焊接工艺

合集下载

焊接工艺指导书全

焊接工艺指导书全

焊接工艺指导书全一、工序简介焊接是将金属工件通过熔融和熔汇相互连接的一种方法,广泛应用于制造业的各个领域。

良好的焊接工艺可以保证焊接接头的强度和密封性,提高产品的质量和性能。

本指导书主要介绍焊接的基本工艺和操作要点。

二、焊接种类常见的焊接种类有电弧焊接、气焊、氩弧焊、激光焊接等。

根据工件的特点和所需的焊接质量,选择合适的焊接方法。

三、焊接设备焊接设备的选择要根据焊接种类和工件的要求。

常见的设备有焊接机、气瓶、电源等。

确保设备正常运行和保养,提高工作效率。

四、准备工作1.清洁工件表面,去除油污和氧化物,保证焊接接头的质量。

2.对焊接接头进行坡口处理,确保接头的接触面积和加强焊接的强度。

五、焊接工艺1.选择合适的焊接电流和电压,确保焊接电弧的稳定性。

2.控制焊接速度和角度,保证焊接接头的质量。

在焊接过程中,要均匀加热接头,并保持适当的焊接温度。

3.焊接前要进行试焊,检查焊接接头的质量和焊缝的密封性,以确保工件的质量。

4.焊接完毕后,及时处理焊缝处的残余物,并进行焊缝的修整,以提高焊接接头的强度和美观度。

六、安全注意事项1.焊接时要戴上防护眼镜和手套,避免电弧和熔融金属的伤害。

2.工作环境要通风,避免金属烟雾和有害气体的吸入。

3.焊接设备要经常检查和维护,确保设备的安全运行。

4.进行高温焊接时,要做好防火措施,避免火灾事故的发生。

七、常见问题及解决方法1.焊接接头出现裂纹:可能是焊接温度过高或焊接速度过快,解决方法是降低焊接温度或减缓焊接速度。

2.焊接接头不牢固:可能是焊接电流过小或焊接时间过短,解决方法是增加焊接电流或延长焊接时间。

3.焊接缺陷过多:可能是焊接设备不合格或操作不当,解决方法是更换合格的设备或加强操作培训。

八、总结良好的焊接工艺和合理的操作方法是保证焊接接头质量的关键。

通过不断学习和实践,掌握焊接的基本原理和技术要领,提高焊接工艺水平,为制造业的发展做出贡献。

焊接工艺的基本内容

焊接工艺的基本内容

焊接工艺的基本内容
焊接工艺的基本内容包括以下几个方面:
1. 焊接方法:常见的焊接方法包括电弧焊、气体保护焊(如氩弧焊、氩气保护焊)、电阻焊、激光焊等。

不同的焊接方法适用于不同的工件材料和焊接要求。

2. 焊接材料:焊接材料通常包括焊材和填充材料。

焊材是指用于连接工件的金属材料,填充材料则是在焊缝中添加的材料,以提高焊接强度和密封性。

3. 焊接设备:焊接设备包括焊接机、电源、焊接枪、气瓶等。

根据焊接方法的不同,设备和工具的要求也不同。

4. 焊接参数:焊接参数是指在焊接过程中需要控制的参数,如焊接电流、电压、焊接速度、焊接时间等。

合理的焊接参数选择可以保证焊接质量和效率。

5. 焊接工艺规程:焊接工艺规程是指根据具体的焊接任务,制定的一套操作指导文件,包括焊接工艺参数、焊接顺序、焊接工序等。

焊接工艺规程的制定是确保焊接质量和安全的重要依据。

6. 焊接质量控制:焊接质量控制包括焊接前的质量准备、焊接过程中的监控与检验,以及焊接后的质量评定与处理。

焊接质量控制的目标是确保焊接接头的质量和性能满足设计要求。

以上是焊接工艺的基本内容,焊接工艺涉及广泛,根据不同的焊接项目和要求,具体内容可能有所差异。

焊接工艺(PPT72页)

焊接工艺(PPT72页)
(2)防止措施提高操作技术水平, 选用正确的焊接电流,控制熔池的温度。使用碱性焊条时宜采用短弧焊接,运条方法要正确。
4. 凹坑与弧坑
凹坑与弧坑a) 凹坑 b) 弧坑
(1)产生凹坑与弧坑的原因主要是由于操作技能不熟练,电弧拉得过长;焊接表面焊缝时, 焊接电流过大, 焊条又未适当摆动,熄弧过快;过早进行表面焊缝焊接或中心偏移等会导致凹坑;埋弧焊时,导电嘴压得过低,造成导电嘴黏渣,也会使表面焊缝两侧凹陷等。
2. 咬边
咬边
(1)产生咬边的原因主要是由于焊接电流过大以及运条速度不合适; 角焊时焊条角度或电弧长度不适当;埋弧焊时焊接速度过快等。
(2)防止措施选择适当的焊接电流、保持运条速度均匀;角焊时焊条要采用合适的角度和保持一定的电弧长度;埋弧焊时要正确选择焊接参数。
3. 焊瘤
焊瘤
(1)产生焊瘤的原因主要是由于焊接电流过大,焊接速度过慢,引起熔池温度过高,液态金属凝固较慢,在自重作用下形成焊瘤。操作不熟练和运条不当,也易产生焊瘤。
10. 未熔合
(1)产生未熔合的原因主要是由于焊接热输入太低; 焊条、焊丝或焊炬火焰偏于坡口一侧,使母材或前一层焊缝金属未得到充分熔化就被填充金属覆盖;坡口及层间清理不干净;单面焊双面成形焊接时,第一层的电弧燃烧时间短等。
(2)防止措施焊条、焊丝和焊炬的角度要合适, 运条摆动应适当,要注意观察坡口两侧的熔化情况;选用稍大的焊接电流和火焰能率,焊速不宜过快,使热量增加足以熔化母材或前一层焊缝金属;发生电弧偏吹时应及时调整角度,使电弧对准熔池;加强坡口及层间清理。
(4)加焊回火焊道,但焊后需磨去多余金属,使之与母材圆滑过渡或采用TIG 焊重熔法。
回火焊道
(5)凡须预热的材料,预热温度要较原焊缝提高50℃ 左右, 并且其道间温度不应低于预热温度,否则,需加热到要求温度后方可焊接。(6)要求焊后热处理的锅炉、压力容器应在热处理前返修,否则,返修后应重新进行热处理。(7)同一部位的焊缝返修次数一般不超过3次。

焊接工艺及原理

焊接工艺及原理

焊接工艺及原理一、焊接基本原理焊接是一种通过加热或加压,或两者并用,使两个分离的物体产生原子间结合的方法。

其基本原理是利用高温或高压使两个工件产生塑性变形,以实现连接。

二、焊接方法与分类1.熔焊:将工件加热至熔点,形成熔池,冷却凝固后形成连接。

常见的熔焊方法包括电弧焊、气体保护焊、激光焊等。

2.压焊:通过施加压力,使两个工件在固态下产生塑性变形,实现连接。

常见的压焊方法包括电阻焊、超声波焊、摩擦焊等。

3.钎焊:使用比母材熔点低的金属作为钎料,将工件加热至钎料熔化,填充接头间隙,实现连接。

常见的钎焊方法包括火焰钎焊、烙铁钎焊等。

三、焊接材料1.母材:被焊接的金属材料。

2.填充金属:用于填充接头间隙的金属材料,可根据母材和焊接方法选择。

3.钎料:用于钎焊的金属材料,其熔点应低于母材。

四、焊接工艺参数1.焊接电流:焊接过程中通过的电流大小,直接影响焊接质量和效率。

2.焊接电压:电弧焊中电弧两端的电压,影响电弧的稳定性和焊接质量。

3.焊接速度:焊接过程中单位时间内完成的焊缝长度,影响焊接效率和接头质量。

4.预热温度:对于某些高强度钢或铸铁等材料,焊接前需要进行预热以提高接头质量。

5.后热温度:焊接完成后对工件进行后热处理,以促进接头组织转变和消除残余应力。

6.保温时间:后热处理过程中保持工件温度的时间,影响接头组织和性能。

五、焊接变形与控制1.热变形:由于焊接过程中局部加热和不均匀冷却导致的变形。

控制方法包括选择合适的焊接顺序、采用对称焊接、局部散热等措施。

2.残余应力变形:焊接过程中产生的残余应力在工件内部造成的变形。

控制方法包括合理安排焊接顺序、采用振动消除应力等方法。

3.收缩变形:由于焊接过程中熔池的液态金属凝固后体积收缩导致的变形。

控制方法包括减小焊接电流和焊接速度、增加填充金属等措施。

六、焊接缺陷及防止1.气孔:由于保护不良或母材有锈等原因导致的气体未及时逸出形成的空穴。

防止方法包括加强保护、清理母材表面等措施。

常见焊接工艺

常见焊接工艺

常见焊接工艺焊接是一种将两个或多个工件连接在一起的加工方法,广泛应用于制造业和建筑领域。

常见焊接工艺包括电弧焊、气体保护焊、激光焊和摩擦焊等。

本文将对这些常见焊接工艺进行介绍。

一、电弧焊电弧焊是利用电弧产生的高温熔化工件并形成焊缝的方法。

常见的电弧焊包括手工电弧焊、氩弧焊和等离子焊。

手工电弧焊是最常见的焊接方法,操作简单,适用于各种材料的焊接。

氩弧焊使用惰性气体保护焊缝,焊接质量高,常用于不锈钢和铝合金的焊接。

等离子焊是在氩弧焊的基础上进一步改进的焊接方法,适用于焊接厚度较大的工件。

二、气体保护焊气体保护焊是在焊接过程中使用气体保护焊缝,防止氧气和其他杂质的侵入,提高焊接质量。

常见的气体保护焊有氩弧焊、惰性气体保护焊和半自动焊。

氩弧焊已经在上面提到过,适用于不锈钢和铝合金的焊接。

惰性气体保护焊使用惰性气体(如氩气)保护焊缝,适用于焊接不锈钢、铜和镍合金等材料。

半自动焊是通过焊丝自动送进焊缝,减少操作难度,提高效率。

三、激光焊激光焊是利用激光束的高能量将工件熔化并形成焊缝的方法。

激光焊具有高精度、高效率和无需接触的优点,适用于焊接薄壁材料和高反射材料。

激光焊分为传统激光焊和激光深熔焊。

传统激光焊适用于较薄的材料,焊缝较窄,适用于汽车和电子行业。

激光深熔焊适用于较厚的材料,焊缝较宽,适用于航空航天和能源行业。

四、摩擦焊摩擦焊是利用摩擦热产生的高温将工件熔化并形成焊缝的方法。

摩擦焊不需要外部热源和填充材料,适用于焊接铝合金、镁合金和铜等材料。

常见的摩擦焊包括摩擦搅拌焊和摩擦搅拌摩擦焊。

摩擦搅拌焊通过摩擦热将工件熔化,并通过机械搅拌来形成焊缝。

摩擦搅拌摩擦焊在摩擦搅拌焊的基础上增加了摩擦摩擦焊,进一步提高了焊接质量。

总结而言,常见的焊接工艺包括电弧焊、气体保护焊、激光焊和摩擦焊等。

每种焊接工艺都有其适用的材料和场景,选择合适的焊接工艺可以提高焊接质量和效率。

在实际应用中,还需要根据具体情况选择焊接参数和设备,以确保焊接的稳定性和可靠性。

常见的焊接工艺

常见的焊接工艺

常见的焊接工艺
焊接是一种将两个或多个金属材料连接在一起的方法。

它是制造业中最常用的连接技术之一。

焊接工艺有很多种,每种工艺都有其独特的优点和适用范围。

下面介绍几种常见的焊接工艺。

1. 电弧焊接
电弧焊接是一种通过电弧加热金属材料并使其熔化的焊接方法。

在电弧焊接中,电极和工件之间形成一条电弧,电弧的高温使金属材料熔化并形成焊缝。

电弧焊接适用于焊接厚度较大的金属材料,如钢板、钢管等。

2. 气体保护焊接
气体保护焊接是一种在焊接过程中使用惰性气体保护焊缝的方法。

惰性气体可以防止焊缝受到空气中的氧气和水蒸气的污染,从而保证焊缝的质量。

气体保护焊接适用于焊接不锈钢、铝合金等材料。

3. 熔覆焊接
熔覆焊接是一种将金属粉末或线材加热熔化后喷射到工件表面形成涂层的方法。

熔覆焊接可以改善工件表面的性能,如耐磨性、耐腐蚀性等。

熔覆焊接适用于修复和加强工件表面。

4. 激光焊接
激光焊接是一种使用激光束将金属材料熔化并形成焊缝的方法。

激光焊接具有高精度、高效率、无污染等优点。

激光焊接适用于焊接薄板、小型零件等。

5. 焊锡焊接
焊锡焊接是一种使用焊锡将两个金属材料连接在一起的方法。

焊锡焊接适用于焊接电子元器件、小型零件等。

不同的焊接工艺适用于不同的材料和应用场景。

在选择焊接工艺时,需要根据具体情况进行选择,以保证焊接质量和效率。

焊接工艺的特点及应用实例

焊接工艺的特点及应用实例

焊接工艺的特点及应用实例焊接工艺的特点:1. 焊接可靠性高:焊接是将金属材料融化并连接在一起的工艺,焊接接头具有较高的强度和耐久性,可以承受复杂的载荷和环境条件。

焊接接头的可靠性可以通过合适的焊接材料和工艺来保证。

2. 焊接速度快:相对于其他连接方式,如螺纹连接、铆接等,焊接速度较快。

一般情况下,焊接只需几秒到几分钟完成,可以大大提高生产效率。

3. 焊接适用范围广:焊接适用于大多数金属材料的连接,包括钢、铝、铜、镍合金等。

不同材料可以通过选择合适的焊接方法和材料进行连接。

4. 焊接灵活性高:焊接可以应用于各种复杂的工件形状和结构,不受材料形状的限制。

可以焊接成直线、弧线、环形等形状,适应不同的设计需求。

5. 焊接方式多样性:焊接工艺包括多种方法,如电弧焊、氩弧焊、激光焊、等离子焊等。

每种焊接方法有其特定的应用范围和特点,可以根据需要选择合适的焊接方式。

焊接工艺的应用实例:1. 建筑领域:焊接广泛应用于建筑领域,如钢结构建筑、桥梁、隧道等。

焊接可以用于连接各种形状的结构件,并提供更强的连接强度和耐候性,保证建筑物的安全性和稳定性。

2. 汽车制造业:汽车制造过程中需要大量的焊接工艺,用于连接车身部件、底盘和发动机等。

焊接可以提供可靠的连接,同时具有较高的生产效率和成本效益。

3. 航空航天领域:焊接在航空航天领域具有重要应用,如飞机的机身、发动机等都需要通过焊接实现多个部件的连接。

焊接可以满足飞机高强度和轻量化的要求。

4. 石油化工领域:石油化工设备如储罐、管道、换热器等都需要采用焊接工艺进行连接。

由于石油化工设备经常承受高温高压环境,焊接接头的可靠性尤为重要。

5. 电力行业:电力设备如输电塔、变压器、火力发电锅炉等都需要采用焊接进行连接。

焊接可以提供高强度的接头,确保设备的安全运行和长期稳定性。

总之,焊接工艺具有可靠性高、速度快、适用范围广、灵活性高和方式多样性等特点,广泛应用于各行各业。

焊接的应用实例包括建筑领域、汽车制造业、航空航天领域、石油化工领域以及电力行业等。

焊接工艺的特点

焊接工艺的特点

焊接工艺的特点1.焊接工艺广泛适用于各种金属材料:焊接工艺可以应用于各种金属材料,包括钢铁、铝、铜、镍合金等。

无论是软质材料还是硬质材料,焊接都可以实现有效的连接。

2.焊接工艺可以实现高强度连接:焊接工艺可以通过金属熔融与再凝固的过程,使两个金属零件在原子层面上得到有效结合。

由于焊接接头内部金属结构的连续性,焊接连接的强度通常比其他连接方法更高。

3.焊接工艺可实现材料的局部加热:焊接工艺可以通过电弧、激光或火焰等方式进行局部加热,从而只对需要加工的部位进行加热处理,减少了对整个材料的影响。

4.焊接工艺可以实现多种连接方式:焊接工艺可实现多种连接方式,包括对接焊接、角焊接、焊角接等。

这种多样化的连接方式可以根据不同的需求和材料特性选择,提高了焊接的灵活性和适应性。

5.焊接工艺需要专业技能和设备支持:焊接工艺需要熟练的技术和经验,并且还需要配备相应的焊接设备和工具。

焊接操作人员需要掌握焊接技术的基本原理和操作规程,以确保焊接过程的质量和安全。

6.焊接工艺存在一定的焊接变形问题:由于焊接过程中材料的加热和冷却,焊接接头可能会发生变形。

因此,在焊接过程中需要采取相应的变形控制措施,如采用预热、限制变形等方法,以保证焊接接头的几何形状和尺寸符合要求。

7.焊接工艺可能对材料性能产生影响:焊接过程中的热输入会改变材料的组织结构和力学性能。

焊接接头处的热影响区域(HAZ)通常会出现组织变化和应力集中现象。

因此,在焊接设计和工艺参数选择时,需要考虑材料性能的影响。

总之,焊接工艺作为一种常用的金属连接方法,具有广泛的适用性和高强度连接特点。

然而,焊接过程中也存在着一些问题,需要通过合理的控制和操作来解决。

为了达到优良的焊接效果,焊接工艺需要由专业人员进行操作,并且需要配备相应的设备和工具。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

焊接工艺5.1 焊接工艺评定5.1.1 焊接工艺评定的依据1.《建筑钢结构焊接技术规程》 JGJ81-2002 2.《钢结构工程施工质量验收规范》 GB50205-2001 3.设计图纸及设计总说明5.1.2 焊接工艺评定分析5.1.3 ****二期焊接工艺评定方案(表18)序号材质试件厚度(mm)覆盖厚度(mm)接头形式焊接方法焊接位置备注1 Q345C 30 22.5~45 对接埋弧焊平焊2 Q345C 60 45~90 对接埋弧焊平焊3 Q345C 30 22.5~45 对接CO2焊平焊4 Q345C 60 45~90 对接CO2焊平焊5 Q345C 30/30 22.5~45 角接CO2+双丝埋弧焊平焊6 Q345C 60/60 45~90 角接CO2+双丝埋弧焊平焊7 Q345C 20/20 15~40 十字形CO2焊立焊8 Q345C 60/60 45~90 十字形CO2焊立焊9 Q345C 30/60 15/33~30/66T形电渣焊立焊10 Q345C 80/80 40~88 十字形CO2焊/电渣焊立焊11 Q345C Φ19×200/δ4020~80 T形栓钉焊平焊5.2 焊工培训及焊工资格从事本工程焊接工作的焊工、焊接操作工及定位焊工,必须是按照JGJ81-2002《建筑钢结构焊接技术规程》的有关规定经考试合格,取得相应项目合格证且在合格证在有效期内的焊工。

在焊工上岗前,应针对本工程的箱型构件焊接接头多的特点,着重对手工操作焊工进行针对性地的复训与考核,从施焊人员的素质方面保证工程焊接质量等级达到优良。

拟考试的接头型式及焊接位置如下,具体考试方案经监理同意后实施:(1)板材对接接头焊接位置示意:(2)板材T形接头焊接位置示意:5.3 焊接方法和焊接设备(表19)焊接方法焊接设备电流和极性手工或机械焊条电弧焊(SMAW)直流电源直流反接(DCEP)手工CO2气体保护焊(GMAW) 直流电源直流反接(DCEP)半自动埋弧自动焊(SAW)直流电源直流反接(DCEP)自动电渣焊(SW)直流电源直流反接(DCEP)自动5.4 焊接材料5.4.1 焊接材料应符合标准和要求并附有质量保证书,入库前应对焊接材料进行检查;如规范有要求或有疑异,应按要求进行复验。

5.4.2 焊接材料的选用:(1)焊条电弧焊应采用符合《碳钢焊条》(GB5117)、《低合金钢焊条》(GB5118)规定的焊条。

半自动焊、自动焊焊丝应符合《焊接用钢丝》(GB1300-77)的规定。

表205.4.3 焊接材料的保管和使用a. 焊接材料根据材质、种类、规格分类堆放在干燥室,焊条不得有锈蚀、破损、脏物,焊丝不得有锈蚀、油污,焊剂不得混有杂物;b. 焊工应按工程要求领取合格的焊材,领取的焊条置于保温筒中,随用随取。

5.4.4 材料的烘焙和储存焊接材料在使用前应按材料说明书规定的温度和时间要求进行烘焙和储存;如材料说明要求不详,按下表要求执行:表21焊条烘干后应缓冷放置于110~120℃的保温箱中存放、待用;使用时应置于保温筒中随用随取;烘干后的低氢焊条在大气中放置时间超过4小时应重新烘干;焊条重复烘干次数不宜超过2次。

5.5 焊接变形与焊接残余应力的控制措施(1) 下料前对钢板进行喷丸处理,先行消除部分应力;切割时采用尽可能用数控切割保证切割精度,下料后对下料零部件进行检验矫正,控制零部件状态下的变形。

(2) 对焊接坡口形式,根据接头板厚、焊接方法、接头型式、施工经验等,选择容易保证焊接质量和有益于控制焊接收缩变形的坡口形式,通过工艺评定掌握预留和控制,控制焊接变形和收缩应力。

(3) 坡口加工和装配时,控制坡口加工精度和装配间隙,使坡口大小和填充量一致;在组立机上组立箱型构件、制作专门的装配胎架、设置有效的临时支撑、在箱型内设置工艺隔板保证箱体的外形满足设计要求将变形削减并调整至单一方向,同时根据预定的焊缝截面及母材的规格,预置焊接收缩余量和反变形,控制焊接变形。

(4) 厚板接头采取合理的预热工艺,BOX箱形构件焊接采用双面坡口对称分段退焊施焊,同时优化坡口焊接工艺,减小焊接坡口和焊接填充量,减少焊接道数,对厚板深坡口焊缝,焊接中增加翻身次数,对称施焊,并随时检查变形情况,同时进行过程中的火焰矫正和火焰对称等量热输入,减少焊接变形和残余应力。

(5) 典型厚板接头焊接变形与残余应力的控制a. 预置焊接收缩余量;b. 针对接头特点设置焊接反变形;c. 合理安排坡口形状和控制焊接顺序;①③②d.焊接过程中为了控制厚板焊缝中的收缩应力,可对中间焊道进行锤击,以消除焊接应力与残余应力,防止裂纹;e. 在同一构件上焊接时,应尽可能采用热量分散、对称分布的方式施焊;f. 先焊会有明显收缩的接头,后焊会有较小收缩的接头,应在尽可能小的拘束下焊接;g. 对于接点复杂的构件,如牛腿集中处,采用先将各牛腿分别制作完成、分别矫正变形后再进行总装焊接整体拼装和焊接的方法进行制作,以减少和降低焊接变形与焊接应力。

(6) 焊接时采用的热输入较小的焊接方法进行焊接,如CO2焊;对于箱型主缝及电渣焊缝焊接,采用多丝埋弧焊及丝极电渣焊对称焊接并连续焊完;(7) 对于巨型桁架中杆件的拼装焊接,由于结构和节点复杂、焊接工作量大,采取的装焊程序、焊接顺序、余量设置和焊接工艺措施,减小焊接变形和焊接残余应力。

(8) 对厚板和复杂结构,除采取焊接过程的中间焊道锤击消应力外,我们将根据接头情况和结构状态,采取合理的焊接后热工艺与有效的震动时效技术措施,降低焊接变形,消除焊接残余应力。

(9) 避免焊缝集中,尽量使焊缝错开,不要有交叉焊缝,焊缝相距一般应超过100~150mm;正确布置焊缝,焊缝不要布置在工作应力最大的区域,在拉应力区尽量减少几何的不连续性;(10)尽量较少焊缝的数量及其尺寸,尤其是角焊缝的焊角尺寸尽量不要超过最小焊角尺寸。

本工程角焊缝的最小焊脚尺寸应按图纸所示,若图纸未明确,可按下列要求:焊脚高度最小值为8mm,,最大值为20mm,可按0.7t(t为较薄焊件厚度㎜)计,或按表22:角焊缝的最小焊脚尺寸(mm)5.6 防止厚板层状撕裂的措施(1) 优选钢材、焊材和供货商,应用抗层状撕裂的优质Z向钢,并在加工前严格进行钢材Z向性能复检和UT探伤复查,从而保证接头抗层状撕裂能力,从材料品质上消除层状撕裂出现的必要条件。

(2) 厚板火焰切割前预热,火焰切割后切割断面检查。

提高坡口以及易产生层状撕裂面的加工精度,消除材料表面的微小应力集中点和硬化组织,从根本上杜绝层状撕裂出现的充分条件。

(3)宜在角接接头中采用对称坡口或偏向于侧板的坡口,使焊缝收缩产生的拉应力与板厚方向成一角度,尤其在特厚板时,侧板坡口面角度应超过板厚中心,可减小层状撕层倾向表23 防层状撕裂坡口示意图序号易产生层状撕裂的结构可改善的结构说明1 箭头所示的方向为焊接时可能出现拘束应力作用的方向2 通过开坡口或改变焊缝的形状来减少厚度方向的收缩应力,一般应在承受厚度方向应力的一侧开坡口3 在保证焊透的前提下,坡口角度尽可能小;在不增加坡口角度的情况下尽可能增大焊脚尺寸,以增加焊缝受力面积,降低板厚方向的应力值。

(4) 采用合理的焊接工艺a.双面坡口时宜采用两侧对称多道次施焊,避免收缩应变集中;b.采用适当小的热输入多层焊接,以减小收缩应变;c.采用低强度匹配的焊接材料,使焊缝金属具有低屈服点、高延性,可使应变集中于焊缝,以防止母材发生层裂;d.箱形柱角接接头,当板厚特大时(80mm),侧板板边火焰切割面宜磨(或刨)去由热切割产生的硬化层,防止层状撕裂起源于板端表面的硬化组织;e.采用低氢、超低氢焊条或气体保护焊方法;f.采取焊前预热,焊后消氢热处理措施;g.采用非常规的道间消除应力方法,比如锤击、打渣等行之有效的方法;h.后热结束后用砂轮把焊缝的加强高磨去一层,释放部分应力,消除应力集中点,消除焊缝表面的淬硬组织,彻底消除产生层状撕裂的一切环境条件;i.在本工程中,所选用的钢板材料为Q345CZ15(Z25),厚板与超厚板多,对箱形截面角焊缝采用窄间隙坡口,减小焊接坡口,加大垫板间隙;j.焊材的选择:在本工程中,对厚板进行焊接时,为防止氢裂纹,应限制氢的来源。

如在埋弧焊时,采用H10Mn2与SJ101组合,熔敷金属强度与母材强度相近,在焊接完毕后,焊缝金属韧性较高,扩散氢含量低,抗冷裂性能良好,并且脱渣性、焊缝成型良好。

(5) t≥40mm板的焊接,为防止在厚度方向出现层状撕裂,采取以下措施:a. 焊接前,对母材焊道中心线两侧各二倍板厚加30mm的区域内进行超声波检查。

母材中不得有裂纹、分层、夹层等缺陷存在;b. 严格控制焊接顺序,尽可能减少垂直于板面方向的约束;c. 采取有效技术措施,减少焊接变形及焊接应力;d. 当焊缝有裂纹、未焊透和超标准的夹渣、气孔时,必须将缺陷清除后重焊。

清除可用碳弧气刨进行。

焊缝出现裂纹,按工艺人员制定的返修方案进行返修,当裂纹界限清楚时,应从裂纹两端加长50mm处开始,沿裂纹全长消除后再焊。

5.7 焊接裂纹的预防措施焊接裂纹是焊接构件施工过程中最为严重的缺陷,轻则返修,重则构件报废。

必须采取措施防止:(1)控制焊材的化学成分由于钢材化学成分已经选定,因此焊材选配时应选硫、磷含量低、锰含量高的焊材。

使焊缝金属中的硫磷偏析减少,改善部分晶体形状,提高抗热裂性能。

(2)控制焊接工艺参数、条件a.控制焊接电流与速度,使每一焊道的焊缝成形系数达到1.1~1.2,减少在焊缝中心形成硫磷偏析,提高抗裂性能。

b.避免采用小角度、窄间隙的焊缝坡口,致使焊缝成形系数过小。

c.加强焊前预热,降低焊缝在冷却结晶过程中的冷却速度。

d.采用合理的焊接顺序,使大多数焊缝在较小拘束度下焊接,减少焊缝收缩拉力。

(3)提高根部焊缝质量a. 加强焊缝坡口的清洁工作,清除一切有害物质;加强焊前预热温度的控制;焊前对坡口根部进行烘烤,去除一切水分、潮气,降低焊缝中氢含量;b.使用小直径手工焊条打底,确保根部焊透;控制焊层厚度,适当提高焊道成形系数;控制焊接速度,适当增加焊接热输入量;c.控制熔合比:在确保焊透的前提下,控制母材熔化金属在焊缝金属中的比例,减少母材中有害物质对焊缝性能的影响;d.根部焊材可选用低配:根据根部焊缝的施焊条件与要求,在保证焊缝力学性能的条件下,根部焊缝的焊材可选用韧性好,强度稍低的焊材施焊,以增加其抗裂性;e.严格控制线能量:根据本工程所用钢材特性,尽量采用小的焊接线能量,据此通过焊接电流,电压,速度三大参数的选配,保证焊层的厚度与焊料道的成形系数。

(4)控制焊缝金属在800℃-500℃之间冷却速度(t8/5值)厚板焊接存在的一个重要问题是焊接过程中,焊缝热影响区由于冷却速度较快,在结晶过程中最容易形成粗晶粒马氏体组织,从而使焊接时钢材变脆,产生冷裂纹的倾向增大。

相关文档
最新文档