斜拉桥施工-主塔爬模
斜拉桥主塔液压爬模施工技术应用

斜拉桥主塔液压爬模施工技术应用摘要:近年来,液压爬模施工是工程中较为常见的一种施工方法。
用液压自动爬模装置进行主塔塔身施工替代了翻模、滑模的模式。
兰州柴家峡黄河大桥索塔塔身标准段高,斜率大。
通过在工作中的亲身实践和见证,浅谈爬模在兰州柴家峡黄河大桥塔身的应用。
关键词:爬模系统塔身施工应用液压爬模1.工程概况及工程特点1.1工程概况本技术依托于兰州柴家峡黄河工程。
其中主桥为双塔双索面斜拉桥,半漂浮体系,桥塔采用A字形高低塔布置,南岸桥塔塔高99.9m、北岸桥塔塔高115.5m。
其中主塔施工采用液压自升式爬模体系。
主桥采用钢梁结构,钢梁采用半封闭式双箱断面。
南引桥为0#-13#,北引桥19#-28#均为预制箱梁,先简支变连续,基础采用钻孔灌注桩。
1.2工程特点本工程主塔为A字形塔,其中下横梁以下塔肢为变截面形式,并且由剪力墙将两侧塔肢连接;主塔中间部分从下横梁圆弧段网上至交汇处为标准断面,整体呈空心薄壁式斜塔肢。
在施工工艺方面,考虑主塔下塔肢部分(下横梁及以下部分)距离地面较近,所以采取满堂架体何悬挑脚手架、定型钢模板施工措施;而上塔肢标准节部分,则使用爬升模板系统。
2.施工工艺选择及施工技术2.1施工工艺分析比较2.1.1传统翻模法施工分析对于主塔高塔肢,若采用翻模工艺时,首先高空安拆模板存在很大难度,安全隐患亦无法保证;同时传统翻模施工,对于有斜度和一定斜率的高塔而言,高空施工平台的搭设,模板每次安拆均需吊至地面进行打磨刷油再高空吊装,再施工时间上耗时耗力,增加大量成本。
新型的爬升模板系统,按照施工节段的划分,随浇筑高度逐级自主爬升,避免了模板在高空反复吊装的难度和安全隐患,同时液压爬升时间和模板加固时间大大缩短,节约工期;爬模系统自带的操作平台也很好地对高空施工人员、材料和作业面起到防护作用。
相对于传统的高空柱、塔施工作业,液压自爬模明显在安全、便捷、高效、工期等方面优于传统的翻模工艺。
2.2液压自爬模系统分析介绍2.2.1液压自爬模系统构成及主要性能参数(1)液压爬架主要构成液压爬架为构件、钢质操作装置。
A字型斜拉桥混凝土塔柱斜爬模施工工艺

・Leabharlann 38 ・ 时作 为 加 同模 板使 用 , 一材 两 用 , 且可 以周 转使 用 ,
省材 省 。
2 . 2 工 艺 原 理
爬 模 系统 由爬 架 、 模 板 及 已浇 注 的塔 体 、 提 升 动 力等 几部分 组 成 。其工艺 原 理为 架体 和模 板 以混 凝 土塔 柱 为 同定支 撑 体 , 架 体与 模板 之 间安装 提 升 动 力互 为 支撑 相互 交替上 升和 下降 。
社 会效 益 。
合 为4 2 m+ 1 2 0 m + 3 8 0 m + 1 2 0 m + 4 2 m, 主梁 为预 应 力连
续 梁 。主桥全 长7 0 4 m, 主跨 3 8 0 m, 塔高1 2 2 . 4 2 4 m, 路 面 宽3 0 m, 是 山东 省斜 拉桥 跨度 之 最 。
琏村 时 .
根据塔柱截面形式 、 高度 、 倾 斜 度 等 确 定 爬 架 及模 板 的结构 形 式 , 技术 人 员根 据 施 1 = 时最 不利 荷 载情 况 对爬模 系 统进 行 受 力计 算 . 进 而 没计 爬模 系
图2主 塔 施 工 结 构 示 意 图
统 的各 种 构件 , 并 进 行验 算 每塔 肢 布 置3 个架 体 ,
( 1 ) 爬架 及脚手架 、 操作平 台 、 安 全 防 护 于 一 体, 操 作安 全方 便 。
( 2 ) 爬 架 用 附 墙 螺 拴 固定 在 塔 柱 上 , 不 需 要 另
外 的支 承系统 。
( 3 ) 爬架 、 模 板依 靠 自身 动力 , 交 替 向上 爬 升 和
图 1 大 桥 结 构 示 意 图
架、 模 板根 据 实际结 构线 型 、 截 面设计 ; 施 工 中能有 效利 用各 种施 工构件 , 大量 降低 周 转脚 手 架材 料使 用 本 项 目结 构顺 利 完工后 与 传 统工 艺相 比 , 既有 效 解 决工程 结 构 实体 的线 型控 制 , 增加 工 程 结构 安 全 、 / & . s - 作 业 安全 系数 , 同时 大量 减 少 了施 工措 施 成本 费用 ; 相 类 似 的 工程 项 目施 工具
斜拉桥高塔简易液压爬模施工工法(2)

斜拉桥高塔简易液压爬模施工工法斜拉桥高塔简易液压爬模施工工法一、前言斜拉桥作为一种结构独特、美观大方的桥梁形式,其建设需要对高塔进行施工。
传统的高塔模板施工由于工艺复杂、施工周期长、成本高等问题,使得施工效率不高。
为此,研发人员提出了斜拉桥高塔简易液压爬模施工工法,通过采用液压爬模技术,实现了高塔模板的快速组装和拆卸,大大提高了施工效率。
二、工法特点斜拉桥高塔简易液压爬模施工工法具有以下特点:1. 工艺简单:采用钢结构模板和液压爬模装置,模板重量轻,易于搬运和组装。
2. 施工周期短:由于模板的简单组装和拆卸,施工周期大大缩短。
3. 成本较低:相对于传统的高塔模板施工工艺,斜拉桥高塔简易液压爬模施工工法成本更低。
4. 施工效率高:采用液压爬模设备,施工效率大幅提高,减少了劳动力的使用。
三、适应范围该工法适用于斜拉桥高塔的施工,特别适用于高塔模板拆除和组装工作,可以满足不同类型和规模的斜拉桥建设需求。
四、工艺原理施工工法使用液压爬模技术,将高塔模板分为若干个单元,每个单元由多个拼装的模板构成。
通过液压爬模装置,将模板单元顺序向上爬升,并在预定位置固定,然后拼装下一个模板单元,以此类推。
通过控制液压爬模装置的升降和固定,实现了整个高塔模板的快速组装和拆卸。
五、施工工艺1. 预备工作:清理施工现场,确定高塔模板的安装位置和数量。
2. 模板制作:根据设计要求制作钢结构模板单元。
3. 液压爬模装置安装:根据设计要求安装液压爬模装置。
4. 模板组装:将模板单元按顺序进行组装,并利用液压爬模装置进行升降和固定。
5. 模板拆卸:高塔建设完成后,利用液压爬模装置进行模板的逐层拆卸。
六、劳动组织斜拉桥高塔简易液压爬模施工工法需要合理组织施工人员进行模板的制作、安装和拆卸工作,确保施工进度和质量。
七、机具设备该工法需要使用液压爬模装置、钢结构模板、吊装设备等。
液压爬模装置是该工法的核心设备,具有稳定的升降能力和固定功能。
[PPT]斜拉桥桥主塔施工液压自动爬模施工46页
![[PPT]斜拉桥桥主塔施工液压自动爬模施工46页](https://img.taocdn.com/s3/m/ddf8332ba2161479171128fa.png)
⒂ 拆除已空出来的锚板锚靴。
⒃ 将轨道撑脚撑在混凝土面上。
⒄ 重复⑻~⒃步,使所有轨道挂在爬靴上及撑在混凝土面上。
(二)、轨道爬升操作规程
⑴、导轨爬升前应做好以下工作:
A、安装上部爬升锚板和爬靴并及时检查其实际位置与理论 位置是否一致,不符合要求的应进行相应的调整。爬升悬挂件 安装好后,应派专人检查其连接高强螺栓是否完全到位。
已浇注砼(1#节段)
第三步: a、在已浇注好的第2#节段爬架埋件
上安装锚板、锚靴,然后从上往 下插入爬架轨道; b、安装爬架液压系统,爬升爬架至 第2#节段; c、安装-1层下吊架; d、利用移动模板支架立模,浇注第 3#节段。
二、液压自动爬模系统 各机构介绍及安装
主要内容
(一)、埋件及附属机构 (二)、承重架体系 (三)、上爬架及下吊架体系 (四)、移动模板支架 (五)、轨道安装
⑶、导轨爬升时,外爬架 0号平台及1号平台上个配3人和一台
对讲机,并选用专用频道,以保证通讯畅通。
⑷、轨道每爬升一格时应通过对讲机联络,并确认上下箱体是否 都到位,到位后才可开始下一格爬升。
⑸、导轨爬升过程中要保证保险钢丝绳不得影响导轨的爬升。
⑹、导轨爬升至接近上部悬挂靴的高度时暂停,复核导轨与爬靴 上导轨槽口的位置是否一致,若不一致,调节下方的支撑脚,使 导轨能够顺利地通过悬挂靴的导轨槽口。
确认上下爬箱是否都完全到位,到位后才可开始下一格爬升。 ⑹、当爬架爬升到位后,应及时插上承重销及安全插销。 ⑺、关闭油缸进油阀门、关闭控制柜、切断电源,完成爬架的爬
升工作。 ⑻、旋上支撑脚至混凝土面,调节支撑架使竖向支架与混凝土面
平行。 ⑼、当爬架爬升不同步及其它异常情况时,应停下来研究处理。 ⑽、爬架爬升到位后,检查所有平台的滚轮是否顶紧砼面。
(完整版)斜拉桥主塔液压爬模施工方案

目录1、编制依据及原则 (1)1.1、编制依据 (1)1.2、编制原则 (1)1.3、编制范围 (2)2、工程概况 (2)2.1、工程概况 (2)2.2、主要技术标准 (3)2.3、工程自然地理特征 (4)3、施工组织管理机构 (4)4、资源配置情况 (5)4.1、机械配置 (5)4.2、人员配置 (5)4.3、仪器配置 (6)5、施工总体顺序部署 (7)5.1、总体施工顺序部署 (7)6、液压爬模施工 (10)6.1、液压自爬模构成 (10)6.2、液压爬模安装流程 (11)6.3、埋件安装顺序: (12)6.4、爬升工艺流程 (14)6.5、液压爬模拆除流程 (17)6.6、爬架安装安全注意事项及技术要求 (18)6.7、爬模施工过程安全技术措施 (20)7、施工用电及混凝土供应 (24)7.1、施工用电 (24)7.2、混凝土供应 (24)8管理措施 (24)8.1、质量目标及质量保证措施 (24)8.2、安全目标及安全保证措施 (26)8.3、工期控制措施 (28)8.4、文明施工措施 (30)8.5、施工测量体系措施 (31)9、季节性施工保证措施 (32)9.1、夏季施工措施 (32)9.2、冬季施工措施 (32)9.3、雨季施工措施 (33)9.4、防洪安全保证措施 (34)1、编制依据及原则1.1、编制依据1)新建商丘至合肥至杭州铁路(安徽、浙江段)站前工程十五标实施性施组。
2 )《高速铁路桥涵工程施工技术规程》【Q/CR 9603-2015】。
3 )《高速铁路桥涵工程施工质量验收标准》【TB10752-2010/J1148-20 11】。
4)《铁路混凝土工程施工质量验收标准》【TB10424-2010/J1155-2011】。
5 )《大体积混凝土施工规范》【GB50496-2009I。
6 )裕溪河特大桥(60+120+324+120+60 m双塔钢箱桁梁斜拉桥(第一册下部结构)【商合杭阜杭施(桥)-L26-1】。
任务15斜拉桥的施工

混凝土双箱梁截面施工
牵索挂篮施工(澳大利亚) 挂篮悬臂浇筑施工(宜宾中坝金沙江大桥)
(三)顶推法、平转法施工
顶推法进行混凝土斜拉桥主梁的施工,需在 跨内设置若干临时支墩,且在顶推过程中,梁要 反复承受正、负弯矩。
顶推法(法国 Millau Viaduct)
平转法是将斜拉桥上部结构分别在两岸 或一岸顺河流方向的支架上现浇,并在岸 上完成落架、张拉、调索等所有安装工作, 然后以墩、塔为圆心,整体旋转到桥位合 龙。 平转法施工适用于桥址地形平坦、墩身 较矮及结构体系适合整体转动的中小跨径 斜拉桥。 我国绥芬河市新华街立交桥是采用平转 法施工的100m+100m双孔独塔单索面斜拉 桥,跨越绥芬河铁路站场。
采用伸臂架设法施工时,对各施工阶段发生 的误差必须随时予以调整。斜拉桥的施工管理工 作应考虑以下各点: (1)正确计算恒载重量; (2)对施工管理人员严格要求; (3)掌握各种重要因素引起的影响(荷载、刚度、 速度、基础变形等); (4)测量工作; (5)实测值与设计值的比较; (6)施工管理中的计算工作(要求对变形和内力双 控,如索力、斜索长度、索塔垂直度、主梁线型、 主梁应力等); (7)其他(测量仪器的精确性、混凝土徐变和收缩 的时间影响、风振和抑振措施等)。
塔柱的施工(安庆长江大桥)
2. 施工塔柱的注意事项
• • • • 必须控制模板的变形; 应保证拉索锚固点预埋件位置的精度; 应保证各部位的几何尺寸正确; 应进行索塔局部测量系统的控制。
(三)横梁的施工要点
• 一般横梁采用支架法就地浇筑混凝土; • 横梁施工时应考虑模板支撑系统,防止支撑系统 的连接间隙变形、弹性变形、支承不均匀沉降变 形;混凝土横梁和塔柱与钢支撑不同的线膨胀系 数的影响;日照温差对钢和混凝土的不同时间差 效应等产生的不均匀变形的影响,以及相应的变 形调节措施。 • 每次浇筑混凝土的供应量应保证最先浇筑的混凝 土初凝前完成全部浇筑,并应采取有效措施防止 在早期养护期间及每次浇筑过程中由于支架的变 形引起混凝土横梁开裂。
斜拉桥施工工艺

斜拉桥施工工艺1.索塔施工1)钢主塔施工钢主塔施工,应充分考虑垂直运输、吊装高度、起吊吨位等因素。
钢主塔应在工厂分段立体试拼装合格后出厂。
主塔在现场安装,常常采用现场焊接接头、高强度螺栓连接、焊接和螺栓混合连接的方式。
经过工厂加工制造和立体试拼装的钢塔在正式安装时,应进行测量控制,并及时用填板或对螺栓孔进行扩孔来调整轴线和方位,防止加工误差、受力误差、安装误差、温度误差、测量误差的积累。
钢主塔可用耐候钢材或喷锌层进行防锈。
但绝大部分钢塔都采用油漆涂料,一般可保持的使用年限为10年。
油漆涂料常采用2层底漆、3层面漆,其中4层由加工厂涂装,最后一道面漆由施工安装单位最终完成。
2)混凝土主塔施工(1)模板。
浇筑索塔混凝土的模板按结构形式不同可采用提升模板和滑升模板。
提升模板按其吊点的不同,可分为依靠外部吊点的单节整体模板逐段提升、多节模板交替提升以及本身带爬升模板。
滑升模数只适用于等截面的垂直塔柱。
(2)混凝土塔柱施工。
混凝土塔柱一般可采用支架法、滑模法、爬模法施工。
在塔柱内,在塔壁中间常常设有劲性骨架,劲性骨架在工厂加工,现场分段超前拼接,精确定位。
劲性骨架安装定位后,可供测量放样、立模、扎筋、拉索、钢套管定位用,也可供施工受力用。
(3)混凝土横梁施工。
在高空中进行大跨度、大断面现浇高强度等级预应力混凝土横梁的施工难度很大。
施工时要考虑到模板支承系统和防止支承系统的连接间隙变形、弹性变形、支承不均匀沉降变形,混凝土梁、柱与钢支承不同的线膨胀系数影响,日照温差对混凝土、钢材的不同时间差效应等产生的不均匀变形的影响,以及相应的变形调节措施。
每次浇筑混凝土的供应量应保证在混凝土初凝前完成浇筑,并且采取有效措施,防止在早期养护期间及每次浇筑过程中因支架的变形而造成混凝土梁开裂。
(4)主塔混凝土施工。
主塔混凝土施工常采用现场搅拌、吊斗提送的方法。
对于高度较高的主塔,施工时,应采用商品泵送大流动度混凝土。
为了改善混凝土可泵性能并达到较高的弹性模量和较小的混凝土收缩、徐变性能,应采用高密度骨料、低水灰比、低水泥用量,适量掺加粉煤灰和泵送外加剂,以便满足缓凝、早强、高强的混凝土泵送要求。
斜拉桥施工工艺

斜拉桥施工工艺标题:斜拉桥施工工艺解析一、引言斜拉桥作为一种重要的大跨径桥梁形式,其独特的受力机制与优美的结构形态备受瞩目。
斜拉桥的施工工艺复杂且精密,涉及到深基坑施工、主塔建设、预制梁段安装、斜拉索挂设等多个关键环节。
本文旨在详细介绍斜拉桥的施工工艺流程及其关键技术。
二、主体结构施工工艺1. 深基坑施工:斜拉桥的主塔基础一般采用大直径钻孔灌注桩或沉井基础形式。
首先进行地质勘探,然后按照设计要求进行基坑开挖,接着进行钻孔或沉井作业,并进行混凝土灌注,确保主塔基础的稳定性与承载能力。
2. 主塔施工:主塔是斜拉桥的主要承重结构,通常采用滑模或爬模技术进行逐节浇筑。
在施工过程中需严格控制垂直度和平面位置精度,同时保证混凝土质量和预应力张拉效果。
3. 预制梁段安装:斜拉桥主梁多采用预制节段拼装法施工。
先在工厂内预制梁段,再通过大型浮吊或桥面吊机将梁段精确对位并连接,形成连续梁体。
4. 斜拉索挂设与张拉:斜拉索是传递主梁荷载至主塔的关键构件。
首先完成索导管的定位安装,然后将斜拉索从梁端穿入索导管,牵引至主塔顶部锚固区固定。
分阶段进行斜拉索的初张拉和终张拉,以形成预定的预应力状态,使梁塔体系逐步达到设计受力状态。
三、质量控制与安全保障在整个施工过程中,需要严格执行国家相关规范和技术标准,进行全过程的质量监控和安全防护。
包括但不限于材料检验、施工过程监控、结构应力应变监测、环境影响评估等,确保斜拉桥结构的安全可靠和耐久性。
四、结语斜拉桥施工工艺集现代工程技术之大成,是力学、材料科学、结构工程、施工技术等多种学科交叉融合的体现。
只有通过严谨的设计、精细的施工和严格的管理,才能确保斜拉桥这一“空中彩虹”的完美呈现。
在未来,随着新材料、新技术的不断发展与应用,斜拉桥施工工艺也将不断创新和完善,为我国乃至全球的桥梁建设事业贡献更大的力量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七节区间斜拉桥施工一、概述该桥是本合同段高架桥群第六联,起止里程为K23+242.673~K23+452.673,桥跨布置为108m+66m+36m的钢筋砼箱梁结构,由28对斜拉索悬挂于主塔上,跨越清河和立军路,位于R=400m的曲线上。
清河河宽60m 左右,常水位在0.7m~0.8m。
主塔墩基础采用钻孔灌注桩,桩径φ2.0m,共布置15根;边墩及辅助墩均采用板式桥墩,基础采用φ1.5m钻孔桩,每墩下设4根桩基础。
主塔采用A形塔,塔高65m,为钢筋砼箱形结构,其顺桥向壁厚120cm,横桥向壁厚60cm,塔柱顺桥向顶宽4m,底宽5m,横桥向塔柱宽2.2m,下横梁与承台联为整体,横梁高6.5m,承台顶以上30m处设上横梁一道,梁高2m,上下横梁都是箱形空心结构。
预心力采用φj15钢绞线和φ32筋,OVM系列锚具。
主梁为预应力钢筋砼箱梁,梁高2.6m,全长210m,纵向设62个横隔板,除主塔中心处三个横隔板间距为3m外,其余间距均为3.5m,横向为单箱双室截面;主梁顶宽11m,顶板厚25cm,底板宽5m,底板厚30cm,中腹板厚40cm,外腹板厚35cm,内腹板厚25cm,翼缘板厚为80cm。
主梁采用双向预心力,纵向预心力体系为高强低松驰钢绞线R y b=1860MPa,松驰率≤2.5%;为平衡斜拉索的竖向分力,斜腹板上布置竖向预应力粗钢筋,轧丝锚体系,纵向预应力采用φj15钢绞线,OVM系列锚具,支座采用盆式橡胶支座。
斜拉索采用φ7mm镀锌平行钢丝索,外包双层PE护套,钢丝标准强度R y b=1670MPa,梁上索距7m,塔上索距2m。
主要工程数量见表3-7-1。
斜拉桥桥式布置见图3-7-1。
二、施工方案该桥是14合同段的重难点工程,技术含量高,施工难度大,施工的每一措施与环节都和索、塔、梁的组合效应密切相关,施工方法必须先进,施工措施必须周全有力。
其施工方案如下:(一)钻孔桩钻孔桩采用意大利产R-518型旋挖钻机成孔,用φ300导管进行水下砼灌注。
图3-7-1 斜拉桥桥式布置图(二)承台、墩柱承台采用组合大块钢模,墩柱采用定型钢模一模到顶,用碗扣式脚手架支撑固定模板。
(三)主塔1.塔柱因下横梁与塔柱脚都与承台连成整体,故柱脚6.5m范围内塔柱与下横梁一块施工,外模并设置施工电梯,供人员上下及小型物件的提升,为减少在施工荷载作用下,柱的变形量,在上下横梁中间及上横梁至塔顶中间各设临时钢支撑一道。
2.上横梁塔柱施工至上横梁附近设预埋件,以此搭设支架平台,在平台上现浇上横梁,外模采用大块定型钢模,内模采用木模,砼一次浇筑完毕。
(四)箱梁箱梁施工采用在支架上现浇。
清河端支架采用钢管桩上架贝雷梁,立军路端采用碗口式满堂脚手架,在跨公路处用工字钢架空,预留门型通车道。
支架采用水袋预压,箱梁内外模采用优质涂塑竹胶板。
(五)混凝土全部采用商品砼,泵送入模,插入式震捣器捣固。
该桥最大垂直泵送距离为65m,采用掺外加剂FDN-5、粉煤灰和选配最佳骨料级配等措施,根据不同泵送高度,适当调整水灰比来改善砼的和易性、可泵性、缓凝早强的效果。
采用大块定型钢模,内模采用组合钢模,碗扣式脚手架支撑固定,其余塔柱采用爬模施工。
(六)斜拉索斜拉索采用φ7平行镀锌钢丝,双层PE护套,钢丝标准强度R y b=1670MP a,,梁上索距7m,塔上索距2m,工厂加工成型,一次张拉到位,最后进行索力调整。
(七)施工控制1.采用全站仪对施工进行跟踪测量控制,测量方法采用三维坐标法。
立模调模测量的自然条件选择:三级风以下,阴天无日照或清晨至日出以前。
2.应力控制采取在主塔根部,上、下横梁及索股锚固区等特征部位预埋应力片,施工时根据理论和实际偏差进行预调。
3.预心力张拉采用应力应变双控法控制。
4.拉索张拉采用千斤顶油表读数及伸长量双控法控制。
5.索力调整以斜拉桥竣工后的线型符合设计要求,且梁的应力在安全范围内为控制原则。
三、施工工艺及方法(一)钻孔灌注桩施工本桥钻孔灌注桩共23根,采用一台意大利产R-518型旋挖钻机成孔,先施工主墩下15根φ2m桩,再施工边墩及辅助墩下8根φ1.5m桩,施工工艺和要求同区间桥梁钻孔桩施工。
(二)承台施工先施工主塔承台,再施工边、辅墩承台,施工工艺和方法同区间桥梁承台施工。
(三)墩柱施工边辅墩墩桩采用定型大块钢模,一模到顶,泵送砼整体浇筑,施工工艺和方法同区间桥梁墩柱施工。
(四)主塔施工1.下横梁施工下横梁为高6.5m的中空箱型结构,设置于承台上,起着连接和稳固塔柱的作用,须先施工,同时为简化和方便后续施工,宜考虑主塔柱脚根部6.5m段与下横梁一块施工。
为方便捣固,保证砼质量,下横梁施工分两次完成,第一次砼灌筑高度为3.5m,第二次3.0m,外模采用大块钢模,内模采用组合钢模,碗扣式脚手架支撑及固定。
采用商品砼,串筒入模,插入式震捣器捣固。
2.塔柱施工塔柱高65m,为减少脚手架和充分发挥本单位的优势,拟采用两套爬模对称施工,两套爬模在砼浇注过程中联成整体,以确保塔柱的质量。
配置一部施工电梯,供人员上下,及运图3-7-3 斜拉桥施工步骤图输小型机具及材料。
施工电梯用角钢与已成塔柱相联固定。
(1)爬模构造及工作原理 ①爬模构造本桥采用倒链手动爬模装置,倒链手动爬模构造见图3-7-4,主要由钢模、脚手架、爬升架、扒杆吊机、爬架轨道5部分组成。
模板采用大块特制钢模,每套两节,每节高3m ,每节由四块钢模组成,顺桥向分为前模板、后模板,横桥向分为内侧模板、外侧模板,两套对图3-7-4 倒链手动爬模构造图5、扒杆吊机1、索塔12354、爬升架A-A3、脚手架2、钢模6、爬架轨道图(三) 倒链手动爬模A61634A54251、索塔2、钢模3、脚手架4、爬升架5、扒杆吊机6、爬架轨道为爬升的滑道。
②爬模的工作原理它是以砼浇筑完成并达到设计强度的钢筋砼塔柱作为受力依托,通过设置在爬升架上的爬升系统将倒链固定在外侧模顶部横上,松开夹头固定螺栓,拉倒链,其三维定标的安装误差要满足有关规定。
②钢筋绑扎钢筋采用场外预制,现场绑扎的方式进行,用自制简易的钢筋定位器,按设计要求定固在劲性骨架上,确保主筋间距和保护层厚度满足规范要求。
主筋的连接采用挤压套管连接法,施工时首先对钢筋端部的弯折,扭曲作矫正或切割处理,将套筒压接一端,另一端运到塔上现场压接。
挤压时,压模应对准套筒及压痕标记,从套筒中央逐道向端头压接。
③拉索套筒的制作及定位拉索套筒精度要求高,需预先按设计要求准备锚板和钢管等材料,然后下料,修理角度,将钢管焊接在锚板上。
要确保钢管与锚板圆孔同心,锚固面与钢管垂直。
拉索套管定位包括套筒上下口的空间位置,套筒倾斜度和标高等,测量采用空间坐标法,一般测定套筒上下口的设点位置,使其符合设计要求。
具体实施中,先测出套筒的下口位置,将套筒下口在此处铰接,然后调节套筒上口,将其按设计位置固定在劲性骨架上,套筒固定以后,将其两端入口堵住,以防浇砼时堵塞孔道。
需要指出的是,钢筋和套筒的安装并不是能够截然分开的两个施工步骤,一般情况下,当主筋定位以后,就要安装套筒,如果将所有的钢筋绑扎完就难以安装套筒。
④安装预应力管道预应力管道安装时,其设置的高程和位置要通过测量确定,也可依靠已定位的劲生骨架来固定管道位置。
由于塔柱为承压结构,所以要切实保证管道不漏浆,绝不允许“开仓”,浇砼时要特别注意保护管道,严格检查。
施工时,严禁电焊、氧割等作业所产生的焊渣与预应力筋接触,以免造成力筋损伤,导致张拉时断裂。
⑤砼浇筑与养护砼采用商品砼,泵送入模。
由于索塔具有较特殊的施工特点,砼除了满足强度要求外,还应具有早强、高强、高弹性模量,和较小的收缩、徐变性能,同时满足缓凝和较大流动度的泵送要求。
因此宜采用高集料、低水灰比、低水泥用量,适量掺加粉煤灰和泵送剂的方法,用自动计量强制拌合机拌制砼。
布料导管出口离砼浇筑面不宜大于2m,以防砼离析,布料时应分层均匀布料,每层厚度40cm~50cm,采用高频插入式震捣器,按其作用范围依次振捣砼。
对锚固段的砼,既要加强振捣,确保砼密实,又应注意保护拉索套筒,不能让振捣棒头触及套筒,以免套筒移位。
砼浇筑完毕,收浆后应尽快予以覆盖和洒水养护,当气温低于5℃时,应采取保温措施,养生天数不少于7天。
⑥预应力张拉塔柱施工完后,砼强度达到设计强度的90%以上时进行预应力张拉。
在塔柱上进行高空张拉作业,场地小施工不便,应采用较小的高压油泵和轻便的千斤顶,并对张拉端口处的预埋件认真处理,以便张拉具有足够的空间位置,保证机具设备运用自如,防止因施工不便带来的损失,施加预应力时以延伸量和张拉吨位双控,按设计和规范要求一次张拉到位。
张拉的工艺流程见区间箱梁预心力张拉。
⑦压浆张拉完毕后,按设计和规范要求,尽快压浆。
压浆工艺和方法同区间箱梁压浆工艺。
3.上横梁施工塔柱施工到上横梁附近,埋设预埋件,以塔柱作为上横梁受力支承点,搭设支撑操作平台,上横梁施工临时支撑见图3-7-7。
外模采用大块钢模,内模采用组合钢模,内顶模采用碗扣式脚手架支撑,商品砼泵送入模一次浇筑完成。
平高度的正确性;(2)塔身施工到10~15m后塔柱间加设临时钢支撑,并设置纵向风缆;(3)在修建塔身过程中,应密切注意天气变化,发生大风或雷雨时应立即停止作业;(4)索塔施工应严格遵守高处作业的安全操作规程,在块件或杆件安装过程中,应经常检查起重设备,保证安全。
5.质量要求(1)基本要求①索塔的索道孔及锚箱位置以及锚箱锚固面与水平面的交角均应控制准确,锚板与孔必须互相垂直,符合设计要求;②分段浇筑时,段与段之间不得有错台,新旧混凝土接缝表面必须凿毛,以便新旧混凝土结合良好;③混凝土强度不得低于设计强度;④塔柱倾斜率不得大于H/2500且不大于30mm(H为桥面上塔高);轴线允许偏位±10mm;断面尺寸允许偏差±20mm,塔顶高程允许偏差±10mm;斜拉索锚具轴线允许偏差±3mm;⑤塔柱全部预应力束布置准确,轴线偏位不得大于10mm,张拉要求双控,以延伸量为主,延伸量误差应控制在-5%~+10%以内,在测定延伸量时,扣除非弹性因素引起的延伸量。
张拉同一截面的断丝不得大于1%。
(2)外观要求①混凝土表面平整、线形顺直;②混凝土蜂窝麻面不超过该面积的0.5%,深度不超过10mm;③锚箱混凝土不得有蜂窝。
(五)箱梁施工该桥全长210m,共分成27节,按设计要求分节施工,分节悬挂拉索,直至完成全部箱梁施工。
除0#段长27m、两端头节分别长10.5外,其余中间标准节长7m,由于桥不高,河水线,箱梁施工宜采用在膺架上分节现浇。
1.支架根据观察实际情况,考虑到施工及通车的需要,决定清河端108m采用钢管桩上架贝雷梁的支撑模式,主塔至立军路端92m采用满堂脚手架,预留汽车通道的支撑模式。