差分方程

合集下载

差分方程模型的基本概念

差分方程模型的基本概念

预测经济趋势
通过建立差分方程模型,可以对 未来的经济趋势进行预测,帮助 决策者制定相应的经济政策。
评估经济政策
差分方程模型可以用来评估不同 经济政策的实施效果,为政策制 定者提供参考依据。
在物理学中的应用
描述振动现象
差分方程模型可以用来描述物体的振动规律,如弹簧振荡、单摆 等。
预Байду номын сангаас波动传播
在声学和波动理论中,差分方程模型可以用来描述波动传播的规 律,如声波、电磁波等。
可以采用动态模型来反映数据的变化趋势,减少时间滞后的影 响。
可以利用大数据技术来处理大规模的数据集,提高模型的预测 精度和稳定性。
可以尝试优化参数估计方法,例如采用全局优化算法或贝叶斯 推断等方法,以提高参数估计的准确性和稳定性。
THANKS FOR WATCHING
感谢您的观看
确定差分关系
根据时间序列数据的特性,确定合适的差分关系,以描述数据的变化规律。差分关系通常表示为变量在不同时间 点的变化量或变化率。
建立差分方程模型
根据变量和参数建立模型
根据确定的变量和参数,建立差分方程模型,以描述变量的变化规律。
验证模型的适用性
建立差分方程模型后,需要验证模型的适用性,确保模型能够准确描述实际问题的变化规律。
Python
使用Python的数值计算库,如NumPy和 SciPy,求解差分方程。
Mathematica
使用Mathematica的符号计算和数值计算功 能求解差分方程。
04 差分方程模型的应用
在经济学中的应用
描述经济周期
差分方程模型可以用来描述经济 活动的周期性变化,如经济增长、 通货膨胀、就业率等的时间序列 数据。

差分方程

差分方程

练习 18 证明:若 a>1,对任意的 >0,>0,若 ≠ ,则按上述法构造的数列{ }满足
.
这样,我们得到了计算 的一个方法: 1. 给定 (作为误差控制),任取初始值 ,
令 n=1;
2. 若

则终止计算,输出结果;否则 ,令 n :=n+1,转
第3步;
3. 令,转第2步.
练习 19 对 a=1.5,10,12345,用上述方法求 .
由 ,得
.
从而可将原来的非齐次线性差分方程化为齐次线性差分方程.
如果方程(8.5)的平衡值不存在,可以将方程(8.5)中所有的 n 换为 n+1,得到
(8.6)
方 程( 8.6 )和( 8.5 )相 减 得
.
于是可将原来的非齐次线性差
分方程化为高一阶的齐次线性差分方程.
练习17 分别求差分方程 及 的通解.
能 够 使 国 民 经 济 处 于 一 种 良 性 循 环 之 中 。如 何 配 各 部 分 投 资 的 比 例 ,才 能 使 国 民 经 济
处于稳定状态呢?这就是本节要讨论的问题。
我们首先给出一些假设条件:
1. 国民收入用于消费、再生产投资和公共设施建设三部分。
2. 记 分别为第
k 个周期的国民收入水平和消费水平。的值与前一个周期的国民收入成正比例。即
定理8。1 若数列的通项是关于 n 的 k
次多项式,则 k 阶差分数列为非零数列,k+1阶差分数列为0。
练习3 证明定
理8。1。
定理8。2 若{Xn}的 k 阶插分为非零常数列,则{Xn}是 n 的 k 次多
项式,
练习4 根据差分的性质证明定理8。2
例2。求∑i3

差分方程简介

差分方程简介
2 n yxn c1 y c y ... ( 1 ) yx n x n1 n x n 2
k (1) Cn y x nk k 0 n k
,
!n ! ) k n ( !k
k n
C中 其 且规定0 yx yx f ( x)
由定义知, y f ( x)的n阶差分 是f ( x n), f ( x n 1),...f ( x 1), f ( x) 的线形组合,
(3)(ayx bzx) ayx bz x
(4)(yx zx) yx1zx zx yx yx zx zx1yx
yx z x y x y x z x (5)( ) (其中z x 0) zx z x z x1
二、差分方程
定义2 含有自变量,未知函数及未知函数差 分的方程,称为差分方程,其一般形式为
yx1 yx yx
yxn yx C yx C y ... C y yx
n
n1 n1 n x
C yx
k 0 k n k
n
由定义容易证明,差分具有以下性质
(1)(c) o(c为常数)
(2)(cyx) cyx (c为常数)
y x5 y x3 4 y x 2 y x e x 是五阶差分方程, 因为(x 5) x 5;
方程3 y x yx 1 0可转化为yx 3 3 y x 2 3 y x 1 1 0, 因而是2阶差分方程
定义4 如果某个函数代入差分方程后能使差分方程 成为恒等式,则称此函数为该差分方程的解。
反之函数y f ( x)的各个函数值也可以 用y x f ( x)和它的各阶差分式表示 。即

第六章 第节 差分方程

第六章 第节 差分方程

1 (2r 1) C2 n)(1 ) n . 2
2
例 求yn2 yn1 yn 0的通解。
解 由r r 1 0 得r1, 2
2
1 3i . 2
2 2 4 1 1 r c 1, tan 3, . 3 1 2 2 n 通解 yn 1 (C1 cos n C2 sin n). 3 3 2 2 即 yn C1 cos n C2 sin n. 3 3
6.7
差分方程
1、差分方程基础 2、一节常系数线性差分方程 3、二阶常系数线性差分方程
4、差分方程的应用
一、差分方程概念
设整变量函数yn f (n),n 0,1, 2,, 则yn+1 yn 称为yn的一阶差分,记为yn
yn yn1 yn f n 1 f n
代入原方程 ,得
1 5 求yn1 yn ( ) n 的通解。 2 2
5 n 1 1 5 n 5 n A( ) A( ) ( ) , 2 2 2 2 5 1 1 A( ) 1, A , 2 2 2 1 5 n yn * ( ) 2 2 1 n 1 5 n 原方程通解 y n C ( ) ( ) . 2 2 2
2
n
研究yn1 byn (n)的解法,
定理: 非齐次线性差分方程通解等于相应 齐次线性差分方程通解加上非齐次线性差 分方程的一个特解 现在问题归结为求出非齐次线性差分方程 的一个特解。
设 (n) a pm (n)型(a 0),其中pm (n)
n
为已知m次多项式,可以证明非齐次方 程 的特解形式是
则 r cos, r sin , 所以 r1 r cos i sin , r2 r cos i sin .

差分方程简介

差分方程简介
日期:
差分方程简介
汇报人:
contents
目录
• 差分方程的基本概念 • 差分方程的求解方法 • 差分方程的应用 • 差分方程的局限性 • 差分方程的发展历程与未来趋势 • 差分方程的实际案例分析
01
差分方程的基本概念
定义与例子
• 差分方程是描述离散序列变化的方程式。例如,考虑一个数列{an},我们可以写出一个差分方程:a{n+1} = 2a_n + 3。
应用
经济学中的差分方程模型适用于预测经济指标的未来趋势 、政策效应分析等。然而,由于现实世界中的复杂性,该 模型可能不适用于所有经济情况。
THANKS
感谢观看
公式法
公式法的原理
01
通过差分方程的解的公式直接计算出解。公式法的步骤 Nhomakorabea02
根据差分方程的特点,寻找解的公式,然后代入初值计算出解

公式法的优缺点
03
公式法适用于某些特定类型的差分方程,但不适用于所有类型
的差分方程,需要具体问题具体分析。
计算机方法
计算机方法的原理
利用计算机强大的计算能力,通过编程等方法求解差分方程。
人群、感染人群和免疫人群之间的转换。这些因素都可以通过差分方程来描述 。 • 数学方程:常见的传染病模型如SIR模型,其差分方程为 S(t+1) = S(t) b*S(t)*I(t)/N(t), I(t+1) = I(t) + b*S(t)*I(t)/N(t) - d*I(t), R(t+1) = R(t) + d*I(t),其中S表示易感人群,I表示感染人群,R表示免疫人群,b表示感染率 ,d表示疾病死亡率。 • 应用:传染病模型适用于预测疾病的传播趋势、评估公共卫生干预措施的效果 等。然而,由于现实世界中的复杂性,该模型可能不适用于所有疾病传播情况 。

差分方程的基本概念

差分方程的基本概念

差分方程的应用领域
01
02
03
金融领域
差分方程在金融领域中用 于描述股票价格、债券收 益率等金融变量的动态变 化。
物理学领域
在物理学中,差分方程用 于描述离散系统的动态行 为,如离散的弹簧振荡器、 离散的波动等。
生物学领域
在生态学和流行病学中, 差分方程用于描述种群数 量随时间的变化规律。
差分方程与微分方程的关系
定义
差分方程的稳定性是指当时间步 长趋于无穷大时,差分方程的解 是否收敛到原方程的解。
分类
根据稳定性性质的不同,差分方 程可以分为稳定、不稳定和临界 稳定三种类型。
稳定性判据
判据一
如果对于任意小的正数ε,存在一个正 数δ,使得当|Δt|<δ时,差分方程的 解满足|x(n+1)−x(n)|<ε,则称差分方 程是稳定的。
有限元法的基本思想是将连续的求解区域离 散化为有限个相互连接的子域(即有限元), 并在每个子域上选择合适的基函数进行近似。 通过这种方式,可以将偏微分方程转化为离 散的差分方程,从而进行数值求解。
有限体积法
总结词
有限体积法是一种将偏微分方程离散化为差 分方程的数值方法,通过在每个控制体积上 对微分进行离散近似,将微分方程转化为差 分方程。
数值解法
数值解法是一种通过数值计算方法来求解差分方程的方法。常用的数值解法包括 欧拉பைடு நூலகம்、龙格-库塔法等。
数值解法的优点是适用于各种类型的差分方程,特别是一些难以直接求解的差分 方程。数值解法的精度可以通过增加计算步数来提高。然而,数值解法的计算量 大,需要较高的计算能力。
03 差分方程的稳定性
定义与分类
详细描述
有限差分法的基本思想是将连续的空间离散化为有限个离散点,并利用泰勒级数展开式或其它近似方 法,将微分运算转化为差分运算。通过这种方式,可以将偏微分方程转化为离散的差分方程,从而进 行数值求解。

差分方程

差分方程

yt t ( n) t (t 1)(t 2) (t n 1) ,则
( n)
yt (t 1)
.
t
( n)
(t 1)t (t 1) (t 1 n 1)
t (t 1) (t n 2)(t n 1)
( n 1)
称为一阶常系数线性齐次差分方程,相应地, 一阶常系数线性非齐次差分方程.
1.一阶常系数线性齐次差分方程的通解 一阶常系数线性齐次差分方程的通解可用迭代法求得.
设 y0 已知,将 t 0,1,2, 代入方程
yt 1 Pyt 中,得
3
y1 Py0
y2 Py1 P y0
2
如果差分方程的解中含有相互独立的任意常数的个数恰好 等于方程的阶数,则称这个解是差分方程的通解.
定义4 若差分方程中所含未知函数及未知函数的各阶差分均 为一次,则称该差分方程为线性差分方程. 其一般形式为
yt n a1 (t ) yt n 1 an1(t ) yt 1 an (t ) yt f (t )
2.一阶常系数线性非齐次差分方程的通解
定理 设
yt
为齐次方程的通解,
yt 为非齐次方程的一个
*
特解,则
yt yt yt* 为非齐次方程的通解.
y t 1 P y t 0
* * 证明 由题设,有 yt 1 Pyt f (t ) ,及
将这两式相加得 ( y t 1 yt*1 ) P ( y t yt* ) f (t ) ,即
1 3 yt 3( )t 在初始条件 2 2
y0 5
解 这里
1 3 P , C 3, b 2 2

第章差分方程

第章差分方程

xt iti i0
其中,t 为常数(某些可取零),序列 t 不是 yt 的函数。
于是,可以认为 { t }只不过是一个未取定外生变量的序列。
令 0 1, 1 2 0 ,则得到自回归方程
yt a0 a1 yt1 a2 yt2 an ytn t
令 n 1, a0 0, a1 1 ,则得到随机游走模型
考虑初始条件 y0已知的一阶差分方程
a. 向前迭代
yt a0 a1 yt1 t
y1 a0 a1 y0 1
(1.17)
y2 a0 a1 y1 2 a0 a1(a0 a1 y0 1) 2 a0 a0a1 a12 y0 a11 2
y3 a0 a1 y2 3 a0 a1(a0 a0a1 a12 y0 a11 2 ) 3
类似地,可以定义 n 阶差分 (n )。
记号: 为了方便,通常将整个序列 {, yt2 , yt1, yt , yt1, yt2 ,} 表示成 {yt}。
II. 差分方程的形式
考虑 n 阶常系数线性差分方程,其一般形式可以表 示为
n
yt a0 ai yti xt i1
(1.10)
其中,xt 项称为推动过程,其形式非常广泛,可以是时 间、其它变量的当期值或滞后值,和(或)随机干扰项 的任一函数。{xt} 的一个重要特例是
究时间序列的一个重要方法。
III. 差分方程的解
差分方程的解是将未知项 yt 表示为序列{xt}中的元素和t (也可以和序列 { yt }的一些给定值,即初始条件)的一 个已知函数,使得代入到差分方程之中,满足方程式。
例1: yt 2 或 yt yt1 2
易知,yt 2t c 是该差分方程的解。这里,c为任意 常数。因此,其解有很多或不唯一。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i =0 t -1
为方程的特解 .
yA(t)=(-a)ty0为 对应的齐次方程 的通解.


1 求差分方程 yt 1 - yt = 2 t 的 通 解 . 2 1 a = , f (t ) = 2t 2
t -1 1 i t - i -1 1 i -i t -1 yt = ( ) 2 = 2 ( ) 2 i =0 2 i =0 2 1 t 1- ( ) t -1 1 1 1 t -1 2 t t -1 i t -1 4 = 2 ( ) = 2 = ( ) ( 2 - 1) 1 3 2 i =0 4 14 t -1
acos(t+1)+bsin(t+1)+aacost+absint =b1cos t+b2sint, (acos+bsin +aa)cost+(-asin +bcos +ab)sint =b1cost+b2sint
(acos+bsin +aa)cost+(-asin +bcos +ab)sint =b1cost+b2sint 上式对t=0,1,2,…恒成立的充分必要条件是
第三节 一阶常系数齐次线性差分方程
1、迭代法

例 求差分方程
的通解。

例 求差分方程
的通解。
2、特征根法

设(2)有
类型的解,代入(2)得
因为 ,所以 (3) 称方程(3)为方程(2)的特征方程,而 为特征方程的根。于是 是齐次方程(2)的一个解,所以齐次方程 (2)的通解为 (C为任意常数)
yt = A 2t - 5, A为任意常数 .情形Ⅱ f(x)为Fra bibliotek项式函数

具有 Q x 的特解。其中 P n x 是与 n 同次的待定多 项式,k的值如下确定: (1)若1不是特征方程的根,k=0; (2)若1是特征方程的根,k=1

情形Ⅲ f(t)为指数函数 不妨设f(t)=b· dt, b,d均为非零常数,方程变为 yt+1+ayt=b· dt, t=0,1,2,…. 当a+d≠0时,设方程有特解 = ytdt, 为待定系数.将其代 入方程得 dt+1+adt=b· dt, 求得特解
cos1 - 2 sin1 a= ,b = 5 - 4 cos1 5 - 4 cos1
所给方程的通解为
2 - cos1 sin1 yt = A 2 cos t sint 5 - 4 cos1 5 - 4 cos1
t
b yt = dt ad
当a+d=0时 ,改设方程的特解 yt =tdt,为待定系数 ,将 其代入方程可求得特解
yt =btdt
方程的通解为
b t A( - a ) d t , a d 0, yt = y A yt = ad t t A ( a ) btd , a d = 0.
= 2kπ, = 2k 1π, 或 (k为整数 ) a = -1. a = 1.
改设特解 yt = t (a cost b sint ),a , b 为待定系数 .
代入方程并整理可得
a = b1 , a = -b1 , 或 b = b2 b = -b2 .
方程的通解为
A( - a ) t a cost b sint , D 0, A t (b1 cos 2kπt b2 sin2kπt ), = 2kπ, a = -1, yt = t A ( 1 ) - t b1 cos(2k 1)πt b2 sin( 2k 1)πt , = ( 2k 1)π, a = 1.

求差分方程 yt 1 - yt = 2t 的通解 .
a = -1, b = 1, d = 2, a d = 1 0

yt = A 2t , A为任意常数 .
情形Ⅳ f(t)为正弦、余弦型三角函数
设 f(t)=b1cost+b2sint, 其中 b1,b2, 均为常数 , 且 ≠0,b1与b2不同时为零.于是非齐次方程变为 yt+1+ayt=b1cost+b2sint,a≠0, t=0,1,2,…. 设方程有特解 yt=acost+bsint,a,b均为待定系数. 将其代入方程得

例 求方程 的特解。
满足初始条件
第四节 一阶常系数非齐次线性差分方程
由数学归纳法,可得
yt=(-a)ty0+(-a)t-1f(0)+(-a)t-2f(1)+…+f(t-1)
=(-a)ty0+ yt , (t=0,1,2,…),
其 中 yt = ( - a )t -1 f (0) ( - a )t - 2 f (1) f ( t - 1) = ( - a )i f ( t - i - 1)
方程的通解
1 t 1 1 t -1 2 t 1 t 1 t 1 yt = A( ) ( ) ( 2 - 1) = A ( ) 2 2 3 2 2 3 2 A = A- 为任意常数 . 3
2.待定系数法求特解
情形Ⅰ f(t)为常数. 方程变为yt+1+ayt=b, a,b均为非零常数. 试以 yt = (为待定常数)形式的特解代入方程得 +a =(1+a) =b. b 当a≠-1时,可求得特解 y t = 1 a 当a=-1时,改设特解 yt = t (为待定系数),将其代 入方程得 (t+1)+a t=(1+a) t+ =b
(a cos )a sin b = b1 , - sin a (a cos )b = b2 .
其系数行列式
a cos sin D= = (a cos )2 sin2 - sin a cos
当D≠0时,则可求得其解
1 a = D b1 (a cos ) - b2 si n , 1 b = b2 (a cos ) b1 si n ; D 当D=(a+cos)2+sin2=0时,则有
求得特解 yt = bt
方程的通解为
b t , a -1 A( - a ) yt = y A ( t ) yt = 1 a a = -1 A bt, 其 中A为 任 意 常 数 .
例 解
求差分方程 yt 1 - 2 yt = 5的通解 .
a = -2 -1, b = 5
差分方程
2012年8月
第一节
数列的差分
一. 数列的概念 二. 数列差分的概念
一. 数列的概念
一个数列就是实数的任何(有限或无限的) 有序集. 这些数称为数列的项或元素.

第二节
差分方程的概念
1、差分方程
定义 含有自变量、未知函数及其差分的方程,
称为差分方程.
例 求差分方程yt+1-2yt=cost的通解.
解 对应齐次方程的通解为 yA(t)=A· 2t. 设非齐次方程的特解为 yt =acost+bsint,
其中a, b为待定系数.
将其代入原方程,并利用三角函数的和角公式,得
a (cos1 - 2) b sin1 = 1, - a sin1 b (cos1 - 2) = 0.
2、差分方程的阶 定义
3、差分方程的解
如果差分方程的解中含有相互独立的任意常 数的个数等于方程的阶数,则称这样的解为 差分方程的通解。 往往要根据动态系统在初始时刻所处的状态, 对差分方程附加一定的条件,这种附加条件 称为初始条件。 由初始条件确定了任意常数的解称为特解。
4、常系数线性差分方程解的结构
相关文档
最新文档