小学数学《加乘原理综合》练习题
加乘原理练习题练习题

加乘原理练习题一、基础题1. 甲、乙、丙三个同学参加百米赛跑,分别有4种起跑姿势、3种跑步技巧和2种冲刺方式,请问共有多少种不同的参赛方式?2. 小明有5件上衣和3条裤子,他想搭配一套衣服去参加聚会,请问有多少种不同的搭配方法?3. 有一部4位数的密码锁,每位数字都有09共10种可能,请问这部密码锁共有多少种不同的密码组合?4. 某班级有6名男生和4名女生,要从中选出3名同学参加篮球比赛,请问有多少种不同的选法?5. 一本书的ISBN编码共有13位,其中前12位是数字,一位是校验码(可以是数字或字母),请问这本书的ISBN编码共有多少种可能?二、进阶题6. 一家餐厅有3种主食、5种饮料和4种甜点,顾客可以自由选择其中一种主食、一种饮料和一种甜点,请问共有多少种不同的点餐组合?7. 一个四边形有4个顶点,要在这个四边形内部画一条对角线,请问共有多少种不同的画法?8. 有6个球队参加足球比赛,比赛采用单循环赛制,请问共有多少场比赛?9. 一个数字密码锁由6位数字组成,每位数字都有09共10种可能,且不允许有重复数字,请问这个密码锁共有多少种不同的密码组合?10. 某班级有8名同学,要从中选出4名同学分别担任班长、学习委员、体育委员和生活委员,请问有多少种不同的选法?三、综合题11. 一家服装店有4种款式的上衣、6种款式的裤子和3种款式的裙子,顾客可以自由选择其中一种上衣、一种裤子和一种裙子,请问共有多少种不同的搭配方法?12. 一个六边形的每个顶点上都可以涂上红、黄、蓝三种颜色中的一种,且相邻两个顶点的颜色不能相同,请问共有多少种不同的涂色方法?13. 一个班级有5名男生和5名女生,要从中选出3名同学参加辩论赛,要求至少有一名女生,请问有多少种不同的选法?14. 一个4位数的密码锁,每位数字都有09共10种可能,且第一位数字不能为0,请问这个密码锁共有多少种不同的密码组合?15. 某城市有4条东西向街道和5条南北向街道,请问在这个城市中,从一个交叉路口到另一个交叉路口(不包括自身)共有多少种不同的走法?四、应用题16. 一个图书馆有文学、历史、科学、艺术四大类图书,每大类图书下有5个小类,读者可以选择其中一个大类中的一个小类借阅一本书,请问共有多少种不同的借阅组合?17. 一个电话号码由区号和座机号组成,区号是3位数字(首位不为0),座机号是8位数字,请问共有多少种不同的电话号码组合?18. 一个旅行团提供3条国内线路和4条国际线路供游客选择,每个游客可以选择一条线路进行旅行,请问共有多少种不同的选择组合?19. 一家公司的产品有红、黄、蓝、绿四种颜色,每种颜色又有大、中、小三种尺寸,请问该公司共有多少种不同的产品组合?20. 一所学校有6个年级,每个年级有4个班级,如果每个班级都要选出一个学生代表参加学校的演讲比赛,请问共有多少种不同的选法?五、挑战题21. 一个密码锁由8位数字组成,每位数字都有09共10种可能,且密码中不能出现连续的相同数字,请问这个密码锁共有多少种不同的密码组合?22. 一个城市的公交车线路有10条,每条线路都有不同的站点数量,如果每个站点都可以作为起点或终点,请问共有多少种不同的乘车路线?23. 一个餐厅的菜单上有5种汤、7种主菜、3种甜点,顾客可以自由选择一种汤、一种主菜和一种甜点,但如果选择了某种汤,就不能选择与之相克的主菜,请问共有多少种不同的点餐组合?24. 一个班级有20名学生,要从中选出5名学生组成一个篮球队,要求至少有一名队长和一名副队长,请问共有多少种不同的选法?25. 一个五边形的每个顶点上都可以涂上红、黄、蓝、绿四种颜色中的一种,且相邻两个顶点的颜色不能相同,请问共有多少种不同的涂色方法?答案一、基础题1. 24种不同的参赛方式2. 15种不同的搭配方法3. 10,000种不同的密码组合4. 40种不同的选法5. 10^12种可能二、进阶题6. 60种不同的点餐组合7. 2种不同的画法8. 15场比赛9. 151,200种不同的密码组合10. 8!/(84)! = 8×7×6×5 = 1,680种不同的选法三、综合题11. 72种不同的搭配方法12. 6×5×4×3×2×1 = 720种不同的涂色方法13. 5×5×4 5×4 = 100 20 = 80种不同的选法14. 9×10^8 9×10^7 = 810,000,000种不同的密码组合15. (41)×(51) = 3×4 = 12种不同的走法四、应用题16. 20种不同的借阅组合17. 8,000,000,000种不同的电话号码组合18. 7种不同的选择组合19. 12种不同的产品组合20. 6×4×3 = 72种不同的选法五、挑战题21. 这个问题较为复杂,需要使用排列组合的知识和递归方法来计算,无法直接给出答案。
小学数学加乘原理练习题

小学数学加乘原理练习题1. 求下列各题的结果:a) 58 + 37 =b) 84 - 29 =c) 24 × 5 =d) 70 ÷ 10 =2. 将下列数填入方框中,使等式成立:a) □ × 7 = 49b) □ + 8 = 21c) 30 ÷ □ = 5d) 56 - □ = 393. 判断下列各式是否正确,并用√或×表示:a) 45 + 20 = 70b) 33 - 18 = 15c) 12 × 3 = 36d) 24 ÷ 8 = 64. 用加法方法解下列各题:a) 14 + 9 + 16 =b) 32 + 15 + 10 =c) 25 + 17 + 12 =d) 18 + 11 + 19 =5. 用乘法方法解下列各题:a) 7 × 6 =b) 5 × 8 =c) 9 × 4 =d) 3 × 12 =6. 用加法和乘法方法解下列各题:a) 9 + 9 + 11 × 2 =b) 5 + 5 × 3 + 12 =c) 8 × 4 + 7 × 2 =d) 11 × 3 + 6 + 8 × 2 =7. 两种工具共有53把,其中扳手的把数是锤子的把数的3倍,求锤子和扳手各有几把。
8. 小明今年8岁,他的爸爸比他大30岁,爷爷比他爸爸大35岁,那么爷爷多少岁?9. 小华买了两本数学书和一本语文书,数学书每本15元,语文书20元,小华给了书店60元,她能找回多少元钱?10. 在一群小鸟中,7只是雄鸟,雌鸟是雄鸟数量的2倍,求共有几只小鸟?11. 妈妈从超市买了3斤苹果,花了15元,求每斤苹果的价格。
12. 有15支铅笔,小红借给同学5支,自己留下3支,她还剩几支铅笔?13. 公交车上有10个人,下车后有3个人上车,再下车后上车的人比下车前多了2倍,公交车上共有几个人?14. 一本书有56页,若已阅读了3/7的内容,还剩下多少页没有阅读?15. 小明去超市买了一盒牛奶,共有1升,他每次喝了1/5,喝了几次后牛奶会喝完?这些练习题旨在帮助小学生巩固数学加法和乘法的原理,提高计算能力和解决实际问题的能力。
加法原理与乘法原理练习题(详解)

加法原理与乘法原理1.一个礼堂有4个门,若从一个门进,从任一门出,共有不同走法( ) A.8种B.12种 C.16种 D.24种答案 C2.从集合A={0,1,2,3,4}中任取三个数作为二次函数y=ax2+bx+c的系数a,b,c.则可构成不同的二次函数的个数是( )A.48 B.59 C.60 D.100 答案 A3.某电话局的电话号码为168~×××××,若后面的五位数字是由6或8组成的,则这样的电话号码一共有( )A.20个 B.25个 C.32个 D.60个答案 C4.在2、3、5、7、11这五个数字中,任取两个数字组成分数,其中假分数的个数为( )A.20 B.10 C.5 D.24 答案 B5.将5名大学毕业生全部分配给3所不同的学校,不同的分配方式的种数有( )A.8种 B.15种 C.125种 D.243种答案 D6.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共有( ) A.24种 B.18种 C.12种 D.6种答案 B7.已知异面直线a,b上分别有5个点和8个点,则经过这13个点可以确定不同的平面个数为( )A.40 B.13 C.10 D.16 答案 B8.书架上原来并排放着5本不同的书,现要再插入3本不同的书,那么不同的插法共有( )A.336种 B.120种 C.24种 D.18种答案 A9.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有( )A.10种 B.20种 C.25种 D.32种答案 D10.有5个不同的棱柱、3个不同的棱锥、4个不同的圆台、2个不同的球,若从中取出2个几何体,使多面体和旋转体各一个,则不同的取法种数是( ) A.14 B.23 C.48 D.120 答案 C11.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有( )A.6种 B.12种 C.24种 D.30种答案 C12.从数字1,2,3,4,5,6中取两个数相加,其和是偶数,共得________个偶数.答案 413.从正方体的6个表面中取3个面,使其中两个面没有公共点,则共有________种不同的取法.答案1214.动物园的一个大笼子里,有4只老虎,3只羊,同一只羊不能被不同的老虎分食,问老虎将羊吃光的情况有多少种?15.用五种不同的颜色给图中的四个区域涂色,每个区域涂一种颜色.(1)共有多少种不同的涂色方法?(2)若要求相邻(有公共边)的区域不同色,则共有多少种不同的涂色方法?解析(1)由于1至4知,不同的涂色方法有54=625种.(2)第一类,1号区域与3号区域同色时,有5×4×4=80种涂法,第二类,1号区域与3号区域异色时,有5×4×3×3=180种涂法.依据分类加法计数原理知,不同的涂色方法有80+180=260(种).16.用0,1,…,9这十个数字,可以组成多少个.(1)三位整数?(2)无重复数字的三位整数?(3)小于500的无重复数字的三位整数?(4)小于500,且末位数字是8或9的无重复数字的三位整数?(5)小于100的无重复数字的自然数?解析由于0不可在最高位,因此应对它进行单独考虑.(1)百位的数字有9种选择,十位和个位的数字都各有10种选择,由分步乘法计数原理知,符合题意的三位数共有9×10×10=900(个).(2)由于数字不可重复,可知百位数字有9种选择,十位数字也有9种选择,但个位数字仅有8种选择,由分步乘法计数原理知,符合题意的三位数共有9×9×8=648(个).(3)百位数字只有4种选择,十位数字可有9种选择,个位数字有8种选择,由分步乘法计数原理知,符合题意的三位数共有4×9×8=288(个).(4)百位数字只有4种选择,个位数字只有2种选择,十位数字可有8种选择,由分步乘法计数原理知,符合题意的三位数共有4×2×8=64(个).(5)小于100的自然数可以分为一位和两位自然数两类.一位自然数:10个.两位自然数:十位数字有9种选择,个位数字也有9种选择,由分步乘法计数原理知,符合题意的两位数共有9×9=81(个).由分类加法计数原理知,符合题意的自然数共有10+81=91(个).17.已知集合M={1,-2,3},N={-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,则在直角坐标系第一、第二象限中的不同点的个数有( )A.18个 B.16个 C.14个 D.10个答案 C18.如图,某电子器件是由三个电阻组成的回路,其中共有6个焊接点A、B、C、D、E、F,如果某个焊接点脱落,整个电路就会不通,现在电路不通了,那么焊接点脱落可能性共有( )A .6种B .36种C .63种D .64种 答案 C19.已知互不相同的集合A 、B 满足A ∪B ={a ,b },则符合条件的A ,B 的组数共有________种. 答案 920.已知a ,b ∈{0,1,2,…,9},若满足|a -b |≤1,则称a ,b “心有灵犀”.则a ,b “心有灵犀”的情形共有( )A .9种B .16种C .20种D .28种 答案 D21.(2012·广东)从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( )A.49B.13C.29D.19答案 D 22.把10个苹果分成三堆,要求每堆至少有1个,最多5个,则不同的分法共有( )A .4种B .5种C .6种D .7种 答案 A23.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为( )A .3B .4C .6D .8 答案 D24.若5名学生争夺3项比赛冠军(每一名学生参赛项目不限),则冠军获得者有________种不同情况(没有并列冠军)? 答案 5325.有1元、2元、5元、10元、50元、100元人民币各一张,则由这6张人民币可组成________种不同的币值. 答案 6326.三边长均为整数,且最大边长为11的三角形共有________个.答案 3627.设椭圆x 2m +y 2n=1的焦点在y 轴上,m ∈{1,2,3,4,5},n ∈{1,2,3,4,5,6,7},则这样的椭圆个数为________. 答案 2028.如图所示,在连接正八边形的三个顶点而成的三角形中与正八边形有公共边的三角形有________个.答案40欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。
小学数学《加、乘原理综合运用》练习题 (含答案)

小学数学《加、乘原理综合运用》练习题(含答案)Ⅰ、简单加乘原理综合运用【例1】(★)如下图,从甲地到乙地有2条路,从乙地到丙地有4条路,从甲地到丁地有3条路可走,从丁地到丙地也有3条路,请问从甲地到丙地共有多少种不同走法?分析:根据乘法原理,经过乙地到丙地的走法一共有4×2=8种方法,经过丁地到丙地一共有3×3=9种方法,根据加法原理,一共有8+9=17种走法.[前铺]从小红家到小明家有4条路可走,从小明家到小海家有2条路可走,从小红家到小海家有3条路可走,那么从小红家到小海家共有多少种走法?分析:经过小明家到小海家的走法一共有4×2=8种方法,从小红家直接去小海家一共有3条路可走,一共有11种走法.【例2】将5列车停在5条不同的轨道上,其中a车不能停在第一道上,b车不能停在第二道上,那么不同的停车方法共有多少种?分析:对于a车停放的轨道进行分类考虑:当a车排在第二道的时候,其余的四列车没有任何限制,有4×3×2×1=24种停车法;当a车不排在第二道的时候,a车也不能排在第一道,a车有3种停车法,b 不能停在第二道,也不能停在a车已经停放的车道,所以也只有3种停车法,剩下的3辆车可以任意停入剩下的三条轨道,有3×2×1=6种停法,由乘法原理,共有3×3×6=54种停法,最后根据加法原理,一共有24+54=78种不同停车方案.[巩固](★★走进美妙数学花园少年数学邀请赛)如图,将1,2,3,4,5分别填入图中1×5的格子中,要求填在黑格里的数比它旁边的两个数都大.共有种不同的填法.分析:填在黑格里的数是5和4时,不同的填法有2!×3!=12(种);填在黑格里的数是5和3时,不同的填法有2×2=4(种).所以,共有不同填法12+4=16(种).Ⅱ、加乘原理与数论【例3】(★★)在所有的三位数中,各位数字之和是19的数共有多少个?分析:三个数字之和是19的共有10种,9,9,1;9,8,2;9,7,3;9,6,4;9,5,5;8,8,3;8,7,4;8,6,5;7,7,5;7,6,6.其中三个数字各不相同的有5种,每种能组成6个不同的三位数;三个数字中有两个相同的有5种,每种能组成3个不同的三位数,所求数共有:6×5+5×3=45(个)[前铺]从19,20,21,…,93,94这76个数中,选取两个不同的数,使其和为偶数的选法总数是多少?分析:76个数当中有38个奇数和38个偶数,选取两个数只要是奇偶性质相同就能保证其和为偶数,选取两个奇数的方法有38×37÷2=703种,选取两个偶数的方法有38×37÷2=703种,一共有1406种选取方法.【例4】(★★★)在前100个自然数中取出两个不同的数相加,其和是3的倍数的共有多少种不同的取法?分析:将1~100按照除以3的余数分为3类,(1)余数为1的有1,4,7,…100,一共有34个,(2)余数为2的一共有33个,(3)可以被3整除的一共有33个,取出两个不同的数其和是3的倍数只有两种情况,从(1)(2)类中各取一个数,有34×33=1122(种)取法;从(3)中取两个数,有33×32÷2=528(种)取法,不同取法共有:1122+528=1650(种).[前铺]在1~10这10个自然数中,每次取出三个不同的数,使它们的和是3的倍数有种不同的取法.分析:三个不同的数和为3的倍数有四种情况:三个数同余1,三个数同余2,三个数都被3整除,余1余2余0各有1个,三类情况分别有4种、1种、1种、36种,所以一共有42种.【例5】(★★★)有两个骰子,每个骰子的六个面分别有1、2、3、4、5、6个点.将两个骰子放到桌面上,向上的一面点数之和为偶数的有多少种情形?分析:要使两个点数之和为偶数,只要这两个点数的奇偶性相同,即这两个点数要么同为奇数,要么同为偶数,所以,要分两大类来考虑.第一类,两个点数同为奇数.由于放两个骰子可认为是一个一个地放.放第一个骰子时,出现奇数有三种可能,即1,3,5;放第二个骰子,出现奇数也有三种可能,由乘法原理,这时共有3×3=9种不同的情形.第二类,两个点数同为偶数,类似第一类的讨论方法,也有3×3=9种不同情形.最后由加法原理即可求得两个骰子向上面点数之和为偶数的共有3×3+3×3=18种不同的情形.[拓展] 有三个骰子,每个骰子的六个面分别有1、2、3、4、5、6个点.将三个骰子放到桌面上,向上的一面点数之和为奇数的有多少种情形?分析:要使三个点数之和为奇数,有两种情况,三个数都为奇数,或者一个数为奇数另外两个数为偶数所以,要分两大类来考虑.第一类,三个点数同为奇数.由于放骰子可认为是一个一个地放.放第一个骰子时,出现奇数有三种可能,即1,3,5;放第二个骰子,出现奇数也有三种可能,放第三个骰子,出现奇数也有三种可能,由乘法原理,这时共有3×3×3=27种不同的情形.第二类,两个点数为偶数,另一个点数为奇数,类似第一类的讨论方法,奇数的骰子有3种选法,共有3×3×3×3=81种不同情形.最后由加法原理即可求得三个骰子向上面点数之和为偶数的共有3×3×3+3×3×3×3=108种不同的情形.Ⅱ、加乘原理与图论(染色、图形组合)【例6】 用四种颜色对下图的五个字染色,要求相邻的区域的字染不同的颜色,但不是每种颜色都必须要用.问:共有多少种不同的染色方法?分析:第一步给“而”上色,有4种选择;然后对“学”染色,“学”有3种颜色可选;当“奥”,“数”取相同的颜色时,有2种颜色可选,此时“思”也有2种颜色可选,不同的涂法有3×2×2=12(种);当“奥”,“数”取不同的颜色时,“奥”有2种颜色可选,“数”剩仅1种颜色可选,此时“思”也只有1种颜色可选(与“学”相同),不同的涂法有3×2×1×1=6(种).所以共有4×3×(2×2+2)=72种不同的涂法[前铺]地图上有A ,B ,C ,D 四个国家(如下图),现有红、黄、蓝、绿四种颜色给地图染色,使相邻国家的颜色不同,但不是每种颜色都必须要用,问有多少种染色方法?分析:第一步:首先对A 进行染色一共有4种方法,然后对B 、C 进行染色,如果B 、C 取相同的颜色,有三种方式,D 剩下3种方式,如果B 、C 取不同颜色,有3×2=6种方法,D 剩下2种方法,对该图的染色方法一共有4×(3×3+3×2×2)=84种方法.【例7】 (★★★)一个半圆周上共有12个点,直径上5个,圆周上7个,以这些点为顶点,可以画出多少个三角形?分析:方法一:所有的三角形一共可以分为3类,第一类:三角形三个顶点都在圆周上,这样的三角形一共有7×6×5÷(3×2×1)=35种;C BD A第二类:三角形两个顶点在圆周上,这样的三角形一共有7×6÷(2×1)×5=105种;第三类:三角形一个顶点在圆周上,这样的三角形一共有7×5×4÷(2×1)=70种;一共可以画出35+105+70=210种.方法二:不共线的3点可以确定一个三角形,这样任取3点构成的组合数与三角形的个数之间便有了一定的联系,但是要注意去掉其中3点共线的情况.12×11×10÷(3×2×1)-5×4×3÷(3×2×1)=210种.[前铺]直线a,b上分别有5个点和4个点,以这些点为顶点可以画出多少个三角形?分析:画三角形需要在一条线上找1个点,另一条线上找2个点,本题分为两种情况:(1)在a线上找一个点,有5种选取法,在b线上找两个点,有4×3÷2=6(种),根据乘法原理,一共有:5×6=30(个)三角形(2)在b线上找一个点,有4种选取法,在a线上找两个点,有5×4÷2=10(种),根据乘法原理,一共有:4×10=40(个)三角形根据加法原理,一共可以画出:30+40=70(个)三角形【例8】(★★★★)在一个圆周上均匀分布10个点,以这些点为顶点,可以画出多少不同的钝角三角形?(补充知识:由直径和圆周上的一点构成的三角形一定是直角三角形,其中直径的边所对的角是直角,所以如果圆周上三点在同一段半圆周上,则这三点构成钝角三角形).分析:由于10个点全在圆周上,所以这10个点没有三点共线,故只要在10个点中取3个点,就可以画出一个三角形,如果这三个点其中两点构成的线段小于直径,并且第三个点在被其余两点分割的较小的圆周上,则这三个点构成钝角三角形,这样所有的钝角三角形可分为三类,第一类是长边端点之间仅相隔一个点,这样的三角形有10×1=10个,第二类是长边端点之间相隔两个点,这样的三角形有10×2=20个,第三类是长边端点之间相隔三个点,这样的三角形有10×3=30个,所以一共可以画出60个钝角三角形.[拓展]三条平行线上分别有2,4,3个点(下图),已知在不同直线上的任意三个点都不共线.问:以这些点为顶点可以画出多少个不同的三角形?分析:(方法一)本题分三角形的三个顶点在两条直线上和三条直线上两种情况(1)三个顶点在两条直线上,一共有4×3÷2×2+3×2÷2×2+3×2÷2×4+4×3÷2×3+4+3=55(个)(2)三个顶点在三条直线上,由于不同直线上的任意三个点都不共线,所以一共有:2×4×3=24(个)根据加法原理,一共可以画出55+24=79(个)三角形.(方法二)9个点任取三个点有9×8×7÷(3×2×1)=84种取法,其中三个点都在第二条直线上有4种,都在第三条直线上有1种,所以一共可以画出84-4-1=79(个)三角形.Ⅲ、排列组合【例9】(★★)用1、2、3、4、5这五个数字,可以组成多少个比20000大且百位数字不是3的无重复数字的五位数?分析:分两类:(1)把3排在最高位上,其余四个数字可以任意放到其余四个数位上,有4×3×2×1=24种做法,对应24个不同的五位数(2)把2、4、5放在最高位上,有3种选择,百位数上有除最高位和3以外的三种选择,其余的三个数字可以任意放到其余3个数位上,由乘法原理,可以组成3×3×3×2×1=54个不同的五位数由加法原理,可以组成24+54=78个不同的五位数.[前铺]用数字0,1,2,3,4(可重复使用)可以组成多少个小于5000的自然数?分析:小于1000的自然数有三类.第一类是一位数,有5个;第二类是两位数,有4×5=20个;第三类是三位数,有4×5×5=100个.第四类是四位数,有4×4×3×2=96个,共有5+20+100+96=221个.【例10】(★★★)从1到500的所有自然数中,不含有数字4的自然数有多少个?分析:从1到500的所有自然数可分为三大类,即一位数,两位数,三位数.一位数中,不含4的有8个,它们是1、2、3、5、6、7、8、9;两位数中,不含4的可以这样考虑:十位上,不含4的有l、2、3、5、6、7、8、9这八种情况.个位上,不含4的有0、1、2、3、5、6、7、8、9这九种情况,要确定一个两位数,可以先取十位数,再取个位数,应用乘法原理,这时共有8×9=72个数不含4.三位数中,小于500并且不含数字4的可以这样考虑:百位上,不含4的有1、2、3、这三种情况.十位上,不含4的有0、1、2、3、5、6、7、8、9这九种情况,个位上,不含4的也有九种情况.要确定一个三位数,可以先取百位数,再取十位数,最后取个位数,应用乘法原理,这时共有3×9×9=243个三位数.由于500也是一个不含4的三位数.所以,1~500中,不含4的三位数共有3×9×9+1=244个.所以一共有8+8×9+3×9×9+1=324个不含4的自然数.[巩固]从1到100的所有自然数中,不含有数字4的自然数有多少个?分析:从1到100的所有自然数可分为三大类,即一位数,两位数,三位数.一位数中,不含4的有8个,它们是1、2、3、5、6、7、8、9;两位数中,不含4的可以这样考虑:十位上,不含4的有l、2、3、5、6、7、8、9这八种情况.个位上,不含4的有0、1、2、3、5、6、7、8、9这九种情况,要确定一个两位数,可以先取十位数,再取个位数,应用乘法原理,这时共有8×9=72个数不含4.三位数只有100.所以一共有8+8×9+1=81个不含4的自然数.【例11】(★★★)某管理员忘记了自己小保险柜的密码数字,只记得是由四个非0数码组成,且四个数码之和是9.为确保打开保险柜至少要试多少次?.分析:四个非0数码之和等于9的组合有1,1,1,6;1,1,2,5;1,1,3,4;1,2,2,4;1,2,3,3;2,2,2,3六种第一种中,只要考虑6的位置即可,6可以随意选择四个位置,其余位置方1,共有4种选择第二种中,先考虑放2,有4种选择,再考虑5的位置,有3种选择,剩下的位置放1,共有4×3=12种选择,同理,第三、第四、第五种都有12种选择,最后一种与第一种相似,3的位置有四种选择,其余位置放2,共有4种选择.由加法原理,一共可以组成4+12+12+12+12+4=56个不同的四位数,即为确保打开保险柜至少要试56次. [拓展]7个相同的球,放入4个不同的盒子里,每个盒子至少放一个,不同的放法有多少种?(请注意,球无区别,盒是有区别的,且不允许空盒)分析:首先研究把7分成4个自然数之和的形式,容易得到以下三种情况:7=1+1+1+4,7=1+2+2+2,7=1+1+2+3,其次,将三种情况视为三类计算不同的放法.第一类:有一个盒子里放了4个球,而其余盒子里各放1个球,由于4个球可任意放入不同的四个盒子之一,有4种放法,而其他盒子只放一个球,而球是相同的,任意调换都是相同的放法,所以第一类只有4种放法.第二类:有一个盒子里放1个球,有4种放法,其余盒子里都放2个球,与第一类相同,任意调换都是相同的放法,所以第二类也只有4种放法.第三类:有两个盒子里各放一个球,另外两个盒子里分别放2个及3个球,这时分两步来考虑:第一步,从4个盒子中任取两个各放一个球,这种取法有C24种.第二步,把余下的两个盒子里分别放入2个球及3个球,这种放法有P22种.由乘法原理有C24×P22=12种放法.由加法原理,可得符合题目要求的不同放法有4+4+12=20(种)(方法二)把七个球排成一行,并用三个“挡板”把它们分成四组,每一组对应一个盒子,则一共有6个位置可以放挡板,从中选择三个,有3620C 种选法.【例12】(★★)红、黄、蓝、白四种颜色不同的小旗,各有2,2,3,3面,任意取出三面排成一行,表示一种信号,问:共可以表示多少种不同的信号?分析:(方法一)取出的3面旗子,可以是一种颜色、两种颜色、三种颜色,应按此进行分类(1)一种颜色:都是蓝色的或者都是白色的,2种可能;(2)两种颜色:(4×3)×3=36(3)三种颜色:4×3×2=24所以,一共可以表示2+36+24=62种不同的信号(方法二)每一个位置都有4种颜色可选,共有4×4×4=64种,但是不能有三红或者三黄,所以减去2种,共有64-2=62种.[拓展] 五种颜色不同的信号旗,各有5面,任意取出三面排成一行,表示一种信号,问:共可以表示多少种不同的信号?分析:(方法一)取出的3面旗子,可以是一种颜色、两种颜色、三种颜色,应按此进行分类(1)一种颜色: 5种可能;(2)两种颜色:(5×4)×3=60(3)三种颜色:5×4×3=60所以,一共可以表示5+60+60=125种不同的信号(方法二)每一个位置都有5种颜色可选,所以共有5×5×5=125种.1. (★例1)从学而思学校到王明家有4条路可走,从王明家到张老师家有2条路可走,从学而思学校到张老师有3条路可走,那么从学而思学校到张老师家共有多少种走法?分析:根据乘法原理,经过王明家到张老师家的走法一共有4×2=8种方法,从学而思学校直接去张老师家一共有3条路可走,根据加法原理,一共有8+3=11种走法.2. (★★★例6)地图上有A ,B ,C ,D 四个国家(如下图),现有红、黄、蓝三种颜色给地图染色,使相邻国家的颜色不同,但不是每种颜色都必须要用,问有多少种染色方法?分析:A 有3种颜色可选;当B ,C 取相同的颜色时,有2种颜色可选,此时D 也有2种颜色可选,不同的涂法有3×2×2=12(种);当B ,C 取不同的颜色时,B 有2种颜色可选,C 仅剩1种颜色可选,此时D也只有1种颜色可选(与A 相同),不同的涂法有3×2×1×1=6(种).所以共有12+6=18种不同的涂法.3. (★★例7)在一个圆周上均匀分布10个点,以这些点再加上圆心一共11个点为端点,可以画出多少小于直径的线段.分析:由于10个点全在圆周上,所以这10个点没有三点共线,故只要在10个点中取2个点,就可以画出一条线段一共有45种方法,其中包括5条直径,应当舍去,其余线段的长都小于直径,一共有40种方法 .以圆心为端点的线段一共有10条,所以一共可以画出40+10=50条线段.4. (★★★例8)如图所示分布着9个点,以这9个点为端点能构成多少个三角形?分析:三条线段上各取1点能构成3×3×3=27.如果在一条线段上取两点,在另一条线段上取一点一共C B D A有(3×2)×(3×2÷(2×1))×(3÷1)=54,所以一共有81种.5.(★★★例10)从1到300的所有自然数中,不含有数字2的自然数有多少个?分析:从1到300的所有自然数可分为三大类,即一位数,两位数,三位数.一位数中,不含2的有8个,它们是1、3、4、5、6、7、8、9;两位数中,不含2的可以这样考虑:十位上,不含4的有l、3、4、5、6、7、8、9这八种情况.个位上,不含2的有0、1、3、4、5、6、7、8、9这九种情况,要确定一个两位数,可以先取十位数,再取个位数,应用乘法原理,这时共有8×9=72个数不含2.三位数中,除去300外,百位数只有1一种取法,十位与个位均有0,1,3,4,5,6,7,8,9九种取法,根据乘法原理,不含数字2的三位数有:1×9×9=81个,还要加上300.所以根据加法原理,从1到300的所有自然数中,不含有数字2的自然数一共有8+72+82=162个.。
小学数学《加、乘原理综合运用》练习题(含答案) (1)

小学数学《加、乘原理综合运用》练习题(含答案)Ⅰ、加乘原理与数论【例1】(★★)用0~9这十个数字可组成多少个无重复数字的四位数.分析:无重复数字的四位数的千位、百位、十位、个位的限制条件:千位上不能排0,或说千位上只能排1~9这九个数字中的一个.而且其他位置上数码都不相同,下面分别介绍三种解法.(方法一)分两步完成:第一步:从1~9这九个数中任选一个占据千位,有9种方法.第二步:从余下的9个数(包括数字0)中任选3个占据百位、十位、个位,百位有9种.十位有8种,个位有7种方法.由乘法原理,共有满足条件的四位数9×9×8×7=4536个.(方法二)组成的四位数分为两类:第一类:不含0的四位数有9×8×7×6=3024个.第二类:含0的四位数的组成分为两步:第一步让0占一个位有3种占法,(让0占位只能在百、十、个位上,所以有3种)第二步让其余9个数占位有9×8×7种占法.所以含0的四位数有3×9×8×7=1512个.由加法原理,共有满足条件的四位数3024+1512=4536个.(方法三)从0~9十个数中任取4个数的排列总数为10×9×8×7,其中0在千位的排列数有9×8×7个,所以共有满足条件的四位数:10×9×8×7-9×8×7=9×8×7×(10-1)=4536个.[拓展一]用0,1,2,3四个数码可以组成多少个没有重复数字的四位偶数?分析:分为两类:个位数字为0的有3×2= 6个,个位数字为 2的有 2×2=4个,由加法原理,一共有:6+4=10个没有重复数字的四位偶数[拓展二]用数码0,1,2,3,4,可以组成多少个小于1000的没有重复数字的自然数?分析:分为三类,一位数时,0和一位数共有5个;二位数时,为4×4=16个,三位数时,为:4×4×3=48个,由加法原理,一共可以组成5+16+48=69个小于1000的没有重复数字的自然数.【例2】(★★)自然数8336,8545,8782有一些共同特征,每个数都是以8开头的四位数,且每个数中恰好有两个数字相同.这样的数共有多少个?分析:两个相同的数字是8时,另一个8有3个位置可选,其余两个位置有9×8=72(种)填法,有3×9×8个数;两个相同的数字不是8时,相同的数字有9种选法,不同的数字有8种选法,并有3个位置可放,有9×8×3个数.由加法原理,共有3×9×8+9×8×3=432(个)数.[拓展]在1000到1999这1000个自然数中,有多少个千位、百位、十位、个位数字中恰有两个相同的数?分析:若相同的数是1,则另一个1可以出现在个、十、百位中的任一个位置上,剩下的两个位置分别有9个和8个数可选,有 3×9×8=216(个);若相同的数是2,有3×8=24(个);同理,相同的数是0,3,4,5,6,7,8,9时,各有 24个,所以,符合题意的数共有216+9×24=432(个).【例3】(★★★)在所有的三位自然数中,组成数字的三个数码既有大于5的数码,又有小于5的数码的自然数共有多少个?分析:三个数码都不大于5的三位数有5×6×6=180(个),三个数码都不小于5的三位数有5×5×5=125(个),三个数码都等于5的只有 555一个.所求自然数共有 900-(180+125-1)= 596(个).[拓展]在1到2000的自然数中,含有数码1的数有多少个?分析:不含数码 1的一位数有 8个,两位数有 8×9=72(个),三位数有 8×9 2=648(个),四位数有1个,所以含有数码1的数有:2000-(648+72+8+1)=1271(个).【例4】(★★★)从1,3,5中任取两个数字,从0,2,4中任取两个数字,共可组成多少个没有重复数字的四位数?其中偶数有多少个?分析::取出的四个数码根据有0或无0分为两类.(1)有0时,四个数码的取法有2×3=6(种),可组成四位数6×(3×3!)=108(个),其中偶数60个;(2)无0时,四个数码的取法有1×3=3(种),可组成四位数3×4!=72(个),其中偶数36个.所以共可组成没有重复数字的四位数 108+72=180(个),其中偶数60+36=96(个).[巩固]用1,2,3,4,5这五个数码可以组成120个没有重复数字的四位数,将它们从小到大排列起来,4125是第几个?分析:1,2,3,4,5这五个数码可以组成120个没有重复数字的四位数,千位数为1,2,3,4,5的各有24个数,所以4125是第24×3+2=74个数.Ⅱ、加乘原理与图论(染色、图形组合)【例5】(★★★)将图中的○分别涂成红色、黄色或绿色,要求有线段相连的两个相邻○涂不同的颜色,共有多少种不同涂法?分析:如下图,当A,B,C,D的颜色确定后,大正方形四个角上的○的颜色就确定了,所以只需求A,B,C,D有多少种不同涂法.按先A,再B,D,后C的顺序涂色.DCBA按A—B—D—C的顺序涂颜色:A有3种颜色可选;当B,C取相同的颜色时,有2种颜色可选,此时D也有2种颜色可选,不同的涂法有3×2×2=12(种);当B,C取不同的颜色时,B有2种颜色可选,C剩仅1种颜色可选,此时D也只有1种颜色可选(与A相同),不同的涂法有3×2×1×1=6(种).所以共有12+6=18种不同的涂法.[巩固]用四种颜色对下图的五个字染色,要求相邻的区域的字染不同的颜色,但不是每种颜色都必须要用.问:共有多少种不同的染色方法?分析:第一步给“而”上色,有4种选择;然后对“学”染色,“学”有3种颜色可选;当“奥”,“数”取相同的颜色时,有2种颜色可选,此时“思”也有2种颜色可选,不同的涂法有3×2×2=12(种);当“奥”,“数”取不同的颜色时,“奥”有2种颜色可选,“数”剩仅1种颜色可选,此时“思”也只有1种颜色可选(与“学”相同),不同的涂法有3×2×1×1=6(种).所以共有4×3×(2×2+2)=72种不同的涂法【例6】(★★★★)分别用五种颜色中的某一种对下图的A, B,C,D,E,F六个区域染色,要求相邻的区域染不同的颜色,但不是每种颜色都必须要用.问:有多少种不同的染法?分析:先按A,B,D,C,E的次序染色,可供选择的颜色依次有5,4,3,2,3种,注意E与D的颜色搭配有3×3=9(种),其中有3种E和D同色,有6种E和D异色.最后染F,当E与D同色时有3种颜色可选,当E与D异色时有 2种颜色可选,所以共有5×4×2×(3×3+6×2)=840(种)染法;[拓展]用红、橙、黄、绿、蓝、青、紫七种颜色中的一种,或两种,或三种,或四种,分别涂在正四面体各个面上,一个面不能用两色,也无一个面不涂色的,问共有几种不同涂色方式?分析:首先介绍正四面体(模型).正四面体四个面的相关位置,当底面确定后,(从上面俯视)三个侧面的顺序有顺时针和逆时针两种(当三个侧面的颜色只有一种或两种时,顺时针和逆时针的颜色分布是相同的).先看简单情况,如取定四种颜色涂于四个面上,有两种方法;如取定一种颜色涂于四个面上,只有一种方法.但取定三种颜色如红、橙、黄三色,涂于四个面上有三种方法,如下图①②③(图中用数字1,2,3分别表示红、橙、黄三色)如果取定两种颜色如红、橙二色,涂于四个面上有三种方法.如下图④⑤⑥但是从七种颜色里,每次取出四种颜色,有7×6×5×4÷(4×3×2×1)=35种取法,每次取出三种颜色有7×6×5÷(3×2×1)=35种取法,每次取出两种颜色有7×6÷(2×1)=21种取法,每次取出一种颜色有7种取法.因此着色法共有2×35+3×35+3×21+7=245种.【例7】(★★★★)在一个圆周上均匀分布10个点,以这些点为顶点,可以画出多少不同的钝角三角形和锐角三角形?(补充知识:由直径和圆周上的一点构成的三角形一定是直角三角形,其中直径的边所对的角是直角,所以如果圆周上三点在同一段半圆周上,则这三点构成钝角三角形)分析:(1)由于10个点全在圆周上,所以这10个点没有三点共线,故只要在10个点中取3个点,就可以画出一个三角形,如果这三个点其中两点构成的线段小于直径,并且第三个点在被其余两点分割的较小的圆周上,则这三个点构成钝角三角形,这样所有的钝角三角形可分为三类,第一类是三角形长边端点之间仅相隔一个点,这样的三角形有10×1=10个,第二类是长边端点之间相隔两个点,这样的三角形有10×2=20个,第三类是长边端点之间相隔三个点,这样的三角形有10×3=30个,所以一共可以画出60个钝角三角形.(2)令圆周上相邻点之间的圆弧弧长称之为一个单位弧长,这样所有锐角三角形可分为两类,一类是三角形三个顶点之间的弧长分别是2,4,4.另一类三角形的三个顶点之间的弧长分别为3,3,4,两类三角形的个数都为10,一共有20个不同的锐角三角形.[前铺]一个半圆周上共有12个点,直径上5个,圆周上7个,以这些点为顶点,可以画出多少个三角形?分析:(方法一)所有的三角形一共可以分为3类,第一类:三角形三个顶点都在圆周上,这样的三角形一共有7×6×5÷(3×2×1)=35种;第二类:三角形两个顶点在圆周上,这样的三角形一共有7×6÷(2×1)×5=105种;第三类:三角形一个顶点在圆周上,这样的三角形一共有7×5×4÷(2×1)=70种;一共可以画出35+105+70=210种.(方法二)不共线的3点可以确定一个三角形,这样任取3点构成的组合数与三角形的个数之间便有了一定的联系,但是要注意去掉其中3点共线的情况.12×11×10÷(3×2×1)-5×4×3÷(3×2×1)=210种.【例8】三条平行线上分别有2,4,3个点(下图),已知在不同直线上的任意三个点都不共线.问:以这些点为顶点可以画出多少个不同的三角形?分析:(方法一)本题分三角形的三个顶点在两条直线上和三条直线上两种情况(1)三个顶点在两条直线上,一共有4×3÷2×2+3×2÷2×2+3×2÷2×4+4×3÷2×3+4+3=55(个)(2)三个顶点在三条直线上,由于不同直线上的任意三个点都不共线,所以一共有:2×4×3=24(个)根据加法原理,一共可以画出55+24=79(个)三角形.(方法二)9个点任取三个点有9×8×7÷(3×2×1)=84种取法,其中三个点都在第二条直线上有4种,都在第三条直线上有1种,所以一共可以画出84-4-1=79(个)三角形.[拓展]从下图中11个交点中任取3个点,可画出多少个三角形?分析:如果三点在一条直线上,则此三点不能构成三角形,四点在一条直线上,则其中任意三点也不能构成三角形.此题采用排除法较方便.一共可以画出三角形为11×10×9÷(3×2×1)=165(个),其中三点共线不能构成的三角形有7个,四点共线不能构成的三角形有2×4=8个,所以可以画出三角形165-(7+8)=150个.Ⅲ、排列组合【例9】海淀区举办中学生足球联谊赛,各校共选送20个队参加比赛,比赛时,选抽签分成两个组,每组都是10个队,各组都进行单循环赛,然后再由各组的前三名共6个队进行单循环赛,决出冠亚季军,问:(1)共需比赛多少场?(2)如果实行主客场制,共需比赛多少场?分析:(1)第一组中10个队,每两队比赛一场,共比赛10×9÷2=45(场),同理,第二组共比赛45场;决赛中6个队,每两队比赛一场,共比赛:6×5÷2=15(场)由加法原理,共需比赛的场次数是:45+45+15=105(场)(2)由于主客场不仅与参赛的队有关,也与比赛所在的地点有关,所以,第一组比赛10×9=90(场),第二组比赛10×9=90(场),决赛时比赛:6×5=30(场)由加法原理,共需比赛的场次数是:90+90+30=210(场)[拓展]从6名运动员中选出4人参加4×100接力赛,求满足下列条件的参赛方案各有多少种:(1)甲不能跑第一棒和第四棒;(2)甲不能跑第一棒,乙不能跑第二棒分析:(1)先确定第一棒和第四棒,第一棒是除甲以外的任何人,有5种选择,第四棒有4种选择,剩下的四人中随意选择2个人跑第二、第三棒,有4×3=12种,由乘法原理,共有:5×4×12=120种参赛方案(2)先不考虑甲乙的特殊要求,从6名队员中随意选择4人参赛,有6×5×4×3×2×1=360种选择.考虑若甲跑第一棒,其余5人随意选择3人参赛,对应5×4×3=60种选择,考虑若乙跑第四棒,也对应5×4×3=60种选择,但是从360种中减去两个60种的时候,重复减了一次甲跑第一棒且乙跑第四棒的情况,这种情况下,对应于第一棒第四棒已确定只需从剩下的4人选择2人参赛的4×3=12种方案,所以,一共有360-60×2+12=252种不同参赛方案.【例10】7个相同的球,放入4个不同的盒子里,每个盒子至少放一个,不同的放法有多少种?(请注意,球无区别,盒是有区别的,且不允许空盒)分析:(方法一)首先研究把7分成4个自然数之和的形式,容易得到以下三种情况:7=1+1+1+4,7=1+2+2+2,7=1+1+2+3,其次,将三种情况视为三类计算不同的放法.第一类:有一个盒子里放了4个球,而其余盒子里各放1个球,由于4个球可任意放入不同的四个盒子之一,有4种放法,而其他盒子只放一个球,而球是相同的,任意调换都是相同的放法,所以第一类只有4种放法.第二类:有一个盒子里放1个球,有4种放法,其余盒子里都放2个球,与第一类相同,任意调换都是相同的放法,所以第二类也只有4种放法.第三类:有两个盒子里各放一个球,另外两个盒子里分别放2个及3个球,这时分两步来考虑:第一步,从4个盒子中任取两个各放一个球,这种取法有24C种.第二步,把余下的两个盒子里分别放入2个球及3个球,这种放法有22P种.由乘法原理有22 4212C P⨯=种放法.由加法原理,可得符合题目要求的不同放法有4+4+12=20(种)(方法二)把七个球排成一行,并用三个“挡板”把它们分成四组,每一组对应一个盒子,则一共有6个位置可以放挡板,从中选择三个,有3620C 种选法.[拓展]一个盒子里装有10个编号依次为1,2,3,…,10的球,从中摸出6个球,使它们的编号之和为奇数,则不同的摸法种数是多少?分析:10个编号中5奇5偶,要使6个球的编号之和为奇数,有以下三种情形:(1)5奇1偶,这时对奇数只有1种选择,对偶数有5种选择,由乘法原理,有1×5=5种选择(2)3奇3偶,这对奇数有5×4×3÷(3×2×1)=10种选择,对偶数也有10种选择,由乘法原理,有10×10=100种选择(3)1奇5偶,这时对偶数只有1种选择,对奇数有5种选择,由乘法原理,有1×5=5种选择由加法原理,不同的摸法有5+100+5=110种【例11】某管理员忘记了自己小保险柜的密码数字,只记得是由四个非0数码组成,且四个数码之和是9.为确保打开保险柜至少要试多少次?.分析:四个非0数码之和等于9的组合有1,1,1,6;1,1,2,5;1,1,3,4;1,2,2,4;1,2,3,3;2,2,2,3六种第一种中,只要考虑6的位置即可,6可以随意选择四个位置,其余位置方1,共有4种选择第二种中,先考虑放2,有4种选择,再考虑5的位置,有3种选择,剩下的位置放1,共有4×3=12种选择,同理,第三、第四、第五种都有12种选择,最后一种与第一种相似,3的位置有四种选择,其余位置放2,共有4种选择.由加法原理,一共可以组成4+12+12+12+12+4=56个不同的四位数,即为确保打开保险柜至少要试56次.[前铺]在前100个自然数中取出两个不同的数相加,其和是3的倍数的共有多少种不同的取法?分析:将1~100按照除以3的余数分为3类,(1)余数为1的有1,4,7,…100,一共有34个,(2)余数为2的一共有33个,(3)可以被3整除的一共有33个,取出两个不同的数其和是3的倍数只有两种情况,从(1)(2)类中各取一个数,有34×33=1122(种)取法;从(3)中取两个数,有33×32÷2=528(种)取法,不同取法共有:1122+528=1650(种)【例12】(★★★)2000北京市迎春杯数学邀请赛)在1000至1999这些自然数中个位数大于百位数的有多少个?分析:(方法一)解决计数问题常用分类讨论的方法.设在1000至1999这些自然数中满足条件的数为1abc (其中c>a); (1)当a=0时,c可取1~9中的任一个数字,b可取0~9中的任一个数字,于是一共有9×10=90个. (2)当a=1时,c可取2~9中的任一个数字,b仍可取0~9中的任一个数字,于是一共有8×10=80个.(3)类似地,当a依次取2,3,4,5,6,7,8时分别有70,60,50,40,30,20,10个符合条件的自然数.所以,符合条件的自然数有90+80+70+…+20+10=450个.(方法二)1000至1999这1000个自然数中,每10个中有一个个位数等于百位数,共有100个;剩余的数中,根据对称性,个位数大于百位数的和百位数大于个位数的一样多,所以总数为(1000100)2450-÷=个.[巩固]在100~1995的所有自然数中,百位数与个位数不相同的自然数有多少个?分析:先考虑100~1995这1896个数中,百位与各位相同的数有多少个,在三位数中,百位与各位可以是1~9,十位可以是0~9,由乘法原理,有9×10=90个,四位数中,千位是1,百位和个位可以是0~9,十位可以是0~9,由乘法原理,10×10=100个,但是要从中去掉1999,在100~1995中,百位与个位相同的数共有90+99=189个,所以,百位数与个位数不相同的自然数有:1896-189=1707个1.(★★例3)如图,将1,2,3,4,5分别填入图中1×5的格子中,要求填在黑格里的数比它旁边的两个数都大.共有种不同的填法.分析:填在黑格里的数是5和4时,不同的填法有2!×3!=12(种);填在黑格里的数是5和3时,不同的填法有2×2=4(种).所以,共有不同填法12+4=16(种).2.(★★★例4)用1、2、3、4、5这五个数字,可以组成多少个比20000大且百位数字不是3的无重复数字的五位数?分析:分两类(1)把3排在最高位上,其余四个数字可以任意放到其余四个数位上,有4×3×2×1=24种做法,对应24个不同的五位数(2)把2、4、5放在最高位上,有3种选择,百位数上有除最高位和3以外的三种选择,其余的三个数字可以任意放到其余3个数位上,由乘法原理,可以组成3×3×3×2×1=54个不同的五位数由加法原理,可以组成24+54=78个不同的五位数.3.(★★★例5)如图,有一个圆形花坛,园丁想用红、黄、紫、白、绿五种颜色的植物对花坛进行装饰,要求同种颜色的植物不能相邻,但不是每种颜色的植物都必须要用,已知花坛中心的圆圈中必须栽入绿色乔木,问,一共有多少种栽种方法?分析:圆坛中心被栽入绿色乔木后,周围的扇形花坛中就只能栽种红、黄、紫、白四种颜色的花了,左上方花坛有4中选择,其余三个分两类:(1)相对花坛取相同颜色,一共有:4×3×3=36种栽种方法(2)相对花坛不同颜色,一共有:4×3×2×2=48种选择.所以一共有36+48=84种栽种方法.4.(★★★例8)如右图所示分布着9个点,以这9个点为端点能构成多少个三角形?分析:三条线段上各取1点能构成3×3×3=27.如果在一条线段上取两点,在另一条线段上取一点一共有(3×2)×(3×2÷(2×1))×(3÷1)=54,所以一共有81种.5.(★★★例7)五种颜色不同的信号旗,各有5面,任意取出三面排成一行,表示一种信号,问:共可以表示多少种不同的信号?分析:取出的3面旗子,可以是一种颜色、两种颜色、三种颜色,应按此进行分类(1)一种颜色: 5种可能;(2)两种颜色:(5×4)×3=60(3)三种颜色:5×4×3=60所以,一共可以表示5+60+60=125种不同的信号。
六年级加乘原理练习题

六年级加乘原理练习题加乘原理是数学中一个重要的概念,在六年级的学习中也会涉及到该原理的练习题。
下面我将为你提供一些六年级加乘原理练习题,希望能帮助你更好地理解和掌握这个概念。
1. 小明和小红一共有多少本书?小明有3本书,小红有4本书。
根据加乘原理,我们可以进行相加或相乘来得到答案。
所以,小明和小红一共有3 + 4 = 7本书。
2. 一岁狗的年龄相当于人类的多少岁?据说一岁狗相当于人类的7岁,我们可以用加乘原理进行计算。
假设一岁狗的年龄为x岁,那么人类的年龄就是7x岁。
3. 你在一家电子商务网站上购买了2件衣服和3条裤子,每件衣服的价格为50元,每条裤子的价格为30元。
你一共花了多少钱?根据加乘原理,我们可以先计算购买2件衣服的总价,即2 × 50 = 100元。
然后再计算购买3条裤子的总价,即3 × 30 = 90元。
最后,将两者相加得到总价,即100 + 90 = 190元。
4. 公园里有5棵大树和3棵小树,每棵大树上有4只鸟,每棵小树上有2只鸟。
公园里一共有多少只鸟?我们可以先计算大树上的鸟的总数,即5 × 4 = 20只鸟。
然后再计算小树上的鸟的总数,即3 ×2 = 6只鸟。
最后,将两者相加得到总数,即20 + 6 = 26只鸟。
5. 在一家超市购买水果,香蕉每斤5元,苹果每斤3元,西瓜每个12元。
如果你买了2斤香蕉、3斤苹果和1个西瓜,你一共花了多少钱?根据加乘原理,我们可以先计算购买香蕉的总价,即2 ×5 = 10元。
再计算购买苹果的总价,即3 ×3 = 9元。
最后,计算购买西瓜的价格,即1 × 12 = 12元。
将三者相加得到总价,即10 + 9 + 12 = 31元。
这里给出了一些六年级加乘原理的练习题,希望能帮助你更好地理解和应用加乘原理。
通过这些练习题的解答,你可以培养自己的数学思维和计算能力。
当然,在实际生活中,我们还可以遇到更多涉及加乘原理的问题,希望你能运用所学,灵活应用,解决身边的实际问题。
小学数学加乘原理课后练习题

小学数学加乘原理课后练习题一、加法练习题1. 37 + 52 = ____2. 68 + 29 = ____3. 91 + 16 = ____4. 125 + 58 = ____5. 73 + 89 = ____二、乘法练习题1. 5 × 6 = ____2. 8 × 3 = ____3. 4 × 9 = ____4. 7 × 2 = ____5. 10 × 5 = ____三、加法与乘法结合练习题1. 45 + 3 × 7 = ____2. (9 + 6) × 2 = ____3. 12 × (5 + 3) = ____4. 7 × (4 + 2) = ____5. (10 + 8) × 3 = ____四、解决问题练习题1. 小明一周内每天都运动半小时,共运动了多少小时?2. 某商店里有5个货架,每个货架上放有8盒饼干,这个商店总共有多少盒饼干?3. 一个花园里有7排花,每排有9朵花,这个花园里总共有多少朵花?4. 每本书的重量是2千克,小明买了6本书,这些书总共有多重?5. 一箱葡萄有3层,每层有10串葡萄,这箱葡萄一共有多少串?五、综合练习题1. (52 + 16) × 2 = ____2. 36 × (8 + 4) = ____3. 25 + 48 × 3 = ____4. (17 + 9) × 5 = ____5. (38 × 2) + (56 ÷ 7) = ____六、挑战练习题1. 9731 + 2865 = ____2. 6405 - 3189 = ____3. (45 ÷ 5) + (17 × 3) = ____4. (86 × 3) - (42 ÷ 7) = ____5. 27 × 9 - 8 ÷ 4 + 15 = ____以上为小学数学加乘原理的课后练习题,请同学们认真完成。
乘法原理和加法原理练习题

乘法原理和加法原理练习题乘法原理和加法原理是数学中常用的解决组合问题的方法。
它们可以帮助我们计算不同情况下的总数,从而更好地理解和解决实际生活中的问题。
下面是一些乘法原理和加法原理的练习题,帮助大家更好地掌握这两个原理的应用。
练习题1:某班级有5个男生和6个女生,要选出一名男生和一名女生代表该班参加学校的演讲比赛。
问有多少种不同的选择?解答:根据乘法原理,我们可以将选择男生和选择女生分为两个步骤。
第一步,选择一名男生,有5种选择。
第二步,选择一名女生,有6种选择。
根据乘法原理,两个步骤的选择数相乘,所以总的不同选择数为5 × 6 = 30。
练习题2:某餐馆供应早餐的菜单有3种主食和2种饮料可供选择。
现在小明想选择一种主食和一种饮料作为早餐。
问有多少种不同的选择?解答:同样地,我们可以将选择主食和选择饮料分为两个步骤。
第一步,选择一种主食,有3种选择。
第二步,选择一种饮料,有2种选择。
根据乘法原理,两个步骤的选择数相乘,所以总的不同选择数为3× 2 = 6。
练习题3:小明有红、黄、蓝三种颜色的T恤,他还有黑、白两种颜色的裤子。
如果他想搭配一套T恤和一条裤子,问有多少种不同的搭配方式?解答:同样地,我们可以将选择T恤和选择裤子分为两个步骤。
第一步,选择一种T恤,有3种选择。
第二步,选择一种裤子,有2种选择。
根据乘法原理,两个步骤的选择数相乘,所以总的不同搭配方式数为3 × 2 = 6。
练习题4:小明需要从A、B、C、D、E五个城市中选择两个作为他的旅行目的地。
问有多少种不同的选择方式?解答:根据加法原理,我们可以将选择旅行目的地分为两种情况。
情况一,选择两个不同的城市作为旅行目的地。
这种情况下,我们可以根据排列组合的知识,使用C(5, 2)的方式计算。
C(5, 2)表示从5个城市中选择2个不同的城市的组合数,计算公式为5! / (2! × (5-2)!) = 10。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学《加乘原理综合》练习题
一、加乘原理概念
生活中常有这样的情况:在做一件事时,有几类不同的方法,在具体做的时候,只要采用其中某一类中的一种方法就可以完成,并且这几类方法是互不影响的.那么考虑完成这件事所有可能的做法,就要用到加法原理来解决。
还有这样的一种情况:就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法.要知道完成这件事情共有多少种方法,就要用到乘法原理来解决。
二、加乘原理应用
应用加法原理和乘法原理时要注意下面几点:
⑴加法原理是把完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,所以完成任务的不同方法数等于各类方法数之和。
⑵乘法原理是把一件事分几步完成,这几步缺一不可,所以完成任务的不同方法数等于各步方法数的乘积.
⑶在很多题目中,加法原理和乘法原理都不是单独出现的,这就需要我们能够熟练的运用好这两大原理,综合分析,正确作出分类和分步。
加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”。
乘法原理运用的范围:这件事要分几个彼此互不影响
....来完成,这几步是完成这件任务
....的独立步骤
缺一不可的
.....,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关”。
模块一:简单加乘原理综合应用
【例 1】商店里有2种巧克力糖:牛奶味、榛仁味;有2种水果糖:苹果味、梨味、橙味.小明想买一些糖送给他的小朋友。
⑴如果小明只买一种糖,他有几种选法?
⑵如果小明想买水果糖、巧克力糖各1种,他有几种选法?
【巩固】如果从3本不同的语文书、4本不同的数学书、5本不同的外语书中选取2本不同学科的书阅读,那么共有多少种不同的选择?
【例 2】某信号兵用红,黄,蓝,绿四面旗中的三面从上到下挂在旗杆上的三个位置表示信号.每次可挂一面,二面或三面,并且不同的顺序,不同的位置表示不同的信号.一共可以表示出多
少种不同的信号?
【巩固】五面五种颜色的小旗,任意取出一面、两面或三面排成一行表示各种信号,问:共可以表示多少种不同的信号?
【例 3】五种颜色不同的信号旗,各有5面,任意取出三面排成一行,表示一种信号,问:共可以表示多少种不同的信号?
【例 4】奥苏旺大陆上的居民使用的文字非常独特,他们文字的每个单词都由5个字母a、b、c、d、e组成,并且所有的单词都有着如下的规律,⑴字母e不打头,⑵单词中每个字母a后边必
然紧跟着字母b,⑶c和d不会出现在同一个字母之中,那么由四个字母构成的单词一共有
多少种?
【巩固】从6名运动员中选出4人参加4100
接力赛,求满足下列条件的参赛方案各有多少种:
⑴甲不能跑第一棒和第四棒;
⑵甲不能跑第一棒,乙不能跑第二棒
【例 5】某件工作需要钳工2人和电工2人共同完成.现有钳工3人、电工3人,另有1人钳工、电工都会.从7人中挑选4人完成这项工作,共有多少种方法?
【巩固】有11名外语翻译人员,其中5名是英语翻译员,4名是日语翻译员,另外两名英语、日语都精通.从中找出8人,使他们组成两个翻译小组,其中4人翻译英文,另4人翻译日文,这两个小组能同时工作.问这样的分配名单共可以开出多少张?
【巩固】某旅社有导游9人,其中3人只会英语,2人只会日语,其余4个既会英语又会日语.现要从中选6人,其中3人做英语导游,另外3人做日语导游.则不同的选择方法有多少种?
模块二:加乘原理与数论的综合
【例 6】由数字0,1,3,9可以组成多少个无重复数字的自然数?
【巩固】用数字0,1,2,3,4可以组成多少个小于1000的自然数?
【例 7】用0~9这十个数字可组成多少个无重复数字的四位数。
【巩固】用0,1,2,3四个数码可以组成多少个没有重复数字的四位偶数?
【例 8】在2000到2999这1000个自然数中,有多少个千位、百位、十位、个位数字中恰有两个相同的数?
【巩固】在1000至1999这些自然数中个位数大于百位数的有多少个?
【巩固】在100~1995的所有自然数中,百位数与个位数不相同的自然数有多少个?
【例 9】从1到100的所有自然数中,不含有数字4的自然数有多少个?
【巩固】从1到300的所有自然数中,不含有数字2的自然数有多少个?
【例 10】有两个不完全一样的正方体,每个正方体的六个面上分别标有数字1、2、3、4、5、6.将两个正方体放到桌面上,向上的一面数字之和为偶数的有多少种情形?
【巩固】有两个不完全一样的正方体,每个正方体的六个面上分别标有数字1、2、3、4、5、6.将两个正方体放到桌面上,向上的一面数字之和为奇数的有多少种情形?
【例 11】一个半圆周上共有12个点,直径上5个,圆周上7个,以这些点为顶点,可以画出多少个三角形?
【巩固】直线a,b上分别有5个点和4个点,以这些点为顶点可以画出多少个三角形?
【巩固】直线a,b上分别有4个点和2个点,以这些点为顶点可以画出多少个三角形?
【巩固】三条平行线上分别有2,4,3个点(下图),已知在不同直线上的任意三个点都不共线.问:以这些点为顶点可以画出多少个不同的三角形?
【例 12】5条直线两两相交,没有两条直线平行,没有任何三条直线通过同一个点,以这5条直线的交点为顶点能构成几个三角形?
【巩固】在一个圆周上均匀分布10个点,以这些点为顶点,可以画出多少不同的钝角三角形?(补充知识:由直径和圆周上的一点构成的三角形一定是直角三角形,其中直径的边所对的角是直
角,所以如果圆周上三点在同一段半圆周上,则这三点构成钝角三角形)。
【例 13】 如图,将1,2,3,4,5分别填入图中15 的格子中,要求填在黑格里的数比它旁边的两个
数都大.共有 种不同的填法。
【走进美妙数学花园少年数学邀请赛】
【巩固】 在如图所示1×5的格子中填入1,2,3,4,5,6,7,8中的五个数,要求填入的数各不相
同,并且填在黑格里的数比它旁边的两个数都大.共有 种不同的填法。
【例 14】 地图上有A ,B ,C ,D 四个国家(如下图),现有红、黄、蓝三种颜色给地图染色,使相邻国
家的颜色不同,但不是每种颜色都必须要用,问有多少种染色方法?
D
C
B A
【巩固】 如果有红、黄、蓝、绿四种颜色给例题中的地图染色,使相邻国家的颜色不同,但不是每种
颜色都必须要用,问有多少种染色方法?
【例 15】 如右图,有A 、B 、C 、D 、E 五个区域,现用五种颜色给区域染色,染色要求:每相邻两个区
域不同色,每个区域染一色.有多少种不同的染色方式?
E
D
C B
A
【巩固】 用四种颜色对右图的五个字染色,要求相邻的区域的字染不同的颜色,但不是每种颜色都必
须要用.问:共有多少种不同的染色方法?
学奥
而思
数
【例 16】 分别用五种颜色中的某一种对下图的A ,B ,C ,D ,E ,F 六个区域染色,要求相邻的
区域染不同的颜色,但不是每种颜色都必须要用.问:有多少种不同的染法?
练习1. 用数码0,1,2,3,4,可以组成多少个小于1000的没有重复数字的自然数?
练习2. 从1到500的所有自然数中,不含有数字4的自然数有多少个?
练习3.直线a,b上分别有5个点和4个点,以这些点为顶点可以画出多少个四边形?
练习4.如右图,有A,B,C,D四个区域,现用四种颜色给区域染色,要求相邻区域的颜色不同,每个区域染一色.有多少种染色方法?
A
D
C
B
练习5.红、黄、蓝、白四种颜色不同的小旗,各有2,2,3,3面,任意取出三面按顺序排成一行,表示一种信号,问:共可以表示多少种不同的信号?如果白旗不能打头又有多少种?。