在线段BC上时,求证:①BD⊥CE,②CE=BC﹣CD;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CE、BC、CD三条线段之间的关系;(3)如图3,当点O在线段BC的反向延长线上时,且点A、E分别在直线BC的两侧,点F是DE 的中点,连接AF、CF,其他条件不变,请判断△ACF的形状,并说明理由.8.如图(a)、(b)、(c),在△ABC中,分别以AB,AC为边,向△ABC外作正三角形、正四边形、正五边形,BE,CD相交于点O.(1)①如图(a),求证:△ADC≌△ABE;②探究:图(a)中,∠BOC=________;图(b)中,∠BOC=________;图(c)中,∠BOC=________;(2)如图(d),已知:AB,AD是以AB为边向△ABC外所作正n边形的一组邻边;AC,AE是以AC 为边向△ABC外所作正n边形的一组邻边.BE,CD的延长相交于点O.①猜想:图(d)中,∠BOC=________________;(用含n的式子表示)②根据图(d)证明你的猜想.9. 如图(a),梯形ABCD中,AD∥BC,∠ABC=90°, AD=9,BC=12,AB=a,在线段BC上任取一点P(P不与B,C重合),连接DP,作射线.PE⊥DP,PE与直线AB交于点E.(1)试确定CP=3时,点E的位置;(2)若设CP=x(x>0),BE=y(y>0),试写出y关于自变量x的函数关系式;(3)若在线段BC上能找到不同的两点P1,P2,使按上述作法得到的点E都与点A重合,试求出此时a的取值范围.10. 点A,B分别是两条平行线m,n上任意两点,在直线n上找一点C,使BC=k·AB.连接AC,在直线AC上任取一点E,作∠BEF=∠ABC,EF交直线m于点F.(1)如图(a),当k=1时,探究线段EF与EB的关系,并加以说明;说明:①如果你经过反复探索没有解决问题,请写出探索过程(要求至少写三步);②在完成①之后,可以自己添加条件(添加的条件限定为∠ABC为特殊角),在图(b)中补全图形,完成证明.(2)如图(c),若∠ABC=90°,k≠l,探究线段EF与EB的关系,并说明理由.。

华东师大初中数学中考冲刺:创新、开放与探究型问题--知识讲解(基础)

华东师大初中数学中考冲刺:创新、开放与探究型问题--知识讲解(基础)

中考冲刺:创新、开放与探究型问题—知识讲解(基础)【中考展望】所谓开放探索型问题指的是有些数学问题的条件、结论或解决方法不确定或不唯一,需要根据题目的特点进行分析、探索,从而确定出符合要求的答案(一个、多个或所有答案)或探索出解决问题的多种方法.由于开放探究型问题对考查学生思维能力和创造能力有积极的作用,是近几年中考命题的一个热点.通常这类题目有以下几种类型:条件开放与探索,结论开放和探索,条件与结论都开放与探索及方案设计、命题组合型、问题开放型等.【方法点拨】由于开放探究型试题的知识覆盖面较大,综合性较强,灵活选择方法的要求较高,再加上题意新颖,构思精巧,具有相当的深度和难度,所以要求同学们在复习时,首先对于基础知识一定要复习全面,并力求扎实牢靠;其次是要加强对解答这类试题的练习,注意各知识点之间的因果联系,选择合适的解题途径完成最后的解答.由于题型新颖、综合性强、结构独特等,此类问题的一般解题思路并无固定模式或套路,但是可以从以下几个角度考虑:1.利用特殊值(特殊点、特殊数量、特殊线段、特殊位置等)进行归纳、概括,从特殊到一般,从而得出规律.2.反演推理法(反证法),即假设结论成立,根据假设进行推理,看是推导出矛盾还是能与已知条件一致.3.分类讨论法.当命题的题设和结论不唯一确定,难以统一解答时,则需要按可能出现的情况做到既不重复也不遗漏,分门别类加以讨论求解,将不同结论综合归纳得出正确结果.4.类比猜想法.即由一个问题的结论或解决方法类比猜想出另一个类似问题的结论或解决方法,并加以严密的论证.以上所述并不能全面概括此类命题的解题策略,因而具体操作时,应更注重数学思想方法的综合运用.【典型例题】类型一、探究规律1.观察下列各式:222211,333322,444433,555544,…想一想,什么样的两数之积等于这两数之和?设n表示正整数,用关于n的等式表示这个规律.【思路点拨】所给各式中的两个数中,一个是分数,一个是整数,且分数的分子比分母大1,分子与整数相等,因此得出规律.【答案与解析】所给各式中的两个数中,一个是分数,一个是整数,且分数的分子比分母大1,分子与整数相等,因此得到规律:11(1)(1)n nn nn n(n为正整数)【总结升华】这个规律是否正确呢?可将等式左右两边分别化简,即能得出结论.对于“数字规律”的观察,要善于发现其中的变量与不变量,以及变量与项数之间的关系,将规律用代数式表示出来.举一反三:【变式】(2015秋?日照期中)如图,把一条绳子折成3折,用剪刀从中剪断,如果剪一刀得到4条绳子,如果剪两刀得到7条绳子,如果剪三刀得到10条绳子,…,依照这种方法把绳子剪n刀,得到的绳子的条数为()A.n B.4n+5 C.3n+1 D.3n+4【答案】C【解析】解:设段数为x则依题意得:n=0时,x=1,n=1,x=4,n=2,x=7,n=3,x=10,…所以当n=n时,x=3n+1.故选:C.类型二、条件开放型2.如图所示,四边形ABCD是矩形,O是它的中心,E,F是对角线AC上的点.(1)若________________________,则△DEC≌△BFA(请你填上能使结论成立的一个条件);(2)证明你的结论.【思路点拨】(1)已知了一边AD=BC,和一角(AD∥BC,∠DAC=∠BCA)相等.根据全等三角形的判定AAS、SAS、ASA 等,只要符合这些条件的都可以.(2)按照(1)中的条件根据全等三角形的判定进行证明即可.【答案与解析】解:(1)AE=CF;(OE=OF;DE⊥AC,BF⊥AC;DE∥BF等等)(2)以AE=CF为例.∵四边形ABCD 是矩形,∴AB =CD ,AB ∥CD ,∠DCE =∠BAF .又∵AE =CF .∴AC -AE =AC -CF .∴AF =CE ,∴△DEG ≌△BAF .【总结升华】这是一道探索条件、补充条件的开放型试题,解决这类问题的一般方法是:从结论出发,由果寻因,逆向推理,探寻出使结论成立的条件;有时也采取把可能产生结论的条件一一列出,逐个分析考察.举一反三:【高清课堂:创新、开放与探究型问题例1】【变式】如图,飞机沿水平方向(A ,B 两点所在直线)飞行,前方有一座高山,为了避免飞机飞行过低,就必须测量山顶M 到飞行路线AB 的距离MN .飞机能够测量的数据有俯角和飞行距离(因安全因素,飞机不能飞到山顶的正上方N 处才测飞行距离),请设计一个求距离MN 的方案,要求:(1)指出需要测量的数据(用字母表示,并在图中标出);(2)用测出的数据写出求距离MN 的步骤.【答案】解:此题为开放题,答案不唯一,只要方案设计合理,可参照给分⑴如图,测出飞机在A 处对山顶的俯角为,测出飞机在B 处对山顶的俯角为,测出AB 的距离为d ,连接AM ,BM .⑵第一步,在AMN Rt 中,AN MN tan∴tan MN AN ;第二步,在BMN Rt 中,BN MN tan ∴tan MN BN ;其中BN dAN,解得tantantan tan d MN.类型三、结论开放型3.已知:如图(a),Rt △ABC ≌Rt △ADE ,∠ABC =∠ADE =90°,试以图中标有字母的点为端点,连接两条线段,如果你所连接的两条线段满足相等、垂直或平行关系中的一种,那么请你把它写出来并证明.【思路点拨】此题需分三种情况讨论:第一种相等CD=BE,第二种垂直AF⊥BD,第三种是平行DB∥CE.首先利用全等三角形的性质,再利用三角形全等的判定定理分别进行证明即可.【答案与解析】解:可以写出的结论有:CD=BE,DB∥CE,AF⊥BD,AF⊥CE等.(1)如图(b),连接CD,BE,得CD=BE.证明:∵△ABC≌△ADE,∴AB=AD,AC=AE.又∠CAB=∠EAD,∴∠CAD=∠E1AB.∴△ADC≌△ABE.∴CD=BE.(2)如图(c),连接DB,CE,得DB∥CE.证明:∵△ABC≌△ADE,∴AD=AB.∴∠ADB=∠ABD.∵∠ABC=∠ADE,∴∠BDF=∠FBD.由AC=AE可得∠ACE=∠AEC.∵∠ACB=∠AED,∴∠FCE=∠FEC.∵∠BDF+∠FBD=∠FCE+∠FEC,∴∠FCE=∠DBF.∴DB∥CE.(3)如图(d),连接DB,AF,得AF⊥BD.∵△ABC≌△ADE,∴AD=AB,∠ABC=∠ADE=90°.又∵AF=AF,∴△ADF≌△ABF.∴∠DAF=∠BAF.∴AF⊥BD.(4)如图(e),连接CE、AF,得AF⊥CE.同(3)得∠DAF=∠BAF.可得∠CAF=∠EAF.∴AF⊥BD.【总结升华】本题考查了全等三角形的判定及性质;要对全等三角形的性质及三角形全等的判断定理进行熟练掌握、反复利用,达到举一反三.举一反三:【高清课堂:创新、开放与探究型问题例2】【变式】数学课上,李老师出示了这样一道题目:如图1,正方形ABCD的边长为12,P为边BC延长线上的一点,E为DP的中点,DP的垂直平分线交边DC于M,交边AB的延长线于N.当CP=6时,EM与EN的比值是多少?经过思考,小明展示了一种正确的解题思路:过E作直线平行于BC交DC,AB分别于F,G,如图2,则可得:DF DEFC EP,因为DE EP,所以DF FC.可求出EF和EG的值,进而可求得EM与EN的比值.(1) 请按照小明的思路写出求解过程.(2) 小东又对此题作了进一步探究,得出了DP MN的结论.你认为小东的这个结论正确吗?如果正确,请给予证明;如果不正确,请说明理由.【答案】(1)解:过E 作直线平行于BC 交DC ,AB 分别于点F ,G ,则DF DE FCEP,EM EF ENEG,12GFBC .∵DE EP ,∴DFFC . ∴116322EFCP ,12315EG GFEF.∴31155EM EF ENEG.(2)证明:作MH ∥BC 交AB 于点H ,则MH CB CD ,90MHN .∵1809090DCP ,∴DCP MHN . ∵90MNH CMN DME CDP ,90DPCCDP ,∴DPCMNH .∴DPCMNH .∴DP MN .类型四、动态探究型4.(2016?平南县二模)已知:在△AOB 与△COD 中,OA=OB ,OC=OD ,∠AOB=∠COD=90°.(1)如图1,点C、D分别在边OA、OB上,连结AD、BC,点M为线段BC的中点,连结OM,则线段AD 与OM之间的数量关系是,位置关系是;(2)如图2,将图1中的△COD绕点O逆时针旋转,旋转角为α(0°<α<90°).连结AD、BC,点M为线段BC的中点,连结OM.请你判断(1)中的两个结论是否仍然成立.若成立,请证明;若不成立,请说明理由;(3)如图3,将图1中的△COD绕点O逆时针旋转到使△COD的一边OD恰好与△AOB的边OA在同一条直线上时,点C落在OB上,点M为线段BC的中点.请你判断(1)中线段AD与OM之间的数量关系是否发生变化,写出你的猜想,并加以证明.【思路点拨】(1)AD与OM之间的数量关系为AD=2OM,位置关系是AD⊥OM;(2)(1)中的两个结论仍然成立,利用中位线定理得到FC=2OM,利用SAS得到三角形AOD与三角形FOC 全等,利用全等三角形的对应边相等得到FC=AD,等量代换得到AD=2OM;由OM为三角形BCF的中位线,利用中位线定理得到OM与CF平行,利用两直线平行同位角相等得到∠BOM=∠F,由全等三角形的对应角相等得到∠F=∠OAD,等量代换得到∠BOM=∠OAD,根据∠BOM与∠AOM互余,得到∠OAD与∠AOM互余,即可确定出OM与AD垂直,得证;(3)(1)中线段AD与OM之间的数量关系没有发生变化,理由为:如图3所示,延长DC交AB于E,连结ME,过点E作EN⊥AD于N,由三角形COD与三角形AOB都为等腰直角三角形,利用等腰直角三角形的性质得到四个角为45度,进而得到三角形MCE与三角形AED为等腰直角三角形,根据EN为直角三角形ADE斜边上的中线得到AD=2EN,再利用三个角为直角的四边形为矩形得到四边形OMEN为矩形,可得出EN=OM,等量代换得到AD=2OM.【答案与解析】解:(1)线段AD与OM之间的数量关系是AD=2OM,位置关系是AD⊥OM;(2)(1)的两个结论仍然成立,理由为:证明:如图2,延长BO到F,使FO=BO,连结CF,∵M为BC中点,O为BF中点,∴MO为△BCF的中位线,∴FC=2OM,∵∠AOB=∠AOF=∠COD=90°,∴∠AOB+∠BOD=∠AOF+∠AOC,即∠AOD=∠FOC,在△AOD和△FOC中,,∴△AOD≌△FOC(SAS),∴FC=AD,∴AD=2OM,∵MO为△BCF的中位线,∴MO∥CF,∴∠MOB=∠F,又∵△AOD≌△FOC,∴∠DAO=∠F,∵∠MOB+∠AOM=90°,∴∠DAO+∠AOM=90°,即AD⊥OM;(3)(1)中线段AD与OM之间的数量关系没有发生变化,理由为:证明:如图3,延长DC交AB于E,连结ME,过点E作EN⊥AD于N,∵OA=OB,OC=OD,∠AOB=∠COD=90°,∴∠A=∠D=∠B=∠BCE=∠DCO=45°,∴AE=DE,BE=CE,∠AED=90°,∴DN=AN,∴AD=2NE,∵M为BC的中点,∴EM ⊥BC ,∴四边形ONEM 是矩形.∴NE=OM ,∴AD=2OM .故答案为:AD=2OM ;AD ⊥OM .【总结升华】此题考查了几何变换综合题,涉及的知识有:全等三角形的判定与性质,等腰直角三角形的判定与性质,三角形的中位线定理,是一道多知识点探究性试题.类型五、创新型5.认真观察图3的4个图中阴影部分构成的图案,回答下列问题:(1)请写出这四个图案都具有的两个共同特征.特征1:_________________________________________________;特征2:_________________________________________________.(2)请在图4中设计出你心中最美丽的图案,使它也具备你所写出的上述特征【思路点拨】本题主要考查轴对称图形,中心对称图形的知识点,以及学生的观察能力及空间想象能力.【答案与解析】(1)特征1:都是轴对称图形;特征2:都是中心对称图形;特征3:这些图形的面积都等于4个单位面积等.(2)满足条件的图形有很多,只要画正确一个,就可以得满分.图5【总结升华】本题为开放型试题,答案并不唯一,只要考生能够写出一种符合要求的情景即可,该题为考生提供了一个广阔的发挥空间,但是学生必须通过前四个图形发现其中蕴涵的规律,依照此规律来画出自己想象中的美妙图形.图4图3。

九年级数学专题复习创新、开放与探究型问题

九年级数学专题复习创新、开放与探究型问题

中考冲刺:创新、开放与探究型问题【中考展望】所谓开放探索型问题指的是有些数学问题的条件、结论或解决方法不确定或不唯一,需要根据题目的特点进行分析、探索,从而确定出符合要求的答案(一个、多个或所有答案)或探索出解决问题的多种方法.由于开放探究型问题对考查学生思维能力和创造能力有积极的作用,是近几年中考命题的一个热点.通常这类题目有以下几种类型:条件开放与探索,结论开放和探索,条件与结论都开放与探索及方案设计、命题组合型、问题开放型等.【方法点拨】由于开放探究型试题的知识覆盖面较大,综合性较强,灵活选择方法的要求较高,再加上题意新颖,构思精巧,具有相当的深度和难度,所以要求同学们在复习时,首先对于基础知识一定要复习全面,并力求扎实牢靠;其次是要加强对解答这类试题的练习,注意各知识点之间的因果联系,选择合适的解题途径完成最后的解答.由于题型新颖、综合性强、结构独特等,此类问题的一般解题思路并无固定模式或套路,但是可以从以下几个角度考虑:1.利用特殊值(特殊点、特殊数量、特殊线段、特殊位置等)进行归纳、概括,从特殊到一般,从而得出规律.2.反演推理法(反证法),即假设结论成立,根据假设进行推理,看是推导出矛盾还是能与已知条件一致.3.分类讨论法.当命题的题设和结论不唯一确定,难以统一解答时,则需要按可能出现的情况做到既不重复也不遗漏,分门别类加以讨论求解,将不同结论综合归纳得出正确结果.4.类比猜想法.即由一个问题的结论或解决方法类比猜想出另一个类似问题的结论或解决方法,并加以严密的论证.以上所述并不能全面概括此类命题的解题策略,因而具体操作时,应更注重数学思想方法的综合运用.【典型例题】类型一、探索规律例1.如图,△ABC面积为1,第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB,C1B=CB,C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,…按此规律,要使得到的三角形的面积超过2014,最少经过()次操作.A.7 B.6 C.5 D.4举一反三:【变式】如图,△A1A2A3,△A4A5A5,△A7A8A9,…,△A3n﹣2A3n﹣1A3n(n为正整数)均为等边三角形,它们的边长依次为2,4,6,…,2n,顶点A3,A6,A9,…,A3n均在y轴上,点O是所有等边三角形的中心,则点A2016的坐标为 .类型二、条件开放型、结论开放型例2.在平面直角坐标系中,等腰三角形ABC的顶点A的坐标为(2,2).(1)若底边BC在x轴上,请写出一组满足条件的点B、点C的坐标:;(2)若底边BC的两端点分别在x轴、y轴上,请写出一组满足条件的点B、点C的坐标: .举一反三:【变式】在平面直角坐标系中,等腰三角形ABC的顶点A的坐标为(2,2).(1)若底边BC在x轴上,请写出一组满足条件的点B,点C的坐标:________________;设点B,点C的坐标分别为(m,0),(n,0),你认为m,n应满足怎样的条件?(2)若底边BC的两个端点分别在x轴,y轴上,请写出一组满足条件的点B,点C的坐标:______________;设点B,点C的坐标分别为(m,0),(0,n),你认为m,n应满足怎样的条件?类型三、条件和结论都开放的问题例3.如图(1),四边形ABCD中,AD与BC不平行,现给出三个条件:①∠CAB=∠DBA,②AC=BD,③AD=BC.请你从上述三个条件中选择两个条件,使得加上这两个条件后能够推出ABCD是等腰梯形,并加以证明(只需证明一种情况).举一反三:【变式】如图,ABCD是一张矩形纸片,AD=BC=1,AB=CD=5.在矩形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN交于点K,得到△MNK.(1)若∠1=70°,求∠MNK的度数.(2)△MNK的面积能否小于12?若能,求出此时∠1的度数;若不能,试说明理由.(3)如何折叠能够使△MNK的面积最大?请你利用备用图探究可能出现的情况,求出最大值.(备用图)类型四、动态探究型例4.如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合,三角板的一边交CD于点F.另一边交CB的延长线于点G.(1)求证:EF=EG;(2)如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由:(3)如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B,其他条件不变,若AB=a、BC=b,求EFEG的值.【思路点拨】(1)由∠GEB+∠BEF=90°,∠DEF+∠BEF=90°,可得∠DEF=∠GEB,又由正方形的性质,可利用SAS证得Rt△FED≌Rt△GEB,则问题得证;(2)首先点E分别作BC、CD的垂线,垂足分别为H、I,然后利用SAS证得Rt△FEI≌Rt△GEH,则问题得证;(3)首先过点E分别作BC、CD的垂线,垂足分别为M、N,易证EM∥AB,EN∥AD,则可证得△CEN∽△CAD,△CEM∽△CAB,又由有两角对应相等的三角形相似,证得△GME∽△FNE,根据相似三角形的对应边成比例,即可求得答案.举一反三:【变式1】已知:如图(a),在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),解答下列问题:(1)当t为何值时,PQ∥BC?(2)设△AQP的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t 的值.若不存在,说明理由;(4)如图(b),连接PC,并把△POC沿QC翻折,得到四边形PQP′C,那么是否存在某一时刻t,使四边形PQP′C为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.举一反三:【变式2】如图,点D,E在△ABC的边BC上,连接AD,AE. ①AB=AC;②AD=AE;③BD=CE.以此三个等式中的两个作为命题的题设,另一个作为命题的结论,构成三个命题:①②⇒③;①③⇒②;②③⇒①.(1)以上三个命题是真命题的为(直接作答);(2)请选择一个真命题进行证明(先写出所选命题,然后证明).ED CBA类型五、创新型例5.先阅读下列材料,然后解答问题:从A B C ,,三张卡片中选两张,有三种不同选法,抽象成数学问题就是从3个元素中选取2个元素组合,记作2332C 321⨯==⨯.一般地,从m 个元素中选取n 个元素组合,记作:(1)(1)C (1)321n m m m m n n n --+=-⨯⨯⨯例从7个元素中选5个元素,共有5776543C 2154321⨯⨯⨯⨯==⨯⨯⨯⨯种不同的选法.问题:从某学习小组10人中选取3人参加活动,不同的选法共有 种.【巩固练习】一、选择题1.下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有1个空心小圆圈,第②个图形中一共有6个空心小圆圈,第③个图形中一共有13个空心小圆圈,…,按此规律排列,则第⑦个图形中空心圆圈的个数为()A.61 B.63 C.76 D.782.如图,直角三角形纸片ABC中,AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D 重合,折痕与AD交与点P1;设P1D的中点为D1,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2,第3次将纸片折叠,使点A与点D2重合,折痕与AD交于点P3;…;设P n﹣1D n﹣2的中点为D n﹣1,第n次将纸片折叠,使点A与点D n﹣1重合,折痕与AD交于点P n(n>2),则AP6的长为()A.512532⨯B.69352⨯C.614532⨯D.711352⨯3.下面两个多位数1248624…、6248624…,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是( ) A.495 B.497 C.501 D.5034.如图,一个3×2的矩形(即长为3,宽为2)可以用两种不同方式分割成3或6个边长是正整数的小正方形,即:小正方形的个数最多是6个,最少是3个.(1)一个5×2的矩形用不同的方式分割后,小正方形的个数可以是 个,最少是 个; (2)一个7×2的矩形用不同的方式分割后,小正方形的个数最多是 个,最少是 个; (3)一个(2n+1)×2的矩形用不同的方式分割后,小正方形的个数最多是 个;最少是 个.(n 是正整数)5. 一园林设计师要使用长度为4L 的材料建造如图1所示的花圃,该花圃是由四个形状、大小完全一样的扇环面组成,每个扇环面如图2所示,它是以点O 为圆心的两个同心圆弧和延长后通过O 点的两条直线段围成,为使得绿化效果最佳,还须使得扇环面积最大.(1)使图①花圃面积为最大时R -r 的值为 ,以及此时花圃面积为 ,其中R 、r 分别为大圆和小圆的半径;(2)若L =160 m ,r =10 m ,使图面积为最大时的θ值为 .6.如图所示,已知△ABC 的面积1ABC S =△,在图(a)中,若11112AA BB CC AB BC CA ===,则11114A B C S =△; 在图(b)中,若22213AA BB CC AB BC CA ===,则222A B C 13S =△;在图(c),若33314AA BB CC AB BC CA ===,则333716A B C S =△.…按此规律,若88819AA BB CC AB BC CA ===,则888A B C S =△________.7.(2016•丹东模拟)已知,点D为直线BC上一动点(点D不与点B、C重合),∠BAC=90°,AB=AC,∠DAE=90°,AD=AE,连接CE.(l)如图1,当点D在线段BC上时,求证:①BD⊥CE,②CE=BC﹣CD;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CE、BC、CD三条线段之间的关系;(3)如图3,当点O在线段BC的反向延长线上时,且点A、E分别在直线BC的两侧,点F是DE的中点,连接AF、CF,其他条件不变,请判断△ACF的形状,并说明理由.8.如图(a)、(b)、(c),在△ABC中,分别以AB,AC为边,向△ABC外作正三角形、正四边形、正五边形,BE,CD相交于点O.(1)①如图(a),求证:△ADC≌△ABE;②探究:图(a)中,∠BOC=________;图(b)中,∠BOC=________;图(c)中,∠BOC=________;(2)如图(d),已知:AB,AD是以AB为边向△ABC外所作正n边形的一组邻边;AC,AE是以AC为边向△ABC外所作正n边形的一组邻边.BE,CD的延长相交于点O.①猜想:图(d)中,∠BOC=________________;(用含n的式子表示)②根据图(d)证明你的猜想.9. 如图(a),梯形ABCD中,AD∥BC,∠ABC=90°, AD=9,BC=12,AB=a,在线段BC上任取一点P(P 不与B,C重合),连接DP,作射线.PE⊥DP,PE与直线AB交于点E.(1)试确定CP=3时,点E的位置;(2)若设CP=x(x>0),BE=y(y>0),试写出y关于自变量x的函数关系式;(3)若在线段BC上能找到不同的两点P1,P2,使按上述作法得到的点E都与点A重合,试求出此时a的取值范围.10. 点A,B分别是两条平行线m,n上任意两点,在直线n上找一点C,使BC=k·AB.连接AC,在直线AC上任取一点E,作∠BEF=∠ABC,EF交直线m于点F.(1)如图(a),当k=1时,探究线段EF与EB的关系,并加以说明;说明:①如果你经过反复探索没有解决问题,请写出探索过程(要求至少写三步);②在完成①之后,可以自己添加条件(添加的条件限定为∠ABC为特殊角),在图(b)中补全图形,完成证明.(2)如图(c),若∠ABC=90°,k≠l,探究线段EF与EB的关系,并说明理由.。

中考数学冲刺:创新、开放和探究型问题(基础).doc

中考数学冲刺:创新、开放和探究型问题(基础).doc

中考冲刺:创新、开放与探究型问题(基础)一、选择题1.若自然数n使得三个数的加法运算“n+(n+l) + (n+2)”产生进位现彖,则称n为“连加进位数”.例如:2不是“连加进位数”,因为2+3+4=9不产生进位现象;4是“连加进位数”,因为4+5+6 = 15产生进位现象;51是“连加进位数”,因为51+52+63 = 156产生进位现象.如果从0, 1, 2,…,99这100个自然数中任取一个数,那么取到“连加进位数” 的概率是()A. 0.88B. 0.89C. 0.90D. 0.912.如图,点A, B, P在©0±,且ZAPB = 50°,若点M是(DO上的动点,要使△ABM为等腰三角形,则所有符合条件的点卜1有(A. 1个B. 2个C. 3个3.(2016秋•永定区期中)下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有1颗棋子,第②个图形一共有6颗棋子,第③个图形一共有16颗棋子,・・・,则第⑧个图形中棋子的颗数为()图①图②图③A. 226B. 181C. 141D. 106二、填空题4.(2015秋•淮安校级期中)电子跳虽游戏盘为AABC, AB二8, AC二9, BO10,如果电子跳蚤开始时在BC边上的P。

点,BP0=4.第一步跳蚤跳到AC边上P】点,且CP】二CP。

;第二步跳虽从Pi跳到AB边上P2点,且AP2=AP1;第三步跳蚤从P2跳回到BC边上D点,H BP3=B1\;… 跳蚤按上述规则跳下去,第2015次落点为匕恥,则心与Do®之间的距离为__________ ・P Q卩35.下图为手的示意图,在各个手指间标记字母A, B, C, D,请你按图中箭头所指方向(如A-B-C-D-C-B-A-B-C-…的方式)从A开始数连续的正整数1, 2, 3, 4,…,当数到12时,对应的字母是________ ;当字母C第201次出现时,恰好数到的数是________ ;当字母C第2n+l次岀现时(n为正整数),恰好数到的数是(用含n的代数式表示).6. (1)如图(a), ZABC=ZDCB,请补充一个条件:,使厶ABC^ADCB.(2)如图(b), Z1 = Z2,请补充一个条件:______________ ,使△ ABC^AADE.三、解答题7.如图所示,已知在梯形ABCD中,八D〃BC, AB = DC,对角线AC和BD相交于点0, E 是BC边上一个动点(点E不与B, C两点重合),EF〃BD交AC于点F, EG〃AC交BD于点G.(1)求证:四边形EF0G的周长等于20B;(2)请你将上述题目的条件“梯形八BCD中,八D〃BC, AB=DC”改为另一种四边形,其他条件不变,使得结论“四边形EF0G的周长等于20B”仍成立,并将改编后的题目画出图形, 写出己知、求证,不必证明.2 1I i i尹=_£兀 + 18.如图所示,平面直角坐标系内有两条直线‘1, ‘2,直线‘1的解析式为 3 .如果将坐标纸折卷,使直线约与边重合,此时点(-2, 0)与点(0, 2)也重合.(1)求直线“的解析式;(2)设直线A与右相交于点M.问:是否存在这样的直线使得如果将坐标纸沿直线?折叠,点M恰好落在x轴上?若存在,求出直线2的解析式;若不存在,请说明理由.9.(2015-黄陂区校级模拟)正方形ABCD中,将一个直角三角板的直角顶点与点A重合,一条直角边与边BC交于点E (点E不与点B和点C重合),另一条直角边与边CD的延长线交于点F.(1)如图①,求证:AE=AF;(2)如图②,此直角三角板有一个角是45。

58中考冲刺:创新、开放与探究型问题(基础).doc

58中考冲刺:创新、开放与探究型问题(基础).doc

中考冲刺:创新、开放与探究型问题(基础)一、选择题1.若自然数n使得三个数的加法运算“n+(n+1)+(n+2)”产生进位现象,则称n为“连加进位数”.例如:2不是“连加进位数”,因为2+3+4=9不产生进位现象;4是“连加进位数”,因为4+5+6=15产生进位现象;51是“连加进位数”,因为51+52+63=156产生进位现象.如果从0,1,2,…,99这100个自然数中任取一个数,那么取到“连加进位数”的概率是( )A.0.88 B.0.89 C.0.90 D.0.912.如图,点A,B,P在⊙O上,且∠APB=50°,若点M是⊙O上的动点,要使△ABM 为等腰三角形,则所有符合条件的点M有( )A.1个B.2个C.3个D.4个3.(2016秋•永定区期中)下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有1颗棋子,第②个图形一共有6颗棋子,第③个图形一共有16颗棋子,…,则第⑧个图形中棋子的颗数为()A.226 B.181 C.141 D.106二、填空题4.(2015秋•淮安校级期中)电子跳蚤游戏盘为△ABC,AB=8,AC=9,BC=10,如果电子跳蚤开始时在BC边上的P0点,BP0=4.第一步跳蚤跳到AC边上P1点,且CP1=CP0;第二步跳蚤从P1跳到AB边上P2点,且AP2=AP1;第三步跳蚤从P2跳回到BC边上P3点,且BP3=BP2;…跳蚤按上述规则跳下去,第2015次落点为P2016,则P3与P2016之间的距离为______.5.下图为手的示意图,在各个手指间标记字母A,B,C,D,请你按图中箭头所指方向(如A→B→C→D→C→B→A→B→C→…的方式)从A开始数连续的正整数1,2,3,4,…,当数到12时,对应的字母是________;当字母C第201次出现时,恰好数到的数是________;当字母C第2n+1次出现时(n为正整数),恰好数到的数是________(用含n的代数式表示).6. (1)如图(a),∠ABC=∠DCB,请补充一个条件:________,使△ABC≌△DCB.(2)如图(b),∠1=∠2,请补充一个条件:________,使△ABC≌△ADE.三、解答题7.如图所示,已知在梯形ABCD中,AD∥BC,AB=DC,对角线AC和BD相交于点O,E 是BC边上一个动点(点E不与B,C两点重合),EF∥BD交AC于点F,EG∥AC交BD于点G.(1)求证:四边形EFOG的周长等于2OB;(2)请你将上述题目的条件“梯形ABCD中,AD∥BC,AB=DC”改为另一种四边形,其他条件不变,使得结论“四边形EFOG的周长等于2OB”仍成立,并将改编后的题目画出图形,写出已知、求证,不必证明.8.如图所示,平面直角坐标系内有两条直线,,直线的解析式为.如果将坐标纸折叠,使直线与重合,此时点(-2,0)与点(0,2)也重合.(1)求直线的解析式;(2)设直线与相交于点M.问:是否存在这样的直线,使得如果将坐标纸沿直线折叠,点M恰好落在x轴上?若存在,求出直线的解析式;若不存在,请说明理由.9.(2015•黄陂区校级模拟)正方形ABCD中,将一个直角三角板的直角顶点与点A重合,一条直角边与边BC交于点E(点E不与点B和点C重合),另一条直角边与边CD的延长线交于点F.(1)如图①,求证:AE=AF;(2)如图②,此直角三角板有一个角是45°,它的斜边MN与边CD交于G,且点G是斜边MN的中点,连接EG,求证:EG=BE+DG;(3)在(2)的条件下,如果=,那么点G是否一定是边CD的中点?请说明你的理由.10. (2016•天门)如图①,半圆O的直径AB=6,AM和BN是它的两条切线,CP与半圆O相切于点P,并于AM,BN分别相交于C,D两点.(1)请直接写出∠COD的度数;(2)求AC•BD的值;(3)如图②,连接OP并延长交AM于点Q,连接DQ,试判断△PQD能否与△ACO相似?若能相似,请求AC:BD的值;若不能相似,请说明理由.答案与解析【答案与解析】一、选择题1.【答案】A;【解析】不是“连加进位数”的有“0,1,2,10,11,12,20,21,22,30,31,32”共有12个.∴P(取到“连加进位数”)=.2.【答案】D;【解析】如图,①过圆点O作AB的垂线交和于M1,M2.②以B为圆心AB为半径作弧交圆O于M3.③以A为圆心,AB为半径弧作弧交圆O于M4.则M1,M2,M3,M4都满足要求.3.【答案】C;【解析】设第n个图形中棋子的颗数为a n(n为正整数),观察,发现规律:a1=1,a2=1+3+2=6,a3=1+3+5+4+3=16,…,∴a n=1+3+5+…+(2n﹣1)+(2n﹣2)+…+n=n2+=n2﹣n+1,当n=8时,a8=×82﹣×8+1=141.二、填空题4.【答案】1.【解析】∵BC=10,BP0=4,知CP0=6,∴CP1=6.∵AC=9,∴AP2=AP1=3.∵AB=8,∴BP3=BP2=5.∴CP4=CP3=5,∴AP4=4.∴AP5=AP4=4,∴BP5=4.∴BP6=BP5=4.此时P6与P0重合,即经过6次跳,电子跳蚤回到起跳点.2016÷6=336,即P2016与P0重合,∴P3与P2016之间的距离为P3P0=1.故答案为:1.5.【答案】B; 603; 6n+3.【解析】由题意知A→B→C→D→C→B→A→B→C→D→C→B→A→B…,每隔6个数重复一次“A →B→C→D→C→B→”,所以,当数到12时对应的字母是B;当字母C第201次出现时,恰好数到的数是201×3=603;当字母C第2n+1次出现时(n为正整数),恰好数到的数是(2n+1)×3=6n+3.6.【答案】答案不唯一.(1)如图(a)中∠A=∠D,或AB=DC;(2)图(b)中∠D=∠B,或等.三、解答题7.【答案与解析】(1)证明:∵四边形ABCD是梯形,AD∥BC,AB=CD,∴∠ABC=∠DCB.又∵BC=CB,AB=DC,∴△ABC≌△DCB.∴∠1=∠2.又∵ GE∥AC,∴∠2=∠3.∴∠1=∠3.∴EG=BG.∵EG∥OC,EF∥OB,∴四边形EGOF是平行四边形.∴EG=OF,EF=OG.∴四边形EGOF的周长=2(OG+GE)=2(OG+GB)=2OB.(2)方法1:如图乙,已知矩形ABCD中,对角线AC,BD相交于点O,E为BC上一个动点(点E不与B,C两点重合),EF∥BD,交AC于点F,EG∥AC交BD于点G.求证:四边形EFOG的周长等于2OB.图略.方法2:如图丙,已知正方形ABCD中,……其余略.8. 【答案与解析】解:(1)直线与y轴交点的坐标为(0,1).由题意,直线与关于直线对称,直线与x轴交点的坐标为(-1,0).又∵直线与直线的交点为(-3,3),∴直线过点(-1,0)和(3,3).设直线的解析式为y=kx+b.则有解得所求直线的解析式为.(2)∵直线与直线互相垂直,且点M(-3,3)在直线上,∴如果将坐标纸沿直线折叠,要使点M落在x轴上,那么点M必须与坐标原点O 重合,此时直线过线段OM的中点.将,代入y=x+t,解得t=3.∴直线l的解析式为y=x+3.9.【答案与解析】解:(1)如图①,∵四边形ABCD是正方形,∴∠B=∠BAD=∠ADC=∠C=90°,AB=AD.∵∠EAF=90°,∴∠EAF=∠BAD,∴∠EAF﹣∠EAD=∠BAD﹣∠EAD,∴∠BAE=∠DAF.在△ABE和△ADF中,∴△ABE≌△ADF(ASA)∴AE=AF;(2)如图②,连接AG,∵∠MAN=90°,∠M=45°,∴∠N=∠M=45°,∴AM=AN.∵点G是斜边MN的中点,∴∠EAG=∠NAG=45°.∴∠EAB+∠DAG=45°.∵△ABE≌△ADF,∴∠BAE=∠DAF,AE=AF,∴∠DAF+∠DAG=45°,即∠GAF=45°,∴∠EAG=∠FAG.在△AGE和AGF中,,∴△AGE≌AGF(SAS),∴EG=GF.∵GF=GD+DF,∴GF=GD+BE,∴EG=BE+DG;(3)G不一定是边CD的中点.理由:设AB=6k,GF=5k,BE=x,∴CE=6k﹣x,EG=5k,CF=CD+DF=6k+x,∴CG=CF﹣GF=k+x,在Rt△ECG中,由勾股定理,得(6k﹣x)2+(k+x)2=(5k)2,解得:x1=2k,x2=3k,∴CG=4k或3k.∴点G不一定是边CD的中点.10.【答案与解析】解:(1)∠COD=90°.理由:如图①中,∵AB是直径,AM、BN是切线,∴AM⊥AB,BN⊥AB,∴AM∥BN,∵CA、CP是切线,∴∠ACO=∠OCP,同理∠ODP=∠ODB,∵∠ACD+∠BDC=180°,∴2∠OCD+2∠ODC=180°,∴∠OCD+∠ODC=90°,∴∠COD=90°.(2)如图①中,∵AB是直径,AM、BN是切线,∴∠A=∠B=90°,∴∠ACO+∠AOC=90°,∵∠COD=90°,∴∠BOD+∠AOC=90°,∴∠ACO=∠BOD,∴RT△AOC∽RT△BDO,∴=,即AC•BD=AO•BO,∵AB=6,∴AO=BO=3,∴AC•BD=9.(3)△PQD能与△ACQ相似.∵CA、CP是⊙O切线,∴AC=CP,∠1=∠2,∵DB、DP是⊙O切线,∴DB=DP,∠B=∠OPD=90°,OD=OD,∴RT△ODB≌RT△ODP,∴∠3=∠4,①如图②中,当△PQD∽△ACO时,∠5=∠1,∵∠ACO=∠BOD,即∠1=∠3,∴∠5=∠4,∴DQ=DO,∴∠PDO=∠PDQ,∴△DCQ≌△DCO,∴∠DCQ=∠2,∵∠1+∠2+∠DCQ=180°,∴∠1=60°=∠3,在RT△ACO,RT△BDO中,分别求得AC=,BD=3,∴AC:BD=1:3.②如图②中,当△PQD∽△AOC时,∠6=∠1,∵∠2=∠1,∴∠6=∠2,∴CO∥QD,∴∠1=∠CQD,∴∠6=∠CQD,∴CQ=CD,∵S△CDQ=•CD•PQ=•CQ•AB,∴PQ=AB=6,∵CO∥QD,∴=,即=,∴AC:BD=1:2.。

金老师教育-中考数学总复习:53创新、开放与探究型问题--知识讲解(附培优提高题练习含答案解析)

中考冲刺:创新、开放与探究型问题—知识讲解(提高)【中考展望】所谓开放探索型问题指的是有些数学问题的条件、结论或解决方法不确定或不唯一,需要根据题目的特点进行分析、探索,从而确定出符合要求的答案(一个、多个或所有答案)或探索出解决问题的多种方法.由于开放探究型问题对考查学生思维能力和创造能力有积极的作用,是近几年中考命题的一个热点.通常这类题目有以下几种类型:条件开放与探索,结论开放和探索,条件与结论都开放与探索及方案设计、命题组合型、问题开放型等.【方法点拨】由于开放探究型试题的知识覆盖面较大,综合性较强,灵活选择方法的要求较高,再加上题意新颖,构思精巧,具有相当的深度和难度,所以要求同学们在复习时,首先对于基础知识一定要复习全面,并力求扎实牢靠;其次是要加强对解答这类试题的练习,注意各知识点之间的因果联系,选择合适的解题途径完成最后的解答.由于题型新颖、综合性强、结构独特等,此类问题的一般解题思路并无固定模式或套路,但是可以从以下几个角度考虑:1.利用特殊值(特殊点、特殊数量、特殊线段、特殊位置等)进行归纳、概括,从特殊到一般,从而得出规律.2.反演推理法(反证法),即假设结论成立,根据假设进行推理,看是推导出矛盾还是能与已知条件一致.3.分类讨论法.当命题的题设和结论不唯一确定,难以统一解答时,则需要按可能出现的情况做到既不重复也不遗漏,分门别类加以讨论求解,将不同结论综合归纳得出正确结果.4.类比猜想法.即由一个问题的结论或解决方法类比猜想出另一个类似问题的结论或解决方法,并加以严密的论证.以上所述并不能全面概括此类命题的解题策略,因而具体操作时,应更注重数学思想方法的综合运用.【典型例题】类型一、探索规律1.(2020•武汉校级二模)如图,△ABC面积为1,第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB,C1B=CB,C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,…按此规律,要使得到的三角形的面积超过2020,最少经过()次操作.A.7 B.6 C.5 D.4【思路点拨】先根据已知条件求出△A1B1C1及△A2B2C2的面积,再根据两三角形的倍数关系求解即可.【答案】D.【解析】解:△ABC与△A1BB1底相等(AB=A1B),高为1:2(BB1=2BC),故面积比为1:2,∵△ABC面积为1,∴S△A1B1B=2.同理可得,S△C1B1C=2,S△AA1C=2,∴S△A1B1C1=S△C1B1C+S△AA1C+S△A1B1B+S△ABC=2+2+2+1=7;同理可证△A2B2C2的面积=7×△A1B1C1的面积=49,第三次操作后的面积为7×49=343,第四次操作后的面积为7×343=2401.故按此规律,要使得到的三角形的面积超过2020,最少经过4次操作.故选D.【总结升华】考查了三角形的面积,此题属规律性题目,解答此题的关键是找出相邻两次操作之间三角形面积的关系,再根据此规律求解即可.举一反三:【变式】(2020•抚顺)如图,△A1A2A3,△A4A5A5,△A7A8A9,…,△A3n﹣2A3n﹣1A3n(n为正整数)均为等边三角形,它们的边长依次为2,4,6,…,2n,顶点A3,A6,A9,…,A3n均在y轴上,点O是所有等边三角形的中心,则点A2020的坐标为 .【答案与解析】解:∵△A1A2A3为等边三角形,边长为2,点A3,A6,A9,…,A3n均在y轴上,点O是所有等边三角形的中心,∴A3的坐标为(0,3),∵2020÷3=672,∴A2020是第672个等边三角形的第3个顶点,∴点A2020的坐标为(0,×3),即点A2020的坐标为(0,4483);故答案为:(0,4483).类型二、条件开放型、结论开放型2.在平面直角坐标系中,等腰三角形ABC的顶点A的坐标为(2,2).(1)若底边BC在x轴上,请写出一组满足条件的点B、点C的坐标:;(2)若底边BC的两端点分别在x轴、y轴上,请写出一组满足条件的点B、点C的坐标: .【思路点拨】(1)首先由BC在x轴上,在等腰△ABC中,即可过顶点A作AD⊥BC交BC于D,根据三线合一的性质,可得BD=CD,即B,C关于点D对称,则可求得满足条件的点B、点C的坐标;(2)连接OA,由等腰三角形ABC的顶点A的坐标为(2,2),易证得△AOB≌△AOC,则可知OB=OC,继而可得满足条件的点B、点C的坐标.【答案与解析】解:(1)∵BC在x轴上,在等腰△ABC中,过顶点A作AD⊥BC交BC于D,∵顶点A的坐标为(2,2),∴D的坐标为(2,0),在等腰△ABC中,有BD=CD,∴B,C关于点D对称,∴一组满足条件的点B、点C的坐标为:B(0,0),C(4,0);(2)连接OA,∵等腰三角形ABC的顶点A的坐标为(2,2),∴∠AOC=∠AOB=45°,∴当OB=OC时,在△AOB与△AOC中,OB=OCAOB=AOC OA=OA⎧⎪∠∠⎨⎪⎩∴△AOB≌△AOC,∴AB=AC,即△ABC是等腰三角形,∴一组满足条件的点B、点C的坐标:(0,1),(1,0).【总结升华】此题考查了等腰三角形的性质,全等三角形的判定与性质等知识.此题难度适中,解题的关键是注意数形结合思想的应用,注意辅助线的作法.举一反三:【变式】在平面直角坐标系中,等腰三角形ABC的顶点A的坐标为(2,2).(1)若底边BC在x轴上,请写出一组满足条件的点B,点C的坐标:________________;设点B,点C的坐标分别为(m,0),(n,0),你认为m,n应满足怎样的条件?(2)若底边BC的两个端点分别在x轴,y轴上,请写出一组满足条件的点B,点C的坐标:______________;设点B,点C的坐标分别为(m,0),(0,n),你认为m,n应满足怎样的条件?【答案】解:可以通过等腰三角形的作法来探求符合题意的条件:由于AB=AC,故点B和点C在以A为圆心的同一个圆上.(1)如图(a),作AE⊥x轴于E,以大于AE的长度为半径画弧,与x轴的交点即为符合题意的点B和点C.易知E(2,0)为线段BC的中点,故CE=EB,即n-2=2-m;如:点B(0,0),点C(4,0);m+n=4且m ≠n.(2)类似于(1)作OA,与两条坐标轴分别交于B1,B2,C1,C2,显然当A,B,C三点不共线时这样确定的点B,C均符合题意.如:点B(1,0),点C(0,1),或点B(3,0),点C(0,1);m=n,且m,n不为0和4;或m+n=4.类型三、条件和结论都开放的问题3.如图(1),四边形ABCD中,AD与BC不平行,现给出三个条件:①∠CAB=∠DBA,②AC=BD,③AD=BC.请你从上述三个条件中选择两个条件,使得加上这两个条件后能够推出ABCD是等腰梯形,并加以证明(只需证明一种情况).【思路点拨】有两种方法,第一种是:①∠CAB=∠DBA,②AC=BD;第二种是:②AC=BD,③AD=BC,均可利用等腰梯形的判定方法进行验证.【答案与解析】解:第一种选择:①∠CAB=∠DBA,②AC=BD.证明:由△ACB≌△BDA,可得AD=BC,∠ABC=∠BAD.如图(2)作DE∥BC交AB于点E,则∠DEA=∠CBA.∴∠DAE=∠DEA,AD=ED=BC.由ED=BC及DE∥BC知,四边形DEBC是平行四边形,所以AB∥CD.∵ AD与.BC不平行,∴四边形ABCD是等腰梯形.第二种选择:②AC=BD,③AD=BC.证明:如图(3),延长AD、BC相交于点E.由△DAB≌△CBA,可得∠DAB=∠CBA,∴EA=EB.由AD=BC,可得DE=CE,∠EDC=∠ECD.再由三角形内角和定理可得∠EDC=∠EAB,∴DC∥AB.∵AD与BC不平行,∴四边形ABCD是等腰梯形.【总结升华】此题一道开放性的题目,主要考查学生对等腰梯形的判定的掌握情况.举一反三:【高清课堂:创新、开放与探究型问题例3】【变式】如图,ABCD是一张矩形纸片,AD=BC=1,AB=CD=5.在矩形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN交于点K,得到△MNK.(1)若∠1=70°,求∠MNK的度数.(2)△MNK的面积能否小于12?若能,求出此时∠1的度数;若不能,试说明理由.(3)如何折叠能够使△MNK的面积最大?请你利用备用图探究可能出现的情况,求出最大值.(备用图)【答案】解:(1)∵ABCD是矩形,∴AM∥DN.∴∠KNM=∠1.∵∠1=70°,∴∠KNM=∠KMN=70°.(2)不能.过M点作ME⊥DN,垂足为E,则ME=AD=1.∵∠KNM=∠KMN,∴MK=NK,又MK≥ME,∴NK≥1.∴△MNK的面积=NK•ME≥.∴△MNK的面积不可能小于.(3)分两种情况:情况一:将矩形纸片对折,使点B与D重合,此时点K也与D重合.MK=MD=x,则AM=5﹣x.由勾股定理得12+(5﹣x)2=x2,解得x=2.6.∴MD=ND=2.6.S△MNK=S△MND==1.3.情况二:将矩形纸片沿对角线AC对折,此时折痕即为AC.MK=AK=CK=x,则DK=5-x.同理可得MK=NK=2.6.∵MD=1∴S△MNK=S△MND==1.3.△MNK的面积最大值为1.3.类型四、动态探究型4.如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合,三角板的一边交CD于点F.另一边交CB的延长线于点G.(1)求证:EF=EG;(2)如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由:(3)如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B,其他条件不变,若AB=a、BC=b,求EFEG的值.【思路点拨】(1)由∠GEB+∠BEF=90°,∠DEF+∠BEF=90°,可得∠DEF=∠GEB,又由正方形的性质,可利用SAS证得Rt△FED≌Rt△GEB,则问题得证;(2)首先点E分别作BC、CD的垂线,垂足分别为H、I,然后利用SAS证得Rt△FEI≌Rt△GEH,则问题得证;(3)首先过点E分别作BC、CD的垂线,垂足分别为M、N,易证EM∥AB,EN∥AD,则可证得△CEN∽△CAD,△CEM∽△CAB,又由有两角对应相等的三角形相似,证得△GME∽△FNE,根据相似三角形的对应边成比例,即可求得答案.【答案与解析】解:(1)证明:∵∠GEB+∠BEF=90°,∠DEF+∠BEF=90°,∴∠DEF=∠GEB,又∵ED=BE,∴Rt △FED ≌Rt △GEB , ∴EF=EG ;(2)成立.证明:如图,过点E 分别作BC 、CD 的垂线,垂足分别为H 、I ,则EH=EI ,∠HEI =90°,∵∠GEH+∠HEF=90°,∠IEF+∠HEF =90°, ∴∠IEF=∠GEH , ∴Rt △FEI ≌Rt △GEH , ∴EF=EG ;(3)解:如图,过点E 分别作BC 、CD 的垂线,垂足分别为M 、N ,则∠MEN=90°, ∴EM ∥AB ,EN ∥AD .∴△CEN ∽△CAD ,△CEM ∽△CAB ,∴,NE CE EM CEAD CA AB CA ==, ∴NE EM AD AB =,即NE AD b EM AB a==, ∵∠IEF+∠FEM=∠GEM+∠FEM=90°, ∴∠GEM=∠FEN , ∵∠GME=∠FNE=90°, ∴△GME ∽△FNE ,∴EF ENEG EM =, ∴EF bEG a=. 【总结升华】此题考查了正方形、矩形的性质,以及全等三角形与相似三角形的判定与性质.此题综合性较强,注意数形结合思想的应用.举一反三:【变式1】已知:如图(a),在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),解答下列问题:(1)当t为何值时,PQ∥BC?(2)设△AQP的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t 的值.若不存在,说明理由;(4)如图(b),连接PC,并把△POC沿QC翻折,得到四边形PQP′C,那么是否存在某一时刻t,使四边形PQP′C为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.【答案】解:(1)在Rt△ABC中,AB=5.由题意知AP=5-t,AQ=2t.若PQ∥BC,则△APQ∽△ABC.∴AQ AP AC AB=.∴2545t t-=.解得107t=.(2)过点P作PH⊥AC于H,如图(c).∵△APH∽△ABC,∴PH AP BC AB=.∴535PH t-=.解得335PH t=-.∴211132(3)32255y AQ PH t t t t =⨯⨯=⨯⨯-=-+. (3)若PQ 把△ABC 周长平分,则AP+AQ =BP+BC+CQ .∴(5-t)+2t =t+3+(4-2t). 解得t =1.若PQ 把△ABC 面积平分, 则12APQ ABC S S =△△,即23335t t -+=. ∵t =1代入上述方程不成立,∴不存在这一时刻t ,使线段PQ 把Rt △ACB 的周长和面积同时平分. (4)过点P 作PM ⊥AC 于M ,PN ⊥BC 于N ,如图(d). 若四边形PQP ′C 是菱形,那么PQ =PC . ∵PM ⊥AC 于M ,∴QM =CM .∵PN ⊥BC 于N ,易知△PBN ∽△ABC .∴PN BP AC AB =,∴45PN t=.解得45tPN =.∴QM =CM =45t.∴442455t t t ++=. 解得109t =.∴当109t =时,四边形PQP ′C 是菱形.此时37353PM t =-=,4859CM t ==.在Rt △PMC 中,PC ===∴菱形PQP ′C . 举一反三:【高清课堂:创新、开放与探究型问题 例4】【变式2】如图,点D ,E 在△ABC 的边BC 上,连接AD ,AE. ①AB=AC ;②AD=AE ;③BD=CE.以此三个等式中的两个作为命题的题设,另一个作为命题的结论,构成三个命题:①②⇒③;①③⇒②;②③⇒①.(1)以上三个命题是真命题的为(直接作答) ; (2)请选择一个真命题进行证明(先写出所选命题,然后证明).【答案】 解:(1)三个都是真命题;(2)解法一 ①②⇒③如图,过点A 作AD ⊥BC 于点F . ∵AB =AC , ∴BF =CF . ∵AD =AE , ∴DF =EF . ∴BD =CE .解法二 ①③⇒②∵AB =AC ,∴∠ABD =∠ACE . ∵BD =CE ,∴△ABD ≌△ACE (SAS ). ∴AD =AE .解法三 ②③⇒①∵AD =AE ,∴∠ADE =∠AED , 即∠ADB =∠AEC ∵BD =CE ,∴△ABD ≌△ACE (SAS ). ∴AB =AC类型五、创新型5.先阅读下列材料,然后解答问题:从A B C ,,三张卡片中选两张,有三种不同选法,抽象成数学问题就是从3个元素中选取2个元素组合,记作2332C 321⨯==⨯.一般地,从m 个元素中选取n 个元素组合,记作:E DCB A(1)(1)C (1)321n m m m m n n n --+=-⨯⨯⨯例从7个元素中选5个元素,共有5776543C 2154321⨯⨯⨯⨯==⨯⨯⨯⨯种不同的选法.问题:从某学习小组10人中选取3人参加活动,不同的选法共有 种. 【思路点拨】本题需要学生读懂m 个元素中选取n 个元素的计算规则,然后针对具体的从10人中选取3人参加的计算.【答案与解析】由给出的公式可知从10个人中取3个人参加活动,有3101098C 120321⨯⨯==⨯⨯种不同的选法.【总结升华】本题构思精妙、情境新颖.从试题的情境来看,本题以初中数学中的整数的乘除运算等基本运算为素材,以高中数学中组合数的定义及其计算公式为背景,展示给学生的是一个全新的问题,试题具有较大的自由度和思维空间,考查了阅读理解、知识迁移等多种数学能力,体现了主动探究精神,呈现出研究性学习的特点,从而进一步考查了学生自学高中数学知识的能力.从试题的解答来看,直接以组合数的定义及其计算公式为背景的试题在各种复习资料和模拟试题中从未见过,解决这个问题没有现成的“套路”和“招式”,需要学生自主学习组合数的定义及其计算公式的定义,综合运用多种数学思想方法,才能解决问题.中考冲刺:创新、开放与探究型问题—巩固练习(提高)【巩固练习】 一、选择题1.(2020•重庆校级二模)下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有1个空心小圆圈,第②个图形中一共有6个空心小圆圈,第③个图形中一共有13个空心小圆圈,…,按此规律排列,则第⑦个图形中空心圆圈的个数为( )A.61 B.63 C.76 D.782.如图,直角三角形纸片ABC中,AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D 重合,折痕与AD交与点P1;设P1D的中点为D1,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2,第3次将纸片折叠,使点A与点D2重合,折痕与AD交于点P3;…;设P n﹣1D n﹣2的中点为D n﹣1,第n次将纸片折叠,使点A与点D n﹣1重合,折痕与AD交于点P n(n>2),则AP6的长为()A.512532⨯B.69352⨯C.614532⨯D.711352⨯3.下面两个多位数1248624…、6248624…,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是( ) A.495 B.497 C.501 D.503二、填空题4.(2020•合肥校级三模)如图,一个3×2的矩形(即长为3,宽为2)可以用两种不同方式分割成3或6个边长是正整数的小正方形,即:小正方形的个数最多是6个,最少是3个.(1)一个5×2的矩形用不同的方式分割后,小正方形的个数可以是个,最少是个;(2)一个7×2的矩形用不同的方式分割后,小正方形的个数最多是个,最少是个;(3)一个(2n+1)×2的矩形用不同的方式分割后,小正方形的个数最多是个;最少是个.(n 是正整数)5. 一园林设计师要使用长度为4L的材料建造如图1所示的花圃,该花圃是由四个形状、大小完全一样的扇环面组成,每个扇环面如图2所示,它是以点O为圆心的两个同心圆弧和延长后通过O点的两条直线段围成,为使得绿化效果最佳,还须使得扇环面积最大.(1)使图①花圃面积为最大时R -r 的值为 ,以及此时花圃面积为 ,其中R 、r 分别为大圆和小圆的半径;(2)若L =160 m ,r =10 m ,使图面积为最大时的θ值为 .6.如图所示,已知△ABC 的面积1ABC S =△,在图(a)中,若11112AA BB CC AB BC CA ===,则11114A B C S =△; 在图(b)中,若22213AA BB CC AB BC CA ===,则222A B C 13S =△;在图(c),若33314AA BB CC AB BC CA ===,则333716A B C S =△.…按此规律,若88819AA BB CC AB BC CA ===,则888A B C S =△________.三、解答题7.(2020•丹东模拟)已知,点D 为直线BC 上一动点(点D 不与点B 、C 重合),∠BAC=90°,AB=AC ,∠DAE=90°,AD=AE ,连接CE .(l )如图1,当点D 在线段BC 上时,求证:①BD ⊥CE ,②CE=BC ﹣CD ;(2)如图2,当点D 在线段BC 的延长线上时,其他条件不变,请直接写出CE 、BC 、CD 三条线段之间的关系;(3)如图3,当点O 在线段BC 的反向延长线上时,且点A 、E 分别在直线BC 的两侧,点F 是DE 的中点,连接AF 、CF ,其他条件不变,请判断△ACF 的形状,并说明理由.8.如图(a)、(b)、(c),在△ABC中,分别以AB,AC为边,向△ABC外作正三角形、正四边形、正五边形,BE,CD相交于点O.(1)①如图(a),求证:△ADC≌△ABE;②探究:图(a)中,∠BOC=________;图(b)中,∠BOC=________;图(c)中,∠BOC=________;(2)如图(d),已知:AB,AD是以AB为边向△ABC外所作正n边形的一组邻边;AC,AE是以AC为边向△ABC外所作正n边形的一组邻边.BE,CD的延长相交于点O.①猜想:图(d)中,∠BOC=________________;(用含n的式子表示)②根据图(d)证明你的猜想.9. 如图(a),梯形ABCD中,AD∥BC,∠ABC=90°, AD=9,BC=12,AB=a,在线段BC上任取一点P(P 不与B,C重合),连接DP,作射线.PE⊥DP,PE与直线AB交于点E.(1)试确定CP=3时,点E的位置;(2)若设CP=x(x>0),BE=y(y>0),试写出y关于自变量x的函数关系式;(3)若在线段BC上能找到不同的两点P1,P2,使按上述作法得到的点E都与点A重合,试求出此时a的取值范围.10. 点A,B分别是两条平行线m,n上任意两点,在直线n上找一点C,使BC=k·AB.连接AC,在直线AC上任取一点E,作∠BEF=∠ABC,EF交直线m于点F.(1)如图(a),当k=1时,探究线段EF与EB的关系,并加以说明;说明:①如果你经过反复探索没有解决问题,请写出探索过程(要求至少写三步);②在完成①之后,可以自己添加条件(添加的条件限定为∠ABC为特殊角),在图(b)中补全图形,完成证明.(2)如图(c),若∠ABC=90°,k≠l,探究线段EF与EB的关系,并说明理由.【答案与解析】一、选择题1.【答案】A;【解析】∵第①个图形中空心小圆圈个数为:4×1﹣3+1×0=1个;第②个图形中空心小圆圈个数为:4×2﹣4+2×1=6个;第③个图形中空心小圆圈个数为:4×3﹣5+3×2=13个;…∴第⑦个图形中空心圆圈的个数为:4×7﹣9+7×6=61个;2.【答案】A;【解析】由题意得,AD=12BC=52,AD1=AD﹣DD1=158,AD2=25532⨯,AD3=37532⨯,AD n=21532nn+⨯,故AP 1=54,AP 2=1516,AP 3=26532⨯…APn=12532n n-⨯, 故可得AP 6=512532⨯.故选A.3.【答案】A ;【解析】根据题意,当第1位数字是3时,按操作要求得到的数字是3624862486248…,从第2位数字起每隔四位数重复一次6248,因为(100-1)被4整除得24余3,所以这个多位数前100位的所有数字之间和是3+(6+2+4)+(6+2+4+8)×24=495,答案选A . 二、填空题 4.【答案】(1)4;10;(2)5;14;(3)4n+2;n+2.【解析】 (1)一个5×2的矩形最少可分成4个正方形,最多可分成10个正方形; (2)一个7×2的矩形最少可分成5个正方形,最多可分成14个正方形;(3)第一个图形:是一个3×2的矩形,最少可分成1+2个正方形,最多可分成1×4+2个正方形; 第二个图形:是一个5×2的矩形,最少可分成2+2个正方形,最多可分成2×4+2个正方形; 第三个图形:是一个7×2的矩形,最少可分成3+2个正方形,最多可分成3×4+2个正方形; …第n 个图形:是一个(2n+1)×2的矩形,最多可分成n ×4+2=4n+2个正方形,最少可分成n+2个正方形. 故答案为:(1)4;10;(2)5;14;(3)4n+2;n+2.5.【答案】(1)R -r 的值为4L ,以及此时花圃面积为24L ; (2)θ值为240π.【解析】要使花圃面积最大,则必定要求扇环面积最大.设扇环的圆心角为θ,面积为S ,根据题意得:2()180180R rL R r θπθπ=++- ()2()180R r R r πθ+=+-,∴180[2()]()L R r R r θπ--=+∴2222()360360360R r S R r θπθππθ=-=-22180[2()]()360()L R r R r R r ππ--=-+1[2()]()2L R r R r =--- 21()()2R r L R r =--+-22()416L L R r ⎡⎤=---+⎢⎥⎣⎦.∵02L R r <-<, ∴S 在4LR r -=时取最大值为216L .∴花圃面积最大时R -r 的值为4L,最大面积为224164L L ⨯=.(2)∵当4LR r -=时,S 取大值, ∴1604044L R r -===(m),40401050R r =+=+=(m),∴180[2()]180(160240)240()60L R r R r θπππ---⨯===+.6.【答案】1927. 【解析】3331-3=4416A B C S =⨯⨯△…三、解答题 7.【答案与解析】(1)证明:如图1中,∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE , 在△ABD 和△ACE 中,,∴△ABD≌△ACE,∴∠ABD=∠ACE=45°,BD=CE,∴∠ACB+∠ACE=90°∴∠ECB=90°,∴BD⊥CE,CE=BC﹣CD.(2)如图2中,结论:CE=BC+CD,理由如下:∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE,∴BD=CE,∴CE=BC+CD.(3)如图3中,结论:△ACF是等腰三角形.理由如下:∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,在△ABD和△ACE中,∴△ABD≌△ACE,∴∠ABD=∠ACE,∵∠ABC=∠ACB=45°,∴∠ACE=∠ABD=135°,∴∠DCE=90°,又∵点F是DE中点,∴AF=CF=DE,∴△ACF是等腰三角形.8.【答案与解析】(1)证法一:∵△ABD与△ACE均为等边三角形,∴AD=AB,AC=AE,且∠BAD=∠CAE=60°.∴∠BAD+∠BAC=∠CAE+∠BAC,即∠DAC=∠BAE.∴△ADC≌△ABE.证法二:∵△ABD与△ACE均为等边三角形,∴AD=AB,AC=AE,且∠BAD=∠CAE=60°.∴△ADC可由△ABE绕着点A按顺时针方向旋转60°得到.∴△ABE≌△ADC.②120°,90°,72°.(2)①360n°.②证法一:依题意,知∠BAD和∠CAE都是正n边形的内角,AB=AD,AE=AC,∴∠BAD=∠CAE=(2)180nn-°.∴∠BAD-∠DAE=∠CAE-∠DAE,即∠BAE=∠DAC.∴△ABE≌△ADC.∴∠ABE=∠ADC.∵∠ADC+∠ODA=180°,∴∠ABO+∠ODA=180°.∴∠ABO+∠ODA+∠DAB+∠BOC=360°.∴∠BOC+∠DAB=180°.∴∠BOC=180°-∠DAB=(2)180360 180nn n--=°°°.证法二:延长BA交CO于F,证∠BOC=∠DAF=180°-∠BAD.证法三:连接CE.证∠BOC=180°-∠CAE.9.【答案与解析】解:(1)作DF⊥BC,F为垂足.当CP=3时,四边形ADFB是矩形,则CF=3.∴点P与点F重合.又∵BF⊥FD,∴此时点E与点B重合.(2)(i)当点P 在BF 上(不与B ,F 重合)时,(见图(a))∵∠EPB+∠DPF =90°,∠EPB+∠PEB =90°,∴∠DPF =∠PEB .∴Rt △PEB ∽△ARt △DPF . ∴BE FP BP FD=. ① 又∵ BE =y ,BP =12-x ,FP =x-3,FD =a ,代入①式,得312y x x a-=- ∴1(12)(3)y x x a=--,整理, 得21(1536)(312)y x x x a =-+<< ② (ii)当点P 在CF 上(不与C ,F 重合)时,(见上图(b))同理可求得BE FP BP FD =. 由FP =3-x 得21(1536)(03)y x x x a=-+<<. ∴ 221(1536)(03)1(1536)(312).x x x a y x x a⎧--+<<⎪⎪=⎨⎪--+<<⎪⎩ (3)解法一:当点E 与A 重合时,y =EB =a ,此时点P 在线段BF 上. 由②式得21(1536)a x x a =--+. 整理得2215360x x a -++=. ③∵在线段BC 上能找到两个不同的点P 1与P 2满足条件,∴方程③有两个不相等的正实根.∴△=(-15)2-4×(36+a 2)>0.解得2814a <. 又∵a >0, ∴902a <<. 解法二:当点E 与A 重合时,∵∠APD =90°,∴点P 在以AD 为直径的圆上.设圆心为M ,则M 为AD 的中点. ∵在线段BC 上能找到两个不同的点P 1与P 2满足条件,∴线段BC 与⊙M 相交.即圆心M 到BC 的距离d 满足02AD d <<. ④ 又∵AD ∥BC ,∴d =a . ∴由④式得902a <<.10.【答案与解析】解:(1)EF=EB.证明:如图(d),以E为圆心,EA为半径画弧交直线m于点M,连接EM.∴EM=EA,∴∠EMA=∠EAM.∵BC=k·AB,k=1,∴BC=AB.∴∠CAB=∠ACB.∵m∥n,∴∠MAC=∠ACB,∠FAB=∠ABC.∴∠MAC=∠CAB.∴∠CAB=∠EMA.∵∠BEF=∠ABC,∴∠BEF=∠FAB.∵∠AHF=∠EHB,∴∠AFE=∠ABE.∴△AEB≌△MEF.∴EF=EB.探索思路:如上图(a),∵BC=k·AB,k=1,∴BC=AB.∴∠CAB=∠ACB.∵m∥n,∴∠MAC=∠ACB.添加条件:∠ABC=90°.证明:如图(e),在直线m上截取AM=AB,连接ME.∵ BC=k·AB,k=1,∴ BC=AB.∵∠ABC=90°,∴∠CAB=∠ACB=45°.∵ m∥n,∴∠MAE=∠ACB=∠CAB=45°,∠FAB=90°.∵ AE=AE,∴△MAE∽△BAE.∴ EM=EB,∠AME=∠ABE.∵∠BEF=∠ABC=90°,∴∠FAB+∠BEF=180°.又∵∠ABE+∠EFA=180°,∴∠EMF=∠EFA.∴ EM=EF.∴ EF=EB.(2)EF=1k EB.说明:如图(f),过点E作EM⊥m,EN⊥AB,垂足为M,N.∴∠EMF=∠ENA=∠ENB=90°.∵ m∥n,∠ABC=90°,∴∠MAB=90°.∴四边形MENA为矩形.∴ ME=NA,∠MEN=90°.∵∠BEF=∠ABC=90°.∴∠MEF=∠NEB.∴△MEF∽△NEB.∴ME EF EN EB=,∴AN EF EN EB=在Rt△ANE和Rt△ABC中,tanEN BCBAC kAN AB∠===,∴1EF EBk=.。

九年级数学中考综合复习: 开放与探索性问题 复习讲义

综合复习.开放与探索性问题&.综合评述:开放与探索性问题改变了过去试题形式单一,知识点考查僵硬,不能充分调动学生的创新意识和探究兴趣的缺点,为学生提供了更广阔的思维空间,正因为如此,开放与探究性题成为近几年中考的热点题型之一。

一、开放性问题这类题一般没有具体的标准答案,解题时要灵活运用所学基础知识,多层次、多角度地思考问题,解决问题,一般答案只要符合题意即可。

二、探究性问题探究性问题是指命题中缺少一定的条件或无明确的结论,需要经过推断、补充并加以证明的题型,探究性问题一般分为三类:1、条件探索型题;2、结论探究型题;3、探究存在型题。

条件型题是指所给问题中结论明确,需要完备条件的题目;结论探究型题是指题目中的结论不确定,不唯一,或题目结论需要类比,引申推广,或题目给出特例,要通过归纳总结出一般结论。

探究存在型题是指在一定的基础上,需探究发现某种数学关系是否存在的题目。

这类问题具有较强的综合性,涉及的数学基础知识非常广泛。

这种题型既能考查学生对基础知识掌握的熟练程度,又能较好的考查学生的观察、分析、概括能力,因此复习时,既要重视基础知识,又要强化数学思想方法训练,切实提高自己分析问题、解决问题的能力。

&.典型例题剖析:§.例1、多项式192+x 加上一个单项式后,使它成为一个整式的完全平方,那么加上的单项式可以是 .(填上一个你认为正确的即可)思路点拨:本题主要考查了完全平方式。

解:按完全平方公式得()2213619+=++x x x ,()2213619-=-+x x x ,另外22919x x -+21=,()22239119x x x ==-+,224212948119⎪⎭⎫⎝⎛+=++x x x ,故其答案是x 6±或29x -或1-或4481x .规律总结:本题属于条件探索题,可以从完全平方式入手,多层次、多角度思考问题,可繁可简,可难可易,一般答案只要符合题意即可。

华东师大初中数学中考冲刺阅读理解型问题 知识讲解基础精选

中考冲刺:阅读理解型问题—知识讲解(基础)【中考展望】它由两部分. 阅读理解型问题在近几年的全国中考试题中频频“亮相”,应该特别引起我们的重视组成:一是阅读材料;二是考查内容.它要求学生根据阅读获取的信息回答问题.提供的阅读材料主要包括:一个新的数学概念的形成和应用过程,或一个新的数学公式的推导与应用,或提供新闻背景材料等.考查内容既有考查基础的,又有考查自学能力和探索能力等综合素质的.这类问题一般文字叙述较长,信息量较大,内容丰富,超越常规,源于课本,又高于课本,各种关系错综复杂,不仅能考查同学们阅读题中文字获取信息的能力,还能考查同学们获取信息后的抽象概括能力、建模能力、决策判断能. 同时,更能够综合考查同学们的数学意识和数学综合应用能力力等.【方法点拨】题型特点:先给出一段材料,让学生理解,再设立新的数学概念,新概念的解答可以借鉴前面材料的结论或思想方法.解题策略:从给的材料入手,通过理解分析本材料的内容,捕捉已知材料的信息,灵活应用这些信息解决新材料的问题.解决阅读理解问题的关键是要认真仔细地阅读给定的材料,弄清材料中隐含了什么新的数学知识、结论,或揭示了什么数学规律,或暗示了什么新的解题方法,然后依题意进行分析、比较、综合、抽象和概括,或用归纳、演绎、类比等进行计算或推理论证,并能准确地运用数学语言阐述自己的思想、方. 法、观点.展开联想,将获得的新信息、新知识、新方法进行迁移,建模应用,解决题目中提出的问题阅读理解题一般可分为如下几种类型: (1)方法模拟型——通过阅读理解,模拟提供材料中所述的过程方法,去解决类似的相关问题;判断推理型——通过阅读理解,对提供的材料进行归纳概括;按照对材料本质的理解进行推理, (2) 作出解答;迁移发展型——从提供的材料中,通过阅读,理解其采用的思想方法,将其概括抽象成数学模 (3) 型去解决类同或更高层次的另一个相关命题.【典型例题】类型一、阅读试题提供新定义、新定理,解决新问题.阅读材料:12243)?1x??(x?例:说明代数式的几何意义,并求它的最小值.222224(x?1?x?3)30解= 轴上一点,x)是0,x(P如图,建立平面直角坐标系,点.2222?(x?3)1(x?0)?)的距3,2可以看成点PP可以看成点与点A则(0,1)的距离,与点B(的最小值.PB长度之和,它的最小值就是PA+PB离,所以原代数式的值可以看成线段PA与的最小值,PA′+PBPA+PB的最小值,只需求设点A关于x轴的对称点为A′,则PA=PA′,因此,求构造直角△A′CB,为此,A′B的长度.而点A′、B间的直线段距离最短,所以PA′+PB的最小值为线段22 3.因为A′C=3,CB=3,所以A′B=3,即原式的最小值为根据以上阅读材料,解答下列问题:229??1?(x?2)1)(x?、)与点0A(1,1)的值可以看成平面直角坐标系中点P((1)代数式x,点B 的距离之和.(填写点B的坐标)2237?12xxx??49?(2)代数式.的最小值为【思路点拨】2223??(x?1)?1(x?2))先把原式化为(1的形式,再根据题中所给的例子即可得出结论;2221?6)7?(x??(x?0)的形式,故得出所求代数式的值可以看成平面直角坐(2)先把原式化为)的距离之和,然后在坐标系内描出各点,利用勾股定1B(6,)0标系中点P(x,)与点A(0,7、点理得出结论即可.【答案与解析】2223(x?1)?1?(2)?x?的形式,1)∵原式化为解:(2223?(2)?x??(x?1)1、点,1)(的值可以看成平面直角坐标系中点P(x∴代数式,0)与点A1 )的距离之和,2B(,3 故答案为(2)3;,222(x?0)?7?(x?6)?1的形式,( 2)∵原式化为)的距离之和,1,6(B、点)7,0(A)与点0,x(P∴所求代数式的值可以看成平面直角坐标系中点.关于x轴的对称点为A′,则PA=PA′,如图所示:设点A PA′+PB的最小值,而点A′、B间的直线段距离最短,∴PA+PB的最小值,只需求∴PA′+PB的最小值为线段A′B的长度, 6,1)∵A(0,7),B(,-7),A′C=6,BC=8∴A′(0,2222?8?A?C6?BC,∴A′B==10 .故答案为:10【总结升华】本题考查的是轴对称——最短路线问题,解答此题的关键是根据题中所给给的材料画出图形,再利用数形结合求解.类型二、阅读试题信息,归纳总结提炼数学思想方法2.阅读材料:(1)对于任意两个数a、b的大小比较,有下面的方法:当a-b>0时,一定有a>b;当a-b=0时,一定有a=b;当a-b<0时,一定有a<b.反过来也成立.因此,我们把这种比较两个数大小的方法叫做“求差法”.(2)对于比较两个正数a、b的大小时,我们还可以用它们的平方进行比较:a-b=(a+b)(a-b),a+b>0,22∵a-b)与(a-b)的符号相同.22∴(a-b>0时,a-b>0,得a>b;22当a-b=0时,a-b=0,得a=b;22当a-b<0时,a-b<0,得a<b.22当解决下列实际问题:(1)课堂上,老师让同学们制作几种几何体,张丽同学用了3张A4纸,7张B5纸;李明同学用了2张A4纸,8张B5纸.设每张A4纸的面积为x,每张B5纸的面积为y,且x>y,张丽同学的用纸总面积为W,李明同学的用纸总面积为W.回答下列问题:21①W= (用x、y的式子表示);1 W= (用x、y的式子表示);2②请你分析谁用的纸面积更大.(2)如图1所示,要在燃气管道l上修建一个泵站,分别向A、B两镇供气,已知A、B到l的距离分别是3km、4km(即AC=3km,BE=4km),AB=xkm,现设计两种方案:方案一:如图2所示,AP⊥l于点P,泵站修建在点P处,该方案中管道长度a .=AB+AP1.处,该方案中P相交于点P,泵站修建在点方案二:如图3所示,点A′与点A关于l对称,A′B与l .管道长度a=AP+BP2;(用含x的式子表示)①在方案一中,a= km1;x 的式子表示)a②在方案二中,= km(用含2③请你分析要使铺设的输气管道较短,应选择方案一还是方案二.【思路点拨】 x和y的大小比较即可;3x+7y和2x+8y,即得出答案;②求出W-W=x-y,根据)①根据题意得出(121.再根据勾股BMAM,根据勾股定理求出AP的值代入即可;②过B作BM⊥AC 于M,求出(2)①把AB和 BA′,即可得出答案;定理求出220,即可得出答案.,6x-39>06x-39=0,6x-39<③求出a-a=6x-39,分别求出21【答案与解析】,,W(=2x+8y1)解:①W=3x+7y21.3x+7y,2x+8y故答案为:,2x+8y)=x-y=(3x+7y)-(②解:W-W21,∵x>y ,-y>0∴x ,>0∴W-W21W>得W,12所以张丽同学用纸的总面积更大.,a=AB+AP=x+3(2)①解:1.故答案为:x+3作BM⊥AC于M,②解:过B则AM=4-3=1,ABM中,由勾股定理得:BM=AB-1=x-1,2222在△222??48A?Mx?BM,在△A′MB中,由勾股定理得:AP+BP=A′B=248x?故答案为:.248?x222222)+6x+9-)=x(x+48=6x-39,-x+3=-aa③解:()(2122,6.5>x>a0>-a(即>-aa 当0a,a,解得0>6x-39)时,212121.,=a)时,6x-39=0-a=0(即a-a,解得=0,a 当a22111222,,解得x<6.5,a<a)时,6x-39 22x=6.5<0-a 当a<0(即a-a<0212121综上所述,时,选择方案二,输气管道较短,x>6.5 当时,两种方案一样,当x=6.5 时,选择方案一,输气管道较短.x<6.5 当0<【总结升华】本题考查了勾股定理,轴对称——最短路线问题,整式的运算等知识点的应用,通过做此题培养了学生的计算能力和阅读能力,题目具有一定的代表性,是一道比较好的题目.举一反三:222上,、FH和都在直线,对角线】【变式如图所示,正方形ABCD和正方形EFGH的边长分别为BD l上平移时,正O在直线 O分别是正方形的中心,线段OO的长叫做两个正方形的中心距.当中心O、l2121 EFGH的形状、大小没有改变.方形 EFGH也随之平移,在平移时正方形;OF=______1)计算:OD=_______,(21(2)当中心O在直线上平移到两个正方形只有一个公共点时,中心距O O =_________.l212(3)随着中心 O在直线上的平移,两个正方形的公共点的个数还有哪些变化?并求出相对应的中心l2距的值或取值范围.(不必写出计算过程)【答案】(1)OD=2,OF=1;21(2)O O =3;21(3)当O O>3或0≤O O<1时,两个正方形无公共点;O O=1时,两个正方形有无数个公共点;21当1<O O<3时,两个正方形有2个公共点.21 2211当类型三、阅读相关信息,通过归纳探索,发现规律,得出结论3.(2016?无锡一模)已知:如图正方形ABCD中,点E、F分别是边AB和BC上的点,且满足BE=CF.(1)不用圆规,请只用不带刻度的直尺作图:在边CD和DA上分别作出点G和点H,使DG=AH=BE=CF (保留作图痕迹,不要求写作法).(2)在(1)的条件下,当点E在AB边上的何处时,能使S:S=5:8,并说明理由.ABCDEFGH四3)如图:正六边形ABCDEF中,点A′、B′、C′、D′、E′、F′分别是边AB、BC、CD、边形四边形(DE、EF、FA上的点,且AA′=BB′=CC′=DD′=EE′=FF′.①设AA′:A′B=1:3,则S:S= ;A′B′C′D′E′F′ABCDEF六边形六边形②设AA′:A′B=k,求S:S的值(用含k的代数式表示).A′B′C′D′E′F′ABCDEF六边形六边形【思路点拨】(1)根据正方形是中心对称图形作图即可;(2)设BE=CF=x,根据勾股定理表示出EF,根据相似多边形的性质列出比例式,计算即可;(3)①作B′H⊥AB交AB的延长线于H,设AA′=a,根据题意表示出A′B,利用三角函数的定义表示出B′H和BH,根据勾股定理求出A′B′,根据相似多边形的性质计算即可;②设AA′=k,利用①的思路进行解答即可.【答案与解析】;所示:DG=AH=BE=CF解:(1)如图1 x﹣,,BC=y,则BF=y(2)设BE=CF=x2222222,2xy+yx)=2x﹣+由勾股定理得,EF=BE+BF=x(y﹣,=5:8S∵S:ABCDEFGH四边形四边形222 2x﹣2xy+y):(y,=5:8)∴(2×+=0,2则2()﹣,解得,==,∴当BE=AB或BE=AB时,S:8;=5:S ABCDEFGH四边形四边形的延长线于交B′H⊥33()①如图,作ABABH, AB=4a,B′B=a,A′B=3a,AA′=a,则设为正六边形,∵六边形ABCDEF ∴∠ABC=120°,∴∠B′BH=60°,,B′H=a,BH=a ∴=a∴A′B′=,=∴,∴S:S=13:16,A′B′C′D′E′F′ABCDEF六边形六边形故答案为:13:16;②∵AA′:A′B=k,∴设AA′=k,则A′B=1,,B′H=kk,则 BH==∴A′B′=,AB=1+k,=S= ():∴S A′B′C′D′E′F′ABCDEF六边形六边形【总结升华】2.本题考查的是正方形和正六边形的性质以及全等三角形的判定和性质,掌握正方形是中心对称图形、正确求出正六边形的内角的度数、熟记锐角三角函数的定义是解题的关键.举一反三:【变式】(2015秋?邹城市期中)阅读材料大数学家高新在上学时,曾经研究过这样一个问题:1+2+3+4+5+…+100=?经过研究,这个问题的一般+n=n(n+1),其中n性结论是:1+2+3+4+5+…是正整数.现在我们来研究一个类似的问题:1×2+2×3+3×4+4×5×…+n(n+1)=?观察下面三个特殊的等式:2=.1×.×2.3 ×如果将这三个等式的两边相加,你会有怎样的发现呢?解决问题要求:直接在横线上写出结果(式子或数值),不必写过程.(1)将材料中的三个特殊的等式两边相加,可以得到:1×2+2×3+3×4=;(2)探究并计算:1×2+2×3+3×4+4×5+…+20×21=;. ×12+2×3+3×4+4×5+…+n(n+1)=【答案】;×4)5=×3×433××4﹣1×2×3+3×4×5﹣2×××(解:1)三式相加得:1×2+2×3+334=(1×2×﹣0×1×2+2).(=n(n+1))归纳总结得:原式(2n+2=×20×21×22;原式.)n(n+1(;5(2n+2)×20×21×22);故答案为:(1)×3×4×类型四、阅读试题信息,借助已有数学思想方法解决新问题边上一点,BC.E,BC=6为,AD=24.已知:如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AB=3 的同侧.在BCBEFG为边作正方形,使正方形BEFG和梯形ABCD以BE 的长;上时,求BE1)当正方形的顶点F恰好落在对角线AC(与E为正方形B′EFG,当点沿BC向右平移,记平移中的正方形BEFC(2)将(1)问中的正方形BEFG,B′M,DMM,连接B′D,,正方形B′EFG的边EF与AC交于点点C重合时停止平移.设平移的距离为t t的值;若不存在,请说明理由;t,使△B′DM是直角三角形?若存在,求出是否存在这样的与t,请直接写出S之间)问的平移过程中,设正方形)在(2B′EFG 与△ADC重叠部分的面积为S(3的函数关系式以及自变量t的取值范围.【思路点拨】(1)首先设正方形BEFG的边长为x,易得△AGF∽△ABC,根据相似三角形的对应边成比例,即可求得BE的长;(2)首先利用△MEC∽△ABC与勾股定理,求得B′M,DM与B′D的平方,然后分别从若∠DB′M=90°,222222222则DM=B′M+B′D,若∠DB′M=90°,则DM=B′M+B′D,若∠B′DM=90°,则B′M=B′D+DM去分析,即可得到方程,解方程即可求得答案;441010时,当<t≤2时,当)分别从当0≤t≤2<t≤时,当<t≤4时去分析求解即可求得答3(3333案.【答案与解析】(解:1)如图①,设正方形BEFG的边长为x,则BE=FG=BG=x,∵AB=3,BC=6,∴AG=AB-BG=3-x,∵GF∥BE,∴△AGF∽△ABC,AGGF?∴,BCABxx3??即,63解得:x=2,即BE=2.(2)存在满足条件的t,理由:如图②,过点D作DH⊥BC于H,则BH=AD=2,DH=AB=3,由题意得:BB′=HE=t,HB′=|t-2|,EC=4-t,∵EF∥AB,∴△MEC∽△ABC,MEECME4?t??∴,即,6BC3AB1t,∴ME=2-211222222t)=t=2在Rt△B′ME中,B′M=ME+B′E+(2--2t+8,24222222在Rt△DHB′中,B′D=DH+B′H=3+(t-2)=t-4t+13,过点M作MN⊥DH于N,1t,则MN=HE=t,NH=ME=2-t+-NH=3∴DN=D2+M+t+=D中Rt△DMD+B′=B′D(Ⅰ)若∠DB′M=90°,则.15222即 t-4t+13),t+t+1=(t-2t+8)+(4420解得:t=,7222+DM,(Ⅱ)若∠B′MD=90°,则B′D=B′M51222,t(t 即-4t+13=(+t+1)t-2t+8)+441717=-3-,解得:t=-3+(舍去),t 2117∴t=-3+;222,=B ′D (Ⅲ)若∠B ′DM=90°,则B ′M+DM 15222t-2t+8=(t-4t+13)+(t+t+1), 即: 44此方程无解,2017综上所述,当时,△B ′DM 是直角三角形; t=或-3+7(3)①如图③,当F 在CD 上时,EF :DH=CE :CH , 即2:3=CE :4,8, ∴CE=384=, ∴t=BB ′=BC-B ′E-EC=6-2-331t ,- ∵ME=221t , ∴FM= 241112当0≤t ≤时,S=S=×t ×t=t , △FMN3224②如图④,当G 在AC 上时,t=2, D 4-=3 ∵EK=EC?tan ∠DCB=EC C t--EK ∴FK= ∵NL AD 3. 4 -, ∴FL=t 3141143222<t ≤2时,S=S-S ∴当=t-(t-)(t-1)=-t+t-; △FKL △FMN8342343③如图⑤,当G 在CD 上时,B ′C :CH=B ′G :DH , 即B ′C :4=2:3,8,解得:B ′C= 32, ∴EC=4-t=B ′C-2=310,∴t= 3111 ∵B ′N=B ′C=(6-t )=3-t , 2221 ∵GN=GB ′-B ′N=t-1, 235101111432∴当2<t ≤时,S=S-S=×2×(t-1+t )-(t-)(t-1)=-t+2t-, △FKLGNMF 梯形83322223410④如图⑥,当<t ≤4时, 333331111 ∵B ′L=B ′C=(6-t ),EK=EC=(4-t ),B ′N=B ′C=(6-t )EM=EC=(4-t ), 4444222215t+. S=S=S-S=-B ′EMNB ′EKL 梯形MNLK 梯形梯形22 综上所述:412时,S=t , 当0≤t ≤431242t+t-;当<t ≤2时,S=-83353102,S=-t+2t-时,当2<t 1t <t ≤时S=2【总结升华】此题考查了相似三角形的判定与性质、正方形的性质、直角梯形的性质以及勾股定理等知识.此题 难度较大,注意数形结合思想、方程思想与分类讨论思想的应用,注意辅助线的作法.5.阅读理解折叠,BAC 的平分线A 中,沿∠BAC 的平分线AB 折叠,剪掉重复部分;将余下部分沿∠B △ABC 如图1,21111重合,无论折叠多少次,只C 折叠,点B 与点剪掉重复部分;…;将余下部分沿∠BAC 的平分线AB nn+1nnn的好角.要最后一次恰好重合,∠BAC 是△ABC 的平ABC 顶角∠BAC 的好角的两种情形.情形一:如图2小丽展示了确定∠BAC 是△ABC ,沿等腰三角形折叠,剪掉重复部分;将余下AB3,沿∠BAC 的平分线AB 折叠,点B 与点C 重合;情形二:如图分线11重合.B与点CC的平分线AB折叠,此时点A部分沿∠B11112:探究发现(填“是”或“不是不是△ABC的好角?(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC .是”)与∠C(不妨设∠B>∠C)之间的等量的好角,请探究∠B)小丽经过三次折叠发现了∠BAC是△ABC(2与∠C(不妨设∠B>∠C)之的好角,则∠B次折叠∠BAC是△ABC 关系.根据以上内容猜想:若经过n间的等量关系为.应用提升(3)小丽找到一个三角形,三个角分别为15°、60°、105°,发现60°和105°的两个角都是此三角形的好角.请你完成,如果一个三角形的最小角是4°,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.【思路点拨】(1)在小丽展示的情形二中,如图3,根据三角形的外角定理、折叠的性质推知∠B=2∠C;(2)根据折叠的性质、根据三角形的外角定理知∠AAB=∠C+∠ABC=2∠C;根据四边形的外角定理知22122∠BAC+2∠B-2C=180°①,根据三角形ABC的内角和定理知∠BAC+∠B+∠C=180°②,由①②可以求得∠B=3∠C;利用数学归纳法,根据小丽展示的三种情形得出结论:∠B=n∠C;(3)利用(2)的结论知∠B=n∠C,∠BAC是△ABC的好角,∠C=n∠A,∠ABC是△ABC的好角,∠A=n∠B,∠BCA是△ABC的好角;然后三角形内角和定理可以求得另外两个角的度数可以是88°、88°.【答案与解析】解:(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是△ABC的好角;理由如下:小丽展示的情形二中,如图3,∵沿∠BAC的平分线AB折叠,1∴∠B=∠AAB;11又∵将余下部分沿∠BAC的平分线AB折叠,此时点B与点C重合,11211∴∠ABC=∠C;11∵∠AAB=∠C+∠ABC(外角定理),1111∴∠B=2∠C;故答案是:是;CAAB折叠,剪掉重复部分;将余下部分沿∠B2)∠B=3∠C;如图所示,在△ABC中,沿∠BAC的平分线(111则∠BACC重合,点BA与点C的平分线AB折叠,B的平分线A折叠,剪掉重复部分,将余下部分沿∠B2221223是△ABC的好角.,∠C=∠ABC,∠ABC=∠A证明如下:∵根据折叠的性质知,∠B=∠AABAB,2111221 21∴根据三角形的外角定理知,∠AAB=∠C+∠ABC=2∠C;22122∵根据四边形的外角定理知,∠BAC+∠B+∠AAB-∠ABC=∠BAC+2∠B-2C=180°,111 1根据三角形ABC的内角和定理知,∠BAC+∠B+∠C=180°,∴∠B=3∠C;由小丽展示的情形一知,当∠B=∠C时,∠BAC是△ABC的好角;由小丽展示的情形二知,当∠B=2∠C时,∠BAC是△ABC的好角;由小丽展示的情形三知,当∠B=3∠C时,∠BAC是△ABC的好角;故若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为∠B=n∠C;(3)由(2)知,∠B=n∠C,∠BAC是△ABC的好角,∴∠C=n∠A,∠ABC是△ABC的好角,∠A=n∠B,∠BCA是△ABC的好角,∴如果一个三角形的最小角是4°,三角形另外两个角的度数是4、172;8、168;16、160;44、132;88°、88°.【总结升华】本题考查了翻折变换(折叠问题).解答此题时,充分利用了三角形内角和定理、三角形外角定理以及折叠的性质,难度较大.举一反三:【高清课堂:阅读理解型问题例3】【变式】阅读以下短文,然后解决下列问题:如果一个三角形和一个矩形满足条件:三角形的一边与矩形的一边重合,且三角形的这边所对的顶点在矩形这边的对边上,则称这样的矩形为三角形的“友好矩形”. 如图8①所示,矩形ABEF 即为△ABC的“友好矩形”. 显然,当△ABC是钝角三角形时,其“友好矩形”只有一个.(1) 仿照以上叙述,说明什么是一个三角形的“友好平行四边形”;(2) 如图②,若△ABC为直角三角形,且∠C=90°,在图②中画出△ABC的所有“友好矩形”,并比较这些矩形面积的大小;(3) 若△ABC是锐角三角形,且BC>AC>AB,在图③中画出△ABC的所有“友好矩形”,指出其中周长最小的矩形并加以证明.③②①【答案】如果一个三角形和一个平行四边形满足条件:三角形的一边与平行四边形的一边重合,三角形(1)这边所对的顶点在平行四边形这边的对边上,则称这样的平行四边形为三角形的“友好平行四边形”.ABCABEF的面积都等于△ABEF.易知,矩形BCAD、 (2) 此时共有2个友好矩形,如图中的矩形BCAD、.ABC的“友好矩形”的面积相等面积的2倍,∴△.的周长最小及ABHK,其中矩形ABHKCAFG(3) 此时共有3个友好矩形,如图的矩形BCDE、证明如下:,L,LCAFGBCDE、及ABHK的周长分别为L,易知,这三个矩形的面积相等,令其为S. 设矩形321,AB=c,BC=a△ABC的边长,CA=b S2S22S+2c . L=L则=,L=+2b,+2a312 cabS S2Sab2∴L-L, =(+2a)-(+2b)=2(a-b)21abab而ab>S,a>b,∴L-L>0,即L>L. 2 211同理可得,L>L.L最小,即矩形ABHK的周长最小. 33 2∴。

中考数学第二轮专题复习⑵ 阅读理解问题 探索性问题华东师大版知识精讲

中考数学第二轮专题复习⑵阅读理解问题探索性问题华东师大版【本讲教育信息】一. 教学内容:中考第二轮专题复习⑵阅读理解问题探索性问题二. 知识讲解:1. 阅读理解问题阅读理解题一般由“阅读”和“问题”两部分构成,其“阅读”部分往往是向学生提供一个自学材料,其内容多以定义一个新概念(新法则),或展示一个题的解题过程,或给出一种新颖的解题方法,或介绍某种图案的设计流程等.这类试题要求同学们能透彻理解课本中的所学内容,善于总结解题规律,并能准确阐述自己的思想和观点.大家必须先通过自学,理解其内容、过程、方法和思想,把握其本质,才可能解答试题中提出的“问题”.这类试题一般篇幅较长、形式新颖、思想丰富、构思精妙,极具思考性和挑战性,能较好地考查同学们对数学知识的理解水平、数学方法的运用水平及分析推理能力、数据处理能力、文字概括能力、书面表达能力、随机应变能力和知识的迁移能力等,因而备受命题者的青睐.这类问题的主要题型有:阅读特殊X例,推出一般结论;阅读解题过程,总结解题思路和方法;阅读新知识,研究新问题等.2. 探索性问题近几年全国各地的中考试卷中,常常能看到许多值得回味的探究性问题.所谓探究性问题,是指问题的条件或结论尚不明确,需通过探究去补充条件或完善结论的一类问题.这类问题能很好地实现对同学们数学品质的考查,这和新课程的理念相符,因此探究性问题也就很自然地成为近几年新课程中考的热点问题.探究性问题的“探究性”是与传统问题的“明确性”相对而言的.一般情况下,传统问题条件完备,结论明确,只需计算结果或对结论加以论证.而探究性问题则是通过学习对问题剖析,选择并建立恰当的数学模型,经过观察、试验、分析、比较、类比、归纳、猜测、推断等探究性活动来探索解题思路.【典型例题】例1.四边形一条对角线所在直线上的点,如果到这条对角线的两端点的距离不相等,但到另一对角线的两个端点的距离相等,则称这点为这个四边形的准等距点.如图l,点P为四边形ABCD对角线AC所在直线上的一点,PD=PB,PA≠PC,则点P为四边形ABCD的准等距点.图1(1)如图2,画出菱形ABCD的一个准等距点.(2)如图3,作出四边形ABCD的一个准等距点(尺规作图,保留作图痕迹,不要求写作法).(3)如图4,在四边形ABCD中,P是AC上的点,PA≠PC,延长BP交CD于点E,延长DP交BC于点F,且∠CDF=∠CBE,CE=CF.求证:点P是四边形ABCD的准等距点.(4)试研究四边形的准等距点个数的情况(说出相应四边形的特征及准等距点的个数,不必证明).解析:由定义,“准等距点”必须同时满足以下两个条件:①在这个四边形的一条对角线所在直线上(除对角线的中点外);②到另一条对角线两端的距离相等(即在另一条对角线的垂直平分线上).这两者缺一不可,只要抓住这两条,问题就变得容易了.(1)如图5,点P即为所画点.(点P不是AC中点,答案不唯一).(2)如图6,点P即为所作点.(答案不唯一).(3)如图7,连结DB,∵在△DCF与△BCE中,∠DCF=∠BCE,∠CDF=∠CBE,CF=CE.∴△DCF≌△BCE(AAS),∴CD=CB,∴∠CDB=∠CBD.∴∠PDB=∠PBD,∴PD=PB,∵PA≠PC∴点P是四边形ABCD的准等距点.(4)①当四边形的对角线互相垂直且任何一条对角线不平分另一对角线或者对角线互相平分且不垂直时,准等距点的个数为0个;②当四边形的对角线不互相垂直,又不互相平分,且有一条对角线的中垂线经过另一对角线的中点时,准等距点的个数为1个;③当四边形的对角线既不互相垂直又不互相平分,且任何一条对角线的中垂线都不经过另一条对角线的中点时,准等距点的个数为2个;④四边形的对角线互相垂直且至少有一条对角线平分另一对角线时,准等距点有无数个.例2. 将4个数a b c d ,,,排成2行、2列,两边各加一条竖直线记成a bc d,定义a bc dad bc=-1111x x x x +--+ 6=,则x =. 分析:记号叫什么与本题怎么解之间的关系不大,把陌生的符号“| |”转化为熟悉的四则运算才是关键,此题本质上是一个一元二次方程问题.解:由定义,“| |”实质上表示的是一种积差运算“对角乘积的差”,故1111x x xx +--+2(1)(1)(1)6x x x =+---=,解得x =2±.例3. 提出问题:如图①,在四边形ABCD 中,P 是AD 边上任意一点,△PBC 与△ABC 和△DBC 的面积之间有什么关系?探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:⑴当AP =12AD 时(如图②):∵AP =12AD ,△ABP 和△ABD 的高相等,∴ABP S ∆=12ABD S ∆.∵PD=AD -AP=12AD ,△CDP 和△CDA 的高相等,∴CDP S ∆=12CDA S ∆.∴PBC S ∆=ABCD S 四边形-ABP S ∆-CDP S ∆ =ABCD S 四边形-12ABD S ∆-12CDA S ∆=ABCD S 四边形-12(ABCD S 四边形-DBC S ∆)-12(ABCD S 四边形-ABC S ∆)=12DBC S ∆+12ABC S ∆.⑵当AP =13AD 时,探求PBC S ∆、ABC S ∆和DBC S ∆之间的关系,写出求解过程;⑶当AP =16AD 时,PBC S ∆、ABC S ∆和DBC S ∆之间的关系式为:________________;⑷一般地,当AP =1nAD (n 表示正整数)时,探求PBC S ∆、ABC S ∆和DBC S ∆之间的关系,写出求解过程;问题解决:当AP =m n AD (0≤mn≤1)时,PBC S ∆、ABC S ∆和DBC S ∆之间的关系式为:___________.PDCB A解析:本题以大家熟悉的知识为背景来创设阅读新情境,让大家从特例入手,通过自学例题解法,探索发现解题的思路技巧,并用此思路技巧解决新的问题,是一道旨在凸显探究和发现过程的好题.示例中暗示的思路技巧为:通过割补法将PBC S ∆转化为ABCD S 四边形与ABP S ∆和CDP S ∆的差;之后,利用“同高的两个三角形的面积比等于底的比”,将ABP S ∆和CDP S ∆分别用ABD S ∆和CDA S ∆来代换;再分别用ABCD S 四边形与DBC S ∆和ABC S ∆的差来表示ABD S ∆和CDA S ∆,从而建立起PBC S ∆与DBC S ∆和ABC S ∆之间的关系.⑵同理⑴,得PBC S ∆=13DBC S ∆+23ABC S ∆(过程略);⑶PBC S ∆=16DBC S ∆+56ABC S ∆;⑷PBC S ∆=1n DBC S ∆+1n n-ABC S ∆(过程略);问题解决:当AP =m nAD ,得AP=1n mnm 作为一个整体代入上式中的n ,化简得PBC S ∆=mnDBC S ∆+n m n -ABC S ∆.说明:问题⑷看起来很复杂,但只要按照示例中的思路技巧去类比和模仿,一般不会做错;整个解题过程用到了割补法和整体、转化的数学思想.解:⑵∵AP =13AD ,△ABP 和△ABD 的高相等,∴S △ABP =13S △ABD .又∵PD =AD -AP =23AD ,△CDP 和△CDA 的高相等,∴S △CDP =23S △CDA . ∴S △PBC =S 四边形ABCD -S △ABP -S △CDP=S 四边形ABCD -13S △ABD -23S △CDA=S 四边形ABCD -13(S 四边形ABCD -S △DBC )-23(S 四边形ABCD -S △ABC )=13S △DBC +23S △ABC . ∴S △PBC =13S △DBC +23S △ABC .⑶ S △PBC =16S △DBC +56S △ABC ;⑷S △PBC =1n S △DBC +1n n -S △ABC ;∵AP =1n AD ,△ABP 和△ABD 的高相等,∴S △ABP =1nS △ABD .又∵PD =AD -AP =1n n-AD ,△CDP 和△CDA 的高相等,∴S △CDP =1n n-S △CDA .∴S △PBC =S 四边形ABCD -S △ABP -S △CDP=S 四边形ABCD -1n S △ABD -1n n -S △CDA=S 四边形ABCD -1n (S 四边形ABCD -S △DBC )-1n n-(S 四边形ABCD -S △ABC )=1n S △DBC +1n n-S △ABC .∴S △PBC =1nS △DBC +1n n -S △ABC .问题解决: S △PBC =m nS △DBC +n m n-S △ABC .例4. 解方程x (x -1)=2. 有学生给出如下解法: ∵ x (x -1)=2=1×2=(-1)×(-2), ∴ 1,12;x x =⎧⎨-=⎩或2,11;x x =⎧⎨-=⎩或1,12;x x =-⎧⎨-=-⎩或2,1 1.x x =-⎧⎨-=-⎩解上面第一、四方程组,无解;解第二、三方程组,得 x =2或x =-1. ∴ x =2或x =-1.请问:这个解法对吗?试说明你的理由.解析:与传统辨析题不同的是,此题的解答更具开放性,不管判断解法是对还是错,只要所述理由充分都对,这恰好是该题设计的精妙之处.答案1:对于这个特定的已知方程,解法是对的.理由是:一元二次方程有根的话,只能有两个根,此学生已经将两个根都求出来了,所以对.答案2:解法不严密,方法不具有一般性.理由是:为何不可以2=3×23等,得到其它的方程组?此学生的方法只是巧合,求对了方程的解.例5. 生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条的反面):如果由信纸折成的长方形纸条(图①)长为2 6 cm ,宽为xcm ,分别回答下列问题: (1)为了保证能折成图④的形状(即纸条两端均超出点P ),试求x 的取值X 围.(2)如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点P 的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点M 与点A 的距离(用x 表示).解析:本题设计精巧,以学生喜闻乐见的折纸为背景,材料鲜活,表述简明,考查了同学们的数学建模能力.如果不亲自动手实践,仅凭想像,是很难得到正确结果的.把折好的便条打开,则得到带有折痕(实线)的纸条。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考冲刺:创新、开放与探究型问题—知识讲解(基础)【中考展望】所谓开放探索型问题指的是有些数学问题的条件、结论或解决方法不确定或不唯一,需要根据题目的特点进行分析、探索,从而确定出符合要求的答案(一个、多个或所有答案)或探索出解决问题的多种方法.由于开放探究型问题对考查学生思维能力和创造能力有积极的作用,是近几年中考命题的一个热点.通常这类题目有以下几种类型:条件开放与探索,结论开放和探索,条件与结论都开放与探索及方案设计、命题组合型、问题开放型等.【方法点拨】由于开放探究型试题的知识覆盖面较大,综合性较强,灵活选择方法的要求较高,再加上题意新颖,构思精巧,具有相当的深度和难度,所以要求同学们在复习时,首先对于基础知识一定要复习全面,并力求扎实牢靠;其次是要加强对解答这类试题的练习,注意各知识点之间的因果联系,选择合适的解题途径完成最后的解答.由于题型新颖、综合性强、结构独特等,此类问题的一般解题思路并无固定模式或套路,但是可以从以下几个角度考虑:1.利用特殊值(特殊点、特殊数量、特殊线段、特殊位置等)进行归纳、概括,从特殊到一般,从而得出规律.2.反演推理法(反证法),即假设结论成立,根据假设进行推理,看是推导出矛盾还是能与已知条件一致.3.分类讨论法.当命题的题设和结论不唯一确定,难以统一解答时,则需要按可能出现的情况做到既不重复也不遗漏,分门别类加以讨论求解,将不同结论综合归纳得出正确结果.4.类比猜想法.即由一个问题的结论或解决方法类比猜想出另一个类似问题的结论或解决方法,并加以严密的论证.以上所述并不能全面概括此类命题的解题策略,因而具体操作时,应更注重数学思想方法的综合运用.【典型例题】类型一、探究规律1.观察下列各式:222211⨯=+,333322⨯=+,444433⨯=+,555544⨯=+,…想一想,什么样的两数之积等于这两数之和?设n表示正整数,用关于n的等式表示这个规律.【思路点拨】所给各式中的两个数中,一个是分数,一个是整数,且分数的分子比分母大1,分子与整数相等,因此得出规律.【答案与解析】所给各式中的两个数中,一个是分数,一个是整数,且分数的分子比分母大1,分子与整数相等,因此得到规律:11(1)(1)n nn nn n+++=++(n为正整数)【总结升华】这个规律是否正确呢?可将等式左右两边分别化简,即能得出结论.对于“数字规律”的观察,要善于发现其中的变量与不变量,以及变量与项数之间的关系,将规律用代数式表示出来.举一反三:【变式】(2015秋•日照期中)如图,把一条绳子折成3折,用剪刀从中剪断,如果剪一刀得到4条绳子,如果剪两刀得到7条绳子,如果剪三刀得到10条绳子,…,依照这种方法把绳子剪n刀,得到的绳子的条数为()A.n B.4n+5 C.3n+1 D.3n+4【答案】C【解析】解:设段数为x则依题意得:n=0时,x=1,n=1,x=4,n=2,x=7,n=3,x=10,…所以当n=n时,x=3n+1.故选:C.类型二、条件开放型2.如图所示,四边形ABCD是矩形,O是它的中心,E,F是对角线AC上的点.(1)若________________________,则△DEC≌△BFA(请你填上能使结论成立的一个条件);(2)证明你的结论.【思路点拨】(1)已知了一边AD=BC,和一角(AD∥BC,∠DAC=∠BCA)相等.根据全等三角形的判定AAS、SAS、ASA 等,只要符合这些条件的都可以.(2)按照(1)中的条件根据全等三角形的判定进行证明即可.【答案与解析】解:(1)AE=CF;(OE=OF;DE⊥AC,BF⊥AC;DE∥BF等等)(2)以AE=CF为例.∵四边形ABCD是矩形,∴AB=CD,AB∥CD,∠DCE=∠BAF.又∵AE=CF.∴AC -AE =AC -CF . ∴AF =CE ,∴△DEG ≌△BAF . 【总结升华】这是一道探索条件、补充条件的开放型试题,解决这类问题的一般方法是:从结论出发,由果寻因,逆向推理,探寻出使结论成立的条件;有时也采取把可能产生结论的条件一一列出,逐个分析考察. 举一反三:【高清课堂:创新、开放与探究型问题 例1】【变式】如图,飞机沿水平方向(A ,B 两点所在直线)飞行,前方有一座高山,为了避免飞机飞行过低,就必须测量山顶M 到飞行路线AB 的距离MN .飞机能够测量的数据有俯角和飞行距离(因安全因素,飞机不能飞到山顶的正上方N 处才测飞行距离),请设计一个求距离MN 的方案,要求: (1)指出需要测量的数据(用字母表示,并在图中标出); (2)用测出的数据写出求距离MN 的步骤.【答案】解:此题为开放题,答案不唯一,只要方案设计合理,可参照给分⑴如图,测出飞机在A 处对山顶的俯角为α,测出飞机在B 处对山顶的俯角为β,测出AB 的距离为d ,连接AM ,BM .⑵第一步,在AMN Rt ∆中,AN MN =αtan ∴αtan MNAN =; 第二步,在BMN Rt ∆中,BN MN=βtan ∴βtan MN BN =;其中BN d AN +=,解得αββαtan tan tan tan -⋅⋅=d MN .类型三、结论开放型3.已知:如图(a),Rt △ABC ≌Rt △ADE ,∠ABC =∠ADE =90°,试以图中标有字母的点为端点,连接两条线段,如果你所连接的两条线段满足相等、垂直或平行关系中的一种,那么请你把它写出来并证明.【思路点拨】此题需分三种情况讨论:第一种相等CD=BE,第二种垂直AF⊥BD,第三种是平行DB∥CE.首先利用全等三角形的性质,再利用三角形全等的判定定理分别进行证明即可.【答案与解析】解:可以写出的结论有:CD=BE,DB∥CE,AF⊥BD,AF⊥CE等.(1)如图(b),连接CD,BE,得CD=BE.证明:∵△ABC≌△ADE,∴AB=AD,AC=AE.又∠CAB=∠EAD,∴∠CAD=∠E1AB.∴△ADC≌△ABE.∴CD=BE.(2)如图(c),连接DB,CE,得DB∥CE.证明:∵△ABC≌△ADE,∴AD=AB.∴∠ADB=∠ABD.∵∠ABC=∠ADE,∴∠BDF=∠FBD.由AC=AE可得∠ACE=∠AEC.∵∠ACB=∠AED,∴∠FCE=∠FEC.∵∠BDF+∠FBD=∠FCE+∠FEC,∴∠FCE=∠DBF.∴DB∥CE.(3)如图(d),连接DB,AF,得AF⊥BD.∵△ABC≌△ADE,∴AD=AB,∠ABC=∠ADE=90°.又∵AF=AF,∴△ADF≌△ABF.∴∠DAF=∠BAF.∴AF⊥BD.(4)如图(e),连接CE、AF,得AF⊥CE.同(3)得∠DAF=∠BAF.可得∠CAF=∠EAF.∴AF⊥BD.【总结升华】本题考查了全等三角形的判定及性质;要对全等三角形的性质及三角形全等的判断定理进行熟练掌握、反复利用,达到举一反三.举一反三:【高清课堂:创新、开放与探究型问题例2】【变式】数学课上,李老师出示了这样一道题目:如图1,正方形ABCD的边长为12,P为边BC延长线上的一点,E为DP的中点,DP的垂直平分线交边DC于M,交边AB的延长线于N.当CP=6时,EM与EN的比值是多少?经过思考,小明展示了一种正确的解题思路:过E作直线平行于BC交DC,AB分别于F,G,如图2,则可得:DF DEFC EP=,因为DE EP=,所以DF FC=.可求出EF和EG的值,进而可求得EM与EN的比值.(1) 请按照小明的思路写出求解过程.(2) 小东又对此题作了进一步探究,得出了DP MN=的结论.你认为小东的这个结论正确吗?如果正确,请给予证明;如果不正确,请说明理由.【答案】(1)解:过E作直线平行于BC交DC,AB分别于点F,G,则DF DEFC EP=,EM EFEN EG=,12GF BC==.∵DE EP =,∴DF FC =. ∴116322EF CP ==⨯=,12315EG GF EF =+=+=. ∴31155EM EF EN EG ===. (2)证明:作MH ∥BC 交AB 于点H ,则MH CB CD ==,90MHN ∠=︒. ∵1809090DCP ∠=︒-︒=︒, ∴DCP MHN ∠=∠.∵90MNH CMN DME CDP ∠=∠=∠=︒-∠,90DPC CDP ∠=︒-∠, ∴DPC MNH ∠=∠.∴DPC MNH ∆≅∆. ∴DP MN =.类型四、动态探究型4.(2016•平南县二模)已知:在△AOB 与△COD 中,OA=OB ,OC=OD ,∠AOB=∠COD=90°.(1)如图1,点C 、D 分别在边OA 、OB 上,连结AD 、BC ,点M 为线段BC 的中点,连结OM ,则线段AD 与OM 之间的数量关系是 ,位置关系是 ;(2)如图2,将图1中的△COD 绕点O 逆时针旋转,旋转角为α(0°<α<90°).连结AD 、BC ,点M 为线段BC 的中点,连结OM .请你判断(1)中的两个结论是否仍然成立.若成立,请证明;若不成立,请说明理由;(3)如图3,将图1中的△COD绕点O逆时针旋转到使△COD的一边OD恰好与△AOB的边OA在同一条直线上时,点C落在OB上,点M为线段BC的中点.请你判断(1)中线段AD与OM之间的数量关系是否发生变化,写出你的猜想,并加以证明.【思路点拨】(1)AD与OM之间的数量关系为AD=2OM,位置关系是AD⊥OM;(2)(1)中的两个结论仍然成立,利用中位线定理得到FC=2OM,利用SAS得到三角形AOD与三角形FOC 全等,利用全等三角形的对应边相等得到FC=AD,等量代换得到AD=2OM;由OM为三角形BCF的中位线,利用中位线定理得到OM与CF平行,利用两直线平行同位角相等得到∠BOM=∠F,由全等三角形的对应角相等得到∠F=∠OAD,等量代换得到∠BOM=∠OAD,根据∠BOM与∠AOM互余,得到∠OAD与∠AOM互余,即可确定出OM与AD垂直,得证;(3)(1)中线段AD与OM之间的数量关系没有发生变化,理由为:如图3所示,延长DC交AB于E,连结ME,过点E作EN⊥AD于N,由三角形COD与三角形AOB都为等腰直角三角形,利用等腰直角三角形的性质得到四个角为45度,进而得到三角形MCE与三角形AED为等腰直角三角形,根据EN为直角三角形ADE斜边上的中线得到AD=2EN,再利用三个角为直角的四边形为矩形得到四边形OMEN为矩形,可得出EN=OM,等量代换得到AD=2OM.【答案与解析】解:(1)线段AD与OM之间的数量关系是AD=2OM,位置关系是AD⊥OM;(2)(1)的两个结论仍然成立,理由为:证明:如图2,延长BO到F,使FO=BO,连结CF,∵M为BC中点,O为BF中点,∴MO为△BCF的中位线,∴FC=2OM,∵∠AOB=∠AOF=∠COD=90°,∴∠AOB+∠BOD=∠AOF+∠AOC,即∠AOD=∠FOC,在△AOD和△FOC中,,∴△AOD≌△FOC(SAS),∴FC=AD,∴AD=2OM,∵MO为△BCF的中位线,∴MO∥CF,∴∠MOB=∠F,又∵△AOD≌△FOC,∴∠DAO=∠F,∵∠MOB+∠AOM=90°,∴∠DAO+∠AOM=90°,即AD⊥OM;(3)(1)中线段AD与OM之间的数量关系没有发生变化,理由为:证明:如图3,延长DC交AB于E,连结ME,过点E作EN⊥AD于N,∵OA=OB,OC=OD,∠AOB=∠COD=90°,∴∠A=∠D=∠B=∠BCE=∠DCO=45°,∴AE=DE,BE=CE,∠AED=90°,∴DN=AN,∴AD=2NE,∵M为BC的中点,∴EM⊥BC,∴四边形ONEM是矩形.∴NE=OM,∴AD=2OM.故答案为:AD=2OM;AD⊥OM.【总结升华】此题考查了几何变换综合题,涉及的知识有:全等三角形的判定与性质,等腰直角三角形的判定与性质,三角形的中位线定理,是一道多知识点探究性试题.类型五、创新型5.认真观察图3的4个图中阴影部分构成的图案,回答下列问题:(1)请写出这四个图案都具有的两个共同特征.特征1:_________________________________________________; 特征2:_________________________________________________.(2)请在图4中设计出你心中最美丽的图案,使它也具备你所写出的上述特征 【思路点拨】本题主要考查轴对称图形,中心对称图形的知识点,以及学生的观察能力及空间想象能力. 【答案与解析】(1)特征1:都是轴对称图形;特征2:都是中心对称图形;特征3:这些图形的面积都等于4个单位面积等.(2)满足条件的图形有很多,只要画正确一个,就可以得满分.图5【总结升华】本题为开放型试题,答案并不唯一,只要考生能够写出一种符合要求的情景即可,该题为考生提供了一个广阔的发挥空间,但是学生必须通过前四个图形发现其中蕴涵的规律,依照此规律来画出自己想象中的美妙图形.图4图3。

相关文档
最新文档