第六章向量代数与空间解析几何(424).

第六章向量代数与空间解析几何(424).
第六章向量代数与空间解析几何(424).

、选择题第六章向量代数与空间解析几何

习题A

1、向量a与三坐标轴的夹角分别为,则);

A cos cos cos 1

B cos2cos2cos2

C cos2cos2cos2 f 2

D cos 2

cos 2

CO

S

2、两个非零向量a和b平行,则

();

r r r

A其必要条件是a b 0 其必要条件是

r r

C充分必要条件是a b 0D充分必要条件是

3、设a,b为非零向量,且满足

r

(a

r

3b) (7; 5b)

r

,(a

r

4b)

r

(7 a

2b),则

r r

a,b的夹角

4、平面x 2y 5 0的位置是)

A平行Z轴B 通过Z轴垂直Z轴D 平行XOY平面5、过点 A 3,0,2 ,B 4,1,6 且平行于Y轴的平面的法向量n ();

1,1,4

0,1, 1 1,1,

4

1,0,0 C 1,1,4 0,1,0 D 1,1,4 0,0,

1

6、向量a 1,1, 2,0, 2,则同时垂直a及b的单位向量为();

2,0,

b a 2,0,2

2,0, 2,0, 2

7、过点M 1,0,3且与两平面 1 :X

2 y 2z 1 0都平行的直线方程为

2y z 1 0 ()

A g -

3

c y

3 1 B 3X1 1y D - 3X 1

1

8、平面X 2y 5 0的位置是)

平行Z轴 B 通过 C 垂直z轴9、过点 A 3,0,2 ,B 4,1,6且平行于丫轴的平面的法向量

10

1

2

3

4

5

6

7

9

平行XOY平面

1,1,4

0,1,

1

1,1,4

0,1,

曲面X2 4y2 z24与平面X

(a z)24y2

X 0

(a z)24y2

X 0

、填空题

平行于向量a 3i

B 1,1,4

D 1,1,4

z a的交线在

1,0,0

0,0,

1

yOz上的投影方程是(

X2

r

4j 点P 3, 1,6到平面X 5k的单位向量2y 2z 1

设平面X 2y Kz 6与平面Mx 过点M 1,2,0与平面3x y 2z

B (a X)24y2

z 0

X2 4

z)2 4y2z2 4

0的距离为

4y z 2平行,则K

7 0垂直的直线方程

xoy平面上的曲线X2 3y25绕x轴旋转一周形成的旋转曲面方程为

直线过点平面方程

义三卫与平面X y z 7 0的位置关系为

2 1

3 -

X 1 y 1 z 2

M 1,2, 2且与直线一!丿一垂直的平面方程为

2 3 1

xoy上的曲线y2z 2绕轴旋转一周而成的旋转面方程为

X2 4 y 1 20表示

r r

10、由a 1,2,3 ,b 1,2,4为邻边组成的平行四边形的面积

三、计算题

r

1、设a 3, b 5,试确定k使a

r r

kb垂直于a

r

kb

2、已知向量a,b,c两两相互垂直,且

r

1,b 2, C 3,求

3、

4、

5、

6、

7、(1) b ; ( 2)向量d

求过点M 1, 1,2且与平面

2 : 2x y z 3。

c的模及

2都垂直的平面,其中

求过点M 2,1,5且与oy轴平行的直线方程。

判别下列线一线、线一面、面一面的位置关系:

(1)

(2)

过点

d分别与a,b,C的夹角余弦。

2y

x 1

~T

~

x 1

3

y 2

1

y 2

1

z 3

""F

z 3

4

2x 3x

M 3,10, 5

求与平面:x y

四、解答题

已知一球面x2 y2,N 0,12,c的直线平行于平面x4y z 0,试求N的坐标。3z 1 0平行且相距为3的平面方程。

2x 4y 6z 0与一通过球心且与直线垂直的平面

y z 0

相交,试求它们的交线在xoy坐标平面上的投影方

程。

五、证明题

r

已知a 3,

r

2, a

习题B

」、选择题

ir

1、已知a =2,r J—r r

b =J2, ago 2,则)

B 2^2

2

2

x

1

2、二次曲面z

笃与平面z h 相截, b 其截痕是空间中的

()

A 抛物线

B 双曲线

C 椭圆

直线

3、直线L 1 : x

2y

间的夹角为

);

4、设有三向量 B —

4

r r r b 、c 满足关系a

1, 2,1点关于原点对称点是 1,2, 1

B 1,

2,

、向量a 与三坐标轴的夹角分别为

A cos cos cos 1 C cos 2

cos 2

cos 2

、两个非零向量a 和b 平行,则

A 其必要条件是a b 0 C 充分必要条件是

a b

r

0时必有

);

);

1,

2, 1,2,1

,则

2

cos 2

cos 2 );

2

cos 2

2

cos 2

cos 2

cos 2

其必要条件是a

充分必要条件是

r

、向量a,b,c 两两垂直,且

);

12 22 32

14

32

9、方程x 2

4

1表示

);

A 旋转双曲面

双叶双曲面

C 双曲柱面

D 锥面 10、设直线L 为

3y 2x

2z 1

0,平面:4x 2y z

10z 3 0

2 0 ,则(

二、填空题

1、设 A 1,2,3 ,B 0,1,4 ,C 1,1, 1,则

r r r r r 2、设a, b,c 均为单位向量,且有a b

3、 直线 ZJ y 乞卫与平面x y z 7

0的位置关系为

2 1 3

4、 过点M 1,2, 2且与直线「 匕」

J 2垂直的平面方程为

2

3

1

三、计算题

已知直线L : 2y 3z 5

,求该直线在

x 2y z 7 0

程。

5 0 ,且与三坐标面构成的四面体体积为

1的平面。

A L 平行于

B L 在上

C L 垂直于

D L 与斜交

1、 在xoy 平面上求一向量 b ,使它垂直于向量a

12, 3, 4且与a 有相同模。

2、

求过点B 2,4,0 , P 2 0,1,4 且与点 M 1,2,1 距离为1的平面方程。

4、 求直线 -—3 —__2 z 与平面 x 2y

3 2

2z 6的交点与夹

角。

5、 求过点 3,2,5且与两平面 x 4z 3

0和2x y 5z 1 0的交线平行的直线方

x 4z 3 0 7、求过直线

2x y 5z 1

0且与平面:x 2y z 1

垂直的平面方程。

uuu

LU

r r r r r r r r

c 0,贝U a b b c c a

2

x

5、曲线

x

y 1

在xoz 平面上的投影曲线方程

z 5 6、设 A 1,2,3 ,B 0,1,4 ,C 1,1, r r

,贝U AB 2AC

7、设a,b,c 均为单位向量且有

r

c o ,则 a b

r

2, b 3,a

与平面

:2x y z 1 0的夹角

10、xoy 平面上的曲线

2

y 1绕x 轴旋转一周形成的曲面方程

yoz 平面上的投影方程。

3、

6、求平行于平面2x y 2z

四、解答题

已知两直线L 1 : x "~2 屮2:

晋z ,求与

L i

L 2均垂直相交的直线方

程。 五、证明题 r r r r a b a b 证明: o

习题A 答案:

、选择题

1、C ;

2、D; C ; 4、 A ; 5、C ; 6、C ; 7、A ; 8、A ; C; 10、A

、填空题 1 a ——3, 4,5 ; 2、亠;3、 10 3 4、 x 1 y 2 z _ 2c :

y ; 5、x 3 y

3 1 2 7、 2x 3y z 10 0; 8、x 2 y 2 2 z M 2.K z 2

三、计算题 5 ;6、 1、 k J l4 ;

; 5、平行、

0 平行、垂直;

3z 1 0。 四、

解答题:

x 2 2y 2 2x 8y 0 五、

提示:

证明题 r r,

l a b

平行; ;9、两张平面; 6、 0,12,

10、

10

r 2

r r r

2

r 2

r

r a

2a b b

a

2 a

b

r cos

a

r

b

3y 5z y 3z

14 0 ;

4、

习题B 答案

一、选择题: 1、A ; 2、A ; 3、C; 4、D 5 二、填空题: 1、 1,1,9 ;2、 3 ;3、平行; 2

6 、 1,1,9 ;7、 3 ;8、 12; 9、

2 三、计算题: 1、 ¥ 0, 4,

3 5 2、 x 2y 2z

2y 3z 5 0

. 4、M 36,

3、

x 0

5、 x 3 y 2 z 5 4

3

1 ;

6 、2x y

2z 2^3

0 ;或 2x 四、解答题: x 2y 5z 8 0

X y z 1 0

28,13 ;

2z y 五、 、A ; 6、C; 4、2x 3y arcsin 提示:

证明题: i a b

7、D; z 10 8、C; 376 ; 10

、x 2 10 0 ;或 4y 3z 16 arcsinj 3J14

9 A; 10

C

z 2

2^3

0。7、5x 3y 11z

r 2 r r r 2 r 2

r r a 2a b b

a

2 a

b

r r cos a

b r r a b

空间解析几何与向量代数论文

空间解析几何与向量代数 呼伦贝尔学院 计算机科学与技术学院 服务外包一班 2013级 2014.5.4 小组成员: 宋宝文 柏杨白鸽 李强白坤龙

空间解析几何与向量代数 摘要:深入了解空间解析几何与向量代数的概念,一一讲述他们的区别和用途。向量的集中加减乘法和运算规律,还有空间直线与平面的关系。 关键词:向量;向量代数;空间几何 第一部分:向量代数 第一节:向量 一.向量的概念: 向量:既有大小,又有方向的量成为向量(又称矢量)。 表示法:有向线段a 或a 。 向量的模:向量的打小,记作|a |。 向径(矢径):起点为原点的向量。 自由向量:与起点无关的向量。 单位向量:模为1的向量。 零向量:模为0的向量,记作.0或0 若向量a 与b 大小相等,方向相同,则称a 与b 相等,记作a =b ; 若向量a 与b 方向相同或相反,则称a 与b 平行,记作a //b 规定:零向量与任何向量平行;与a 的模相同,但方向相反的向量称为a 的负向量, 记作-a ;因平行向量可平移到同一直线上,故两向量平行又称两向量共线。若K 3 个向量经平移可移到同一平面上,则称此K 个向量共面。 二.向量的线性运算 1.向量的加法 平行四边形法则: b a +b a 三角形法则: a + b b

a 运算规律:交换律a + b =b +a a 与b 结合律:(a +b )+c =a +(b +c ) 三角形法则可推广到多个向量相加。 2.向量的减法 b -a =b +(a ) a b -a b b -a a 特别当b =a 时,有a -a =a (a )=0 ; 三角不等式:|b +a |; |a -b |; 3.向量与数的乘法是一个数,与a 的乘积是一个新向量,记作a 。 规定: a 与a 同向时,|a |=|a |; 总之:|a | | |a | 三.向量的模、方向角 1.向量的模与两点间的距离公式 设r (x,y,z ),作om r ,则有r op oq or R Z Q O Y P X 由勾股定理得: |r | |OM| B A 对两点A ()与B ()因AB OB OA () 得两点间的距离公式: |AB| |AB | 第二节:数量积 向量积

第六章-空间解析几何要求与练习(含答案)

第六章 要求与练习 一、学习要求 1、理解空间直角坐标系,理解向量的概念及其表示. 2、掌握向量的运算(线性运算、数量积、向量积),两个向量垂直、平行的条件.掌握单位向量、方向数与方向余弦、向量的坐标表达式,以及用坐标表达式进行向量运算的方法. 3、掌握平面方程和直线方程及其求法,会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题. 7、了解空间曲线在坐标平面上的投影,会求其方程. 二、练习 1、一向量起点为A (2,-2,5),终点为B (-1,6,7),求 (1)AB 分别在x 轴、y 轴上的投影,以及在z 轴上的分向量; (2)AB 的模;(3)AB 的方向余弦;(4)AB 方向上的单位向量. 解:(1)()3,8,2AB =-,AB 分别在x 轴的投影为-3,在y 轴上的投影为8,在z 轴上的 分向量2k ;(2)AB = ;(3)AB ; (4)AB 382) i j k -++. 2、设向量a 和b 夹角为60o ,且||5a =,||8b =,求||a b +,||a b -. 解:()2 220||||||2||||cos60a b a b a b a b += +=++= ( ) 2 220||||||2||||cos60a b a b a b a b -= -=+-=7. 3、已知向量{2,2,1}a =,{8,4,1}b =-,求 (1)平行于向量a 的单位向量; (2)向量b 的方向余弦. 解(1)2223a = +=平行于向量a 的单位向量221 {,,}333±; (2)2849b =+=,向量b 的方向余弦为:841,,999 -. 4、一向量的终点为B (2,-1,7),该向量在三个坐标轴上的投影依次为4、-4和7.求该向量的起点A 的坐标. 解:AB =(4,-4,7)=(2,-1,7)-(x ,y ,z),所以(x ,y ,z)=(-2,3,0); 5、已知{2,2,1}a =-,{3,2,2}b =,求 (1)垂直于a 和b 的单位向量; (2)向量a 在b 上的投影;

§ 7 空间解析几何与向量代数习题与答案

第七章 空间解析几何与向量代数 A 一、 1、 平行于向量)6,7,6(-=a 的单位向量为______________. 2、 设已知两点)2,0,3()1,2,4(21M M 和,计算向量21M M 的模,方向余弦和方向角. 3、 设k j i p k j i n k j i m 45,742,853-+=--=++=,求向量p n m a -+=34在x 轴 上的投影,及在y 轴上的分向量. 二、 1、设k j i b k j i a -+=--=2,23,求(1)b a b a b a b a 23)2)(2(??-??及;及(3)a 、b 的夹角的余弦. 2、知)3,1,3(),1,3,3(),2,1,1(321M M M -,求与3221,M M M M 同时垂直的单位向量.

3、设)4,1,2(),2,5,3(=-=b a ,问μλ与满足_________时,轴z b a ⊥+μλ. 三、 1、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________. 2、方程0242222=++-++z y x z y x 表示______________曲面. 3、1)将xOy 坐标面上的x y 22=绕x 轴旋转一周,生成的曲面方程为 __ _____________,曲面名称为___________________. 2)将xOy 坐标面上的x y x 222=+绕x 轴旋转一周,生成的曲面方程 _____________,曲面名称为___________________. 3)将xOy 坐标面上的369422=-y x 绕x 轴及y 轴旋转一周,生成的曲面方 程为_____________,曲面名称为_____________________. 4)在平面解析几何中2 x y =表示____________图形。在空间解析几何中 2x y =表示______________图形. 5)画出下列方程所表示的曲面 (1))(42 2 2 y x z += (2))(42 2 y x z += 四、

空间解析几何和向量代数总结

第八章空间解析几何和 向量代数总结 向量的概念 向量的线性运算 空间直角坐标系(右手系)向量的坐标 坐标形式的向量的线性运算(8—1,19) 方向角与方向余弦(8—1,15) 向量的数量积、向量积、混合积 (8—2,1、3、6、10; 总习题八,1(3)、(4))

应用:判断向量正交、 平行(共线)、 计算平行四边形面 积、 一向量在另一向量的投影。 曲面 曲面的概念 (),,0F x y z =, ()(){}:,,,,0x y z F x y z ∑=建立曲面方程 (P23,例1、P24,例2,8—3,2、3)

旋转曲面(8—3,7、10) 坐标面上的曲线饶一坐标轴旋转一周的旋转曲面方程 (),00f x y z ?=?=?绕x 轴旋转一周得到的旋转曲面 为(,0f x =; (),00f x y z ?=?=?绕y 轴旋转一周得到的旋转曲面 为()0 f y =;

(),00f y z x ?=?=?绕y 轴旋转一周得到的旋转曲面 为(,0f y =; (),00f y z x ?=?=?绕z 轴旋转一周得到的旋转曲面 为()0f z =; (),00f x z y ?=?=?绕x 轴旋转一周得到的旋转曲面为

(,0f x =; (),00f x z y ?=?=?绕z 轴旋转一周得到的旋转曲面 为() 0f z =。 空间曲线及其方程 空间曲线的一般方程 ()(),,0,,0F x y z G x y z =???=?? 参数方程(P33,例3)

()()()x t y t z t αβγ=??=??=? 空间曲线在坐标面的投影(P36,例4、例5、8—4,4) 平面及其方程 建立平面方程:点法式、一般式、截距式、三点式(8—5,1、2、3、6) 平面与平面的夹角(锐角)(8—5,5) 点的平面的距离(8—5,9)

第六章 空间解析几何要求与练习(含答案)

第六章要求与练习 一、学习要求 1、理解空间直角坐标系,理解向量的概念及其表示. 2、掌握向量的运算(线性运算、数量积、向量积),两个向量垂直、平行的条件.掌握单位向量、方向数与方向余弦、向量的坐标表达式,以及用坐标表达式进行向量运算的方法. (平7 1 (1 (2AB的模;)AB方向上的单位向量 解:1)AB=,AB分别在轴的投影为-3,在8,在z 轴上的分向量2k;(2)AB=77 (4)AB方向上的单位向量12)k. 2、设向量a和b夹角为5=,||8 b=,求| 解:()2220 +=+=++=129, a b a b a b a b ||||||2||||cos60 ()2220 a b a b a b a b -=-=+-=7. ||||||2||||cos60 3、已知向量{2,2,1} b=-,求 a=,{8,4,1} (1)平行于向量a的单位向量;(2)向量b的方向余弦. 解(1)2223 a=+=平行于向量a的单位向量221 ±; {,,} 333 (2)2849 b=+=,向量b的方向余弦为:841 -. ,, 999

4、一向量的终点为B (2,-1,7),该向量在三个坐标轴上的投影依次为4、-4和7.求该向量的起点A 的坐标. 解:AB =(4,-4,7)=(2,-1,7)-(x ,y ,z),所以(x ,y ,z)=(-2,3,0); 5、已知{2,2,1}a =-,{3,2,2}b =,求 (1)垂直于a 和b 的单位向量;(2)向量a 在b 上的投影; (3解()()6,1,10,137c a b c =?=--=, (2()4 cos ,17 a b a b a b ?==?; (3() sin ,137a b a b a b ?=?=() 4 ,1751 a b = 60b c +=,||3a =,||2b =,||4c =,求a b b c c a ++. 解:( ) 2 22220a b c a b c a b b c c a ++=+++++=,所以a b b c c a ++=29/2-7、求参数k ,使得平面29x ky z +-=分别适合下列条件: (1(3解:8解:设平面方程为:0Ax By D ++=,将(1,5,1)P -和(3,2,1)Q -代入求得1,1, 2.A B D ===-该平面方程为:20x z +-=. 9、已知平面过(0,0,0)O 、(1,0,1)A 、(2,1,0)B 三点,求该平面方程. 解:设平面方程为:0Ax By Cz ++=,将(1,0,1)A 、(2,1,0)B 代入平面方程得, 1,2,1,A B C ==-=-,该平面方程为20x y z --=.

空间解析几何与向量代数习题

第七章 空间解析几何与向量代数习题 (一)选择题 1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 AB 的模是:( ) A )5 B ) 3 C ) 6 D )9 2. 设a ={1,-1,3}, b ={2,-1,2},求c =3a -2b 是:( ) A ){-1,1,5}. B ) {-1,-1,5}. C ) {1,-1,5}. D ){-1,-1,6}. 3. 设a ={1,-1,3}, b ={2,-1,2},求用标准基i , j , k 表示向量c ; A )-i -2j +5k B )-i -j +3k C )-i -j +5k D )-2i -j +5k 4. 求两平面032=--+z y x 和052=+++z y x 的夹角是:( ) A )2 π B )4 π C )3 π D )π 5. 一质点在力F =3i +4j +5k 的作用下,从点A (1,2,0)移动到点B (3, 2,-1),求力F 所作的功是:( ) A )5焦耳 B )10焦耳 C )3焦耳 D )9焦耳 6. 已知空间三点M (1,1,1)、A (2,2,1)和B (2,1,2),求∠AMB 是:( ) A )2 π B )4 π C )3 π D )π 7. 求点)10,1,2(-M 到直线L :12 21 3+=-=z y x 的距离是:( ) A )138 B 118 C )158 D )1 8. 设,23,a i k b i j k =-=++ 求a b ? 是:( ) A )-i -2j +5k B )-i -j +3k C )-i -j +5k D )3i -3j +3k 9. 设⊿ABC 的顶点为(3,0,2),(5,3,1),(0,1,3)A B C -,求三角形的面积是:( ) A ) 3 62 B ) 3 64 C )3 2 D )3 10. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程.是:( ) A )2x+3y=5=0 B )x-y+1=0

第4章 向量代数与空间解析几何练习题

第4章 向量代数与空间解析几何练习题 习题4.1 一、选择题 1.将平行于同一平面的所有单位向量的起点移到同一点, 则这些向量的终点构成的图形是( ) (A )直线; (B ) 线段; (C ) 圆; (D ) 球. 2.下列叙述中不是两个向量a 与b 平行的充要条件的是( ) (A )a 与b 的内积等于零; (B )a 与b 的外积等于零; (C )对任意向量c 有混合积0)(=abc ; (D )a 与b 的坐标对应成比例. 3.设向量a 的坐标为 31 3 , 则下列叙述中错误的是( ) (A )向量a 的终点坐标为),,(z y x ; (B )若O 为原点,且a =, 则点A 的坐标为),,(z y x ; (C )向量a 的模长为2 22z y x ++;(D ) 向量)2/,2/,2/(z y x 与a 平行. 4.行列式2 13132 3 21的值为( ) (A ) 0 ; (B ) 1 ; (C ) 18 ; (D ) 18-. 5.对任意向量a 与b , 下列表达式中错误的是( ) (A )||||a a -=; (B )||||||b a b a +>+; (C ) ||||||b a b a ?≥?; (D ) ||||||b a b a ?≥?. 二、填空题 1.设在平行四边形ABCD 中,边BC 和CD 的中点分别为M 和N ,且p =,q =,则 BC =_______________,CD =__________________. 2.已知ABC ?三顶点的坐标分别为A(0,0,2),B(8,0,0),C(0,8,6),则边BC 上的中线长为______________________. 3.空间中一动点移动时与点)0,0,2(A 和点)0,0,8(B 的距离相等, 则该点的轨迹方程是_______________________________________. 4.设力k j i F 532++=, 则F 将一个质点从)3,1,0(A 移到)1,6,3(,B 所做的功为____________________________. 5.已知)2,5,3(A , )4,7,1(B , )0,8,2(C , 则=?_____________________; =?____________________;ABC ?的面积为_________________. 三、计算题与证明题 1.已知1||=a , 4||=b , 5||=c , 并且0=++c b a . 计算a c c b b a ?+?+?.

空间解析几何与向量代数

空间解析几何与向量代 数 -CAL-FENGHAI.-(YICAI)-Company One1

第八章 空间解析几何与向量代数 一、 选择题 1.设}.4,,1{},2,3,{y b x a -== 若b a //,则 B (A )、x= y=6 (B)、x= y=6 (C)、x=1 y=-7 (D)、x=-1 y=-3 2.平面x -2z = 0的位置是 D 。 (A)、平行XOZ坐标面。 (B)、平行OY轴 (C)、垂直于OY轴 (D)、通过OY轴 3.下列平面中通过坐标原点的平面是 C 。 (A)、x=1 (B)、x+2z+3y+4=0 (C)、3(x-1)-y+(y+3)=0 (D)、x+y+z=1 4.已知二平面π1:mx+y-3z+1=0与π2:7x-2y-z=0当m = B π1⊥π2。 (A)、1/7 (B)、-1/7 (C)、7 (D)、-7 5.二平面π1:x + y - 11=0, π2: 3x +8=0的夹角θ= C 。 (A)、2 π (B)、π/3 (C)、π/4 (D)、π/6 6.下列直线中平行与XOY 坐标面的是 D 。 (A )233211+=+=-z y x (C )1 0101z y x =-=+ (B ){04404=--=--y x z x (D )?? ???==+=4321z t y t x 7.直线L 1:{7272=-+=++-z y x z y x 与L 2:{836302=-+=--z y x z y x 的关系是 B 。 (A )、L 1⊥L 2 (B )、L 1点P(1,2,1)到平面x+2y+2z-10=0的距离是 1 。 2.当l = -4 ,及m= 3 时,二平面2x+my+3z-5=0与l x-6y-6z+2=0互相平行。 3.过点P(4,-1,3)且平行于直线 51232-==-z y x 的直线方程 为 5 32/1134-=+=-z y x 。 三、计算题 1· 求过点(3 0 1)且与平面3x 7y 5z 120平行的平面方程 解 所求平面的法线向量为n (3 7 5) 所求平面的方程为 3(x 3)7(y 0)5(z 1)0 即3x 7y 5z 40 2. 求过点(2 3 0)且以n (1 2 3)为法线向量的平面的方程 解 根据平面的点法式方程 得所求平面的方程为

第六章向量代数与空间解析几何(424).

、选择题第六章向量代数与空间解析几何 习题A 1、向量a与三坐标轴的夹角分别为,则); A cos cos cos 1 B cos2cos2cos2 C cos2cos2cos2 f 2 D cos 2 cos 2 CO S 2、两个非零向量a和b平行,则 (); r r r A其必要条件是a b 0 其必要条件是 r r C充分必要条件是a b 0D充分必要条件是 3、设a,b为非零向量,且满足 r (a r 3b) (7; 5b) r ,(a r 4b) r (7 a 2b),则 r r a,b的夹角 4、平面x 2y 5 0的位置是) ; A平行Z轴B 通过Z轴垂直Z轴D 平行XOY平面5、过点 A 3,0,2 ,B 4,1,6 且平行于Y轴的平面的法向量n (); 1,1,4 0,1, 1 1,1, 4 1,0,0 C 1,1,4 0,1,0 D 1,1,4 0,0, 1 6、向量a 1,1, 2,0, 2,则同时垂直a及b的单位向量为(); 2,0, b a 2,0,2 2,0, 2,0, 2

7、过点M 1,0,3且与两平面 1 :X 2 y 2z 1 0都平行的直线方程为 2y z 1 0 () ; A g - 3 c y 3 1 B 3X1 1y D - 3X 1 1 8、平面X 2y 5 0的位置是) ; 平行Z轴 B 通过 C 垂直z轴9、过点 A 3,0,2 ,B 4,1,6且平行于丫轴的平面的法向量 10 、 1 、 2 、 3 、 4 、 5 、 6 、 7 、 9 、 平行XOY平面 ) ; 1,1,4 0,1, 1 1,1,4 0,1, 曲面X2 4y2 z24与平面X (a z)24y2 X 0 (a z)24y2 X 0 、填空题 平行于向量a 3i B 1,1,4 D 1,1,4 z a的交线在 1,0,0 0,0, 1 yOz上的投影方程是( X2 r 4j 点P 3, 1,6到平面X 5k的单位向量2y 2z 1 设平面X 2y Kz 6与平面Mx 过点M 1,2,0与平面3x y 2z B (a X)24y2 z 0 X2 4 z)2 4y2z2 4 0的距离为 4y z 2平行,则K 7 0垂直的直线方程 xoy平面上的曲线X2 3y25绕x轴旋转一周形成的旋转曲面方程为 直线过点平面方程 义三卫与平面X y z 7 0的位置关系为 2 1 3 - X 1 y 1 z 2 M 1,2, 2且与直线一!丿一垂直的平面方程为 2 3 1 xoy上的曲线y2z 2绕轴旋转一周而成的旋转面方程为 X2 4 y 1 20表示

空间解析几何与向量代数

第八章 空间解析几何与向量代数 一、选择题 1.设}.4,,1{},2,3,{y b x a -==??若b a ??//,则 B (A )、x=0.5 y=6 (B)、x=-0.5 y=6 (C)、x=1 y=-7 (D)、x=-1 y=-3 2.平面x -2z = 0的位置是 D 。 (A)、平行XOZ坐标面。 (B)、平行OY轴 (C)、垂直于OY轴 (D)、通过OY轴 3.下列平面中通过坐标原点的平面是 C 。 (A)、x=1 (B)、x+2z+3y+4=0 (C)、3(x-1)-y+(y+3)=0 (D)、x+y+z=1 4.已知二平面π1:mx+y-3z+1=0与π2:7x-2y-z=0当m = B π1⊥π2。 (A)、1/7 (B)、-1/7 (C)、7 (D)、-7 5.二平面π1:x + y - 11=0, π2: 3x +8=0的夹角θ= C 。 (A)、2 π (B)、π/3 (C)、π/4 (D)、π/6 6.下列直线中平行与XOY 坐标面的是 D 。 (A )233211+=+=-z y x (C )1 0101z y x =-=+ (B ){ 4404=--=--y x z x (D )?????==+=4321z t y t x 7.直线L 1:{7272=-+=++-z y x z y x 与L 2:{836302=-+=--z y x z y x 的关系是 B 。 (A )、L 1⊥L 2 (B )、L 1//L 2 (C )、L 1与L 2相交但不垂直。(D )、L 1与L 2为异面直线。 二、填空题 1. 点P(1,2,1)到平面x+2y+2z-10=0的距离是 1 。 2.当l = -4 ,及m= 3 时,二平面2x+my+3z-5=0与l x-6y-6z+2=0互相平行。 3.过点P(4,-1,3)且平行于直线 51232-==-z y x 的直线方程 为 5 32/1134-=+=-z y x 。 三、计算题 1· 求过点(3, 0, -1)且与平面3x -7y +5z -12=0平行的平面方程. 解 所求平面的法线向量为n =(3, -7, 5), 所求平面的方程为 3(x -3)-7(y -0)+5(z +1)=0, 即3x -7y +5z -4=0. 2. 求过点(2, -3, 0)且以n =(1, -2, 3)为法线向量的平面的方程. 解 根据平面的点法式方程, 得所求平面的方程为 (x -2)-2(y +3)+3z =0, 即 x -2y +3z -8=0.

空间解析几何与向量代数

第八章 空间解析几何与向量代数 一、 选择题 1.设}.4,,1{},2,3,{y b x a -==??若b a ??//,则B (A )、x=0.5y=6(B)、x=-0.5y=6 (C)、x=1y=-7(D)、x=-1y=-3 2.平面x-2z=0的位置是 D 。 (A)、平行XOZ坐标面。 (B)、平行OY轴 (C)、垂直于OY轴 (D)、通过OY轴 3.下列平面中通过坐标原点的平面是 C 。 (A)、x=1(B)、x+2z+3y+4=0(C)、3(x-1)-y+(y+3)=0(D)、x+y+z=1 4.已知二平面π1:mx+y-3z+1=0与π2:7x-2y-z=0当m = B π1⊥π2。 (A)、1/7 (B)、-1/7 (C)、7 (D)、-7 5.二平面π1:x+y-11=0,π2:3x+8=0的夹角θ= C 。 (A)、2 π (B)、π/3 (C)、π/4 (D)、π/6 6.下列直线中平行与XOY 坐标面的是D 。 (A )233211+=+=-z y x (C )1 0101z y x =-=+ (B ){ 4404=--=--y x z x (D )?????==+=4321z t y t x 7.直线L 1:{7272=-+=++-z y x z y x 与L 2:{836302=-+=--z y x z y x 的关系是B 。 (A )、L 1⊥L 2(B )、L 1//L 2(C )、L 1与L 2相交但不垂直。(D )、L 1与L 2为异面直线。 二、填空题

1.点P(1,2,1)到平面x+2y+2z-10=0的距离是 1 。 2.当l =-4,及m=3时,二平面2x+my+3z-5=0与l x-6y-6z+2=0互相平行。 3.过点P(4,-1,3)且平行于直线 51232-==-z y x 的直线方程 为 5 32/1134-=+=-z y x 。 三、计算题 1·求过点(301)且与平面3x 7y 5z 120平行的平面方程 解所求平面的法线向量为n (375)所求平面的方程为 3(x 3)7(y 0)5(z 1)0即3x 7y 5z 40 2.求过点(230)且以n (123)为法线向量的平面的方程 解根据平面的点法式方程得所求平面的方程为 (x 2)2(y 3)3z 0 即x 2y 3z 80 3·求过三点M 1(214)、M 2(132)和M 3(023)的平面的方程 解我们可以用→→3121M M M M ?作为平面的法线向量n 因为→)6 ,4 ,3(21--=M M →)1 ,3 ,2(31--=M M 所以 根据平面的点法式方程得所求平面的方程为 14(x 2)9(y 1)(z 4)0 即14x 9yz 150 4·求过点(413)且平行于直线51123-==-z y x 的直线方程 解所求直线的方向向量为s (215)所求的直线方程为 5·求过两点M 1(321)和M 2(102)的直线方程 解所求直线的方向向量为s (102)(321)(421)所求的直线方程为

第六章定积分空间解析几何

姓名______________ 学号__________________ 2012级信息计算科学 《高等数学选讲》练习题(5) 第六章 定积分及应用 1.抛物线22y x =把圆22 8x y +≤分成两部分,求这两部分面积之比 2. 求两椭圆22221x y a b +≤,22 221x y b a +≤的公共部分的面积. 3.求三叶玫瑰线sin3r a θ=(a>0)所围成的图形的面积. 4.设由y 轴,2,y x y a ==(01a <<)所围成的平面图形,由y a =,2y x =,1x =所围的平面图形都绕y 轴旋转,所得旋转体的体积相等,则a =_________ 5.一圆锥形水池,池口直径30m ,深20m ,池中盛满了水.试求将全部池水抽出池外需做的功. 6. 求函数1tan ()1tan x f x x -= +在区间[0,]4 π上平均值. 7.计算定积分 221x x e dx e π π-+?. 8.讨论下列反常积分的收敛性: (1) 01m x dx x +∞+? (,0n m ≥) (2)0arctan n x dx x +∞? (3)1201(ln )dx x x ?

第七章 空间解析几何与向量代数 1.设一平面通过原点及(6,-3,2),且与平面420x y z -+=垂直,则此平面方程为_________ 2.设直线L :321021030 x y z x y z +++=??--+=?,及平面π:420x y z -+-=,则直线L ( ) (A )平行于平面π. (B )在平面π上. (C )垂直于平面π. (D )与平面π斜交. 3. 已知A 点和B 点的直角坐标分别为(1,0,0)与(0,1,1).线段AB 绕z 轴一周所成的旋转曲面为S ,求由S 及两平面z=0,z=1所围成立体的体积. 第八章 多元函数微分法及其应用 1.设2(,)u xf x y xy =-,其中f 具有连续的二阶偏导数,求2,u u x x y ?????. 2.设x z xy y =+ ,其中()y y x =是由方程221x y +=所确定的函数,则dz dx = _________ 3.设函数(,)f x y 可微,(0,0)0f =,'(0,0)x f m =,'(0,0)y f n =,()[,(,)]t f t f t t ?=,则 '(0)?=_________. 4.设方程33 3z xyz a -=,求隐函数的偏导数2z x y ???. 5.设(,)z f x y =是二次连续可微函数,又有关系式u x ay =+,v x ay =- (a 是不为零的常数),求2z u v ???

向量代数与空间解析几何教案

第八章 向量代数与空间解析几何 第一节 向量及其线性运算 教学目的:将学生的思维由平面引导到空间,使学生明确学习空间解析几何的意义和目的。使学生对(自由)向量有初步了解,为后继内容的学习打下基础。 教学重点:1.空间直角坐标系的概念 2.空间两点间的距离公式 3.向量的概念 4.向量的运算 教学难点:1.空间思想的建立 2.向量平行与垂直的关系 教学内容: 一、向量的概念 1.向量:既有大小,又有方向的量。在数学上用有向线段来表示向量,其长度表示向量的大小,其方向表示向量的方向。在数学上只研究与起点无关的自由向量(以后简称向量)。 2. 量的表示方法有: a 、i 、F 、OM 等等。 3. 向量相等b a =:如果两个向量大小相等,方向相同,则说(即经过平移后能完全重合的向量)。 4. 量的模:向量的大小,记为a 。 模为1的向量叫单位向量、模为零的向量叫零向量。零向量的方向是任意的。 5. 量平行b a //:两个非零向量如果它们的方向相同或相反。零向量与如何向量都平行。 6. 负向量:大小相等但方向相反的向量,记为a - 二、向量的线性运算 1.加减法c b a =+: 加法运算规律:平行四边形法则(有时也称三角形法则),其满足的运算规律有交换率和结合率见图7-4

2.c b a =- 即c b a =-+)( 3.向量与数的乘法a λ:设λ是一个数,向量a 与λ的乘积a λ规定为 0)1(>λ时,a λ与a 同向,||||a a λλ= 0)2(=λ时,0a =λ 0)3(<λ时,a λ与a 反向,||||||a a λλ= 其满足的运算规律有:结合率、分配率。设0 a 表示与非零向量a 同方向的单位向量,那么 a a a 0= 定理1:设向量a ≠0,那么,向量b 平行于a 的充分必要条件是:存在唯一的实数λ, 使b =a λ 例1:在平行四边形ABCD 中,设a =,b =,试用a 和b 表示向量、、和MD ,这里M 是平行四边形对角线的交点。(见图7-5) 图7-4 解:→→==+AM AC 2b a ,于是)(2 1 b a +- =→ MA 由于→ → -=MA MC , 于是)(21 b a += → MC 又由于→→==+-MD BD 2b a ,于是)(2 1 a b -=→MD 由于→→-=MD MB , 于是)(2 1 a b --=→MB 三、空间直角坐标系 1.将数轴(一维)、平面直角坐标系(二维)进一步推广建立空间直角坐标系(三维)如图7-1,其符合右手规则。即以右手握住z 轴,当右手的四个手指从正向x 轴以2 π 角度转向正向y 轴时,大拇指的指向就是z 轴的正向。 2. 间直角坐标系共有八个卦限,各轴名称分别为:x 轴、y 轴、z 轴,坐标面分别 为xoy 面、yoz 面、 zox 面。坐标面以及卦限的划分如图7-2所示。图7-1右手规则演示 图7-2空间直角坐标系图 图7-3空间两点21M M 的距离图3.空间点),,(z y x M 的坐标表示方法。 通过坐标把空间的点与一个有序数组一一对应起来。 注意:特殊点的表示

《空间解析几何》学习指导

《空间解析几何》学习指导 一、教学目的与课程性质、任务。 《空间解析几何》是数学教育专业专业开设的一门重要基础数学课,它具有逻辑推理的严密性和实际应用的广泛性。本课程的基本概念、基本方法和基本理论是学习后继课程所必备的数学基础,同时本课程对于培养学生的严密的逻辑推理能力,抽象的思维表达能力,空间想象能力以及解决实际问题的能力都有着十分重要的意义。本课程使学生切实体会“代数”与“几何”的密切关系,学会并掌握以代数为工具研究几何问题以及为代数问题寻找直观的几何背景。 二、教学要求 通过这门课程的学习,使学生能够比较系统地掌握几何向量,n维向量的基本概念、基本方法和基本运算技巧。逐步培养学生抽象思维能力,逻辑推理能力,运算技能,并且能运用所学知识解决实际问题。具体要求如下: 第一章向量与坐标 1 使掌握矢量的概念和记法,矢量相等和反矢量的概念 2 了解共线矢量及共面矢量等有关概念 3 掌握矢量加法的三角形法则和平行四边形法则 4理解矢量加法的运算律,矢量减法的定义 5理解数乘矢量的概念,掌握数乘矢量含义及运算律 6理解线性相关和线性无关的含义 7根据矢量的线性组合、线性相关判断矢量的几何关系. 8掌握空间标架的构成及坐标系的概念,掌握空间点和矢量坐标的定义,坐标与矢量的关系 9掌握投影与矢量模及夹角的关系. 10利用数积判断两矢量是否垂直;掌握矢量模的计算和两矢量夹角的计算11了解矢量的矢性积的概念,掌握矢积的计算;矢积坐标的公式;能利用矢积判断两矢量是否共线 12了解矢量的混合积的概念,掌握混合积与矢量坐标的关系 第二章轨迹与方程 1系统地理解曲面方程的概念,掌握矢量方程和参数方程的求法及关系 2系统地理解母线平行于坐标轴的柱面方程的概念,掌握其方程的特征 3掌握空间曲线的一般方程和参数方程的概念及求法,空间曲线在坐标面上的投影及求法 4 了解螺旋线的方程. 第三章平面与空间曲线 1 认识平面方程的几种形式:(1)点法式方程,(2)一般式方程,(3)参数式方程,(4)法式化方程 2 熟练掌握平面方程几种形式的求法 3 熟练掌握点到平面的距离公式 4 熟练掌握平面与平面的夹角公式

空间解析几何与向量代数教案

《高等数学A》课程教案 第七章空间解析几何 一、教学目的与要求 1、了解空间直角坐标系,理解向量的概念及其表示。 2、掌握向量的运算(线性运算、数量积、向量积、混合积),掌握两个向量垂直和平行的条件。 3、了解单位向量、方向数与方向余弦、向量的坐标表达式,熟练掌握用坐标表达式进行向量运算的方法。 4、理解曲面方程的概念,了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程。 5、了解空间曲线的参数方程和一般方程,了解空间曲线在坐标平面上的投影,并会求其方程 6、掌握平面方程和直线方程及其求法。 7、会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题。 8、会求点到直线以及点到平面的距离。 二、教学内容及学时分配: 第一节向量及其线性运算2学时 第二节数量积向量积和混合积2学时 第三节曲面及其方程2学时 第四节空间曲线及其方程2学时 第五节平面及其方程2学时 第六节空间直线及其方程2学时 三、教学内容的重点及难点: 重点: 向量概念与运算,旋转曲面方程,柱面方程,平面方程直线方程

难点:向量的数量积与向量积,旋转曲面方程,平面束方程,有关直线与平面的综合题 四、教学内容的深化和拓宽: 1、空间直角坐标系的作用,向量的概念及其表示。 2、向量的运算(线性运算、数量积、向量积、混合积),两个向量垂直、平行的条件。 3、单位向量、方向数与方向余弦、向量的坐标表达式,以及用坐标表达式进行向量运算的方法。 4、平面方程和直线方程及其求法,会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题。 5、曲面方程的概念,常用二次曲面的方程及其图形, 五、教学方法与手段 启发探索式教学方法,结合多媒体课件教学。

向量代数与空间解析几何习题详解

第六章 向量代数与空间解析几何 习 题 6—3 1、已知)3,2,1(A ,)4,1,2(-B ,求线段AB 的垂直平分面的方程. 解:设),,(z y x M 是所求平面上任一点,据题意有|,|||MB MA = ()()()2 22321-+-+-z y x ()()(),412222-+++-= z y x 化简得所求方程26270x y z -+-=.这就是所求平面上的点的坐标所满足的方程, 而不在此平面上的点的坐标都不满足这个方程,所以这个方程就是所求平面的方程. 2、 一动点移动时,与)0,0,4(A 及xOy 平面等距离,求该动点的轨迹方程. 解:设在给定的坐标系下,动点),,(z y x M ,所求的轨迹为C ,则 (,,)M x y z C MA z u u u r ∈? = 亦即 z z y x =++-222)4( 0 )4(22=+-∴y x 从而所求的轨迹方程为0)4(2 2 =+-y x . 3、 求下列各球面的方程: (1)圆心)3,1,2(-,半径为6=R ; (2)圆心在原点,且经过点)3,2,6(-; (3)一条直径的两端点是)3,1,4()5,32(--与;(4)通过原点与)4,0,0(),0,3,1(),0,0,4(- 解:(1)所求的球面方程为:36)3()1()2(2 2 2 =-+++-z y x (2)由已知,半径73)2(6222=+-+= R ,所以球面方程为49222=++z y x (3)由已知,球面的球心坐标12 3 5,1213,3242=-=-=+-==+=c b a , 球的半径21)35()31()24(2 1 222=++++-= R ,所以球面方程为: 21)1()1()3(222=-+++-z y x (4)设所求的球面方程为:02222 22=++++++l kz hy gx z y x 因该球面经过点)4,0,0(),0,3,1(),0,0,4(),0,0,0(-,所以???????=-=++=+=08160621008160k h g g l 解之得???? ???=-=-==2210k g h l ∴所求的球面方程为0424222=+--++z y x z y x .

空间解析几何与向量微分

第七章:空间解析几何与向量微分 本章内容简介 在平面解析几何中,通过坐标把平面上的点与一对有序实数对应起来,把平面上的图形和方程对应起来,从而可以用代数方法来研究几何问题,空间解析几何也是按照类似的方法建立起来的。 7.1空间直角坐标系 一、空间点的直角坐标 为了沟通空间图形与数的研究,我们需要建立空间的点与有序数组之间的联系,为此我们通过引进空间直角坐标系来实现。 过定点O,作三条互相垂直的数轴,它们都以O为原点且一般具有相同的长度单位.这三条轴分别叫做x轴(横轴)、y轴(纵轴)、z轴(竖轴);统称坐标轴.通常把x轴和y轴配置在水平面上,而z轴则是铅垂线;它们的正方向要符合右手规则,即以右手握住z轴,当右手的四指从正向x轴以π/2角度转向正向y轴时,大拇指的指向就是z轴的正向,这样的三条坐标轴就组成了一个空间直角坐标系,点O叫做坐标原点。(如下图所示) 三条坐标轴中的任意两条可以确定一个平面,这样定出的三个平面统称坐标面。 取定了空间直角坐标系后,就可以建立起空间的点与有序数组之间的对应关系。 例:设点M为空间一已知点.我们过点M作三个平面分别垂直于x轴、y轴、z轴,它们与x轴、y轴、z轴的交点依次为P、Q、R,这三点在x轴、y轴、z轴的坐标依次为x、y、z.于是空间的一点M就唯一的确定了一个有序数组x,y,z.这组数x,y,z就叫做点M的坐标,并依次称x,y和z为点M的横坐标,纵坐标和竖坐标。(如下图所示)

坐标为x,y,z的点M通常记为M(x,y,z). 这样,通过空间直角坐标系,我们就建立了空间的点M和有序数组x,y,z之间的一一对应关系。 注意:坐标面上和坐标轴上的点,其坐标各有一定的特征. 例:如果点M在yOz平面上,则x=0;同样,zOx面上的点,y=0;如果点M在x轴上,则y=z=0;如果M是原点, 则x=y=z=0,等。 二、空间两点间的距离 设M1(x1,y1,z1)、M2(x2,y2,z2)为空间两点,为了用两点的坐标来表达它们间的距离d我们有公式: 例题:证明以A(4,3,1),B(7,1,2),C(5,2,3)为顶点的三角形△ABC是一等腰三角形. 解答:由两点间距离公式得: 由于,所以△ABC是一等腰三角形 7.2 方向余弦与方向数 解析几何中除了两点间的距离外,还有一个最基本的问题就是如何确定有向线段的或有向直线的方向。 方向角与方向余弦 设有空间两点,若以P1为始点,另一点P2为终点的线段称为有 向线段.记作.通过原点作一与其平行且同向的有向线段.将与Ox,Oy,Oz三个 坐标轴正向夹角分别记作α,β,γ.这三个角α,β,γ称为有向线段的方向角.其中

空间解析几何与向量代数复习题

第八章 空间解析几何与向量代数答案 一、选择题 1. 已知A (1,0,2), B (1,2,1)是空间两点,向量的模是(A ) A 5 B 3 C 6 D 9 2. 设a =(1,-1,3), b =(2,-1,2),求c =3a -2b 是( B ) A (-1,1,5). B (-1,-1,5). C (1,-1,5). D (-1,-1,6). 3. 设a =(1,-1,3), b =(2, 1,-2),求用标准基i , j , k 表示向量c=a-b 为(A ) A -i -2j +5k B -i -j +3k C -i -j +5k D -2i -j +5k 4. 求两平面和的夹角是( C ) A 2π B 4π C 3 π D π 5. 已知空间三点M (1,1,1)、A (2,2,1)和B (2,1,2),求∠AMB 是( C ) A 2π B 4π C 3 π D π 6. 求点到直线L :的距离是:( A ) A 138 B 118 C 158 D 1 7. 设,23,a i k b i j k =-=++r r r r r r r 求a b ?r r 是:( D ) A -i -2j +5k B -i -j +3k C -i -j +5k D 3i -3j +3k 8. 设⊿ABC 的顶点为(3,0,2),(5,3,1),(0,1,3)A B C -,求三角形的面积是:( A ) B 364 C 3 2 D 3 9. 求平行于轴,且过点和的平面方程是:( D ) A 2x+3y=5=0 B x-y+1=0 C x+y+1=0 D . 10、若非零向量a,b 满足关系式-=+a b a b ,则必有( C ); A -+a b =a b ; B =a b ; C 0?a b =; D ?a b =0. 11、设,a b 为非零向量,且a b ⊥, 则必有( C ) A a b a b +=+ B a b a b -=- C +=-a b a b D +=-a b a b

相关文档
最新文档