飞行原理基础1剖析

合集下载

飞行原理(有些没找到,自己想办法)(1)

飞行原理(有些没找到,自己想办法)(1)

1.后掠角:四分之一弦线与机身纵轴垂线的夹角。

飞行包线:以速度作为横坐标,以高度作为纵坐标,把各个高度下的速度上限和下限画出来,这样就构成了一条边界线,称为飞行包线,飞机只能在这个线确定的范围内飞行。

焦点:位于飞机重心之后最小阻力速度:迎角:相对气流方向(飞行速度方向)与翼弦之间的夹角2.升力基本原理:空气流到翼型的前缘,分成上下两股,分别沿翼型的上下表面流过,并在翼型的后缘汇合后向后流去。

在翼型的上表面,由于正迎角和翼面外凸的影响,流管收缩,流速增大,压力降低;而在翼型的下表面,气流受阻,流管扩张,流速减慢,压力增大。

这样,翼型的上下翼面出现压力差,总压力差在垂直于相对气流方向的分量,就是升力升力方向:向上3.飞机俯仰稳定力矩:作用在飞机上的空气动力对其重心所产生的力矩沿横轴的分量。

俯仰阻尼力矩:.主要是由水平尾翼产生的4.着陆滑跑距离计算公式(三种情况):着陆距离:5.飞机重心计算:力矩之和/飞机总重量=机头向后的延伸距离就是重心位置6.飞机五大部件:机身、机翼、尾翼、起落装置、动力装置7.国际标准大气规定:ISA标准海平面,海平面高度为0、气温288.15k15℃或59℉、气压1013.2mbar或1013.2hpa或29.92inpa即标准海压、音速661kt、对流层高度为11km或36089ft、对流层内标准温减率为每增加1km温减6.5℃或每增加1000ft 温减2℃,从11~20km之间的平流层底部气温为常值-56.5℃或216.65k8.飞机低速飞行有哪些阻力:摩擦阻力、压差阻力、干扰阻力、诱导阻力9.飞机在稳定飞行时遇到逆风或顺风时,上升角\上升率\下降梯度\下降距离如何变化顺风上升,上升角和上升梯度都减小,逆风上升,上升角和上升梯度都增大;在上升气流中上升,上升角和上升率增大,在下降气流中上升,上升角和上升率减小。

顺风下降,下降角减小,下降距离增长,下降率不变;逆风下降,下降角增大,下降距离缩短,下降率不变。

飞行原理知识点总结

飞行原理知识点总结

飞行原理知识点总结飞行是人类长久以来的梦想与追求,通过不断的探索与发展,飞行原理已经逐渐被揭示,并被运用到实际的飞行器中。

本文将系统地总结飞行原理的相关知识点,包括飞行器的结构设计、气动力学原理、动力系统、飞行控制以及飞行器的稳定性和安全性等方面的内容。

一、飞行器的结构设计飞行器的结构设计是飞行原理的基础,它决定了飞行器是否能够正常地进行飞行。

飞行器的结构主要包括机身、翼面、动力系统、控制系统、起落架和其他附件等部分。

其中,翼面是飞行器的主要承载部分,它产生升力并支撑飞行器的重量;动力系统为飞行器提供动力,并使其前进或升降;控制系统用于调整飞行器的姿态和飞行方向;起落架则为飞行器的着陆和起飞提供支撑。

飞行器的结构设计必须兼顾轻巧、坚固、稳定、低空阻力和高升阻比等要求,以保证飞行器的飞行性能。

二、气动力学原理气动力学是研究空气对飞行器的作用以及飞行器在空气中的运动规律的学科。

飞行器在飞行过程中受到来自空气的多种作用力,其中最重要的是升力和阻力。

升力是使飞行器获得升力并支撑其重量的力,在飞行器翼面的上表面和下表面产生了不同的压力,形成了一个向上的升力。

阻力是阻碍飞行器前进的力,它主要由飞行器的形状和速度决定。

飞行器的气动力学性能对其飞行性能有着直接的影响,因此对气动力学原理的研究至关重要。

三、动力系统动力系统是飞行器的发动机和推进系统等组成部分,它为飞行器提供动力,使其能够飞行。

目前常用的飞行器动力系统主要包括活塞发动机、涡轮喷气发动机、涡轮螺旋桨发动机以及电动驱动系统等。

各种动力系统有着不同的特点和适用范围,飞行器的设计者需要根据具体的需求选择合适的动力系统。

动力系统的研究和发展直接影响着飞行器的飞行速度、载荷能力、续航能力和节能环保性能。

四、飞行控制飞行控制是指通过操纵飞行器的控制面,调整飞行器的姿态和飞行方向。

飞行器的控制系统一般包括横向控制、纵向控制、自动控制和飞行操纵等部分。

横向控制通常由副翼来实现,它可以使飞行器绕纵轴旋转;纵向控制通常由升降舵来实现,它可以使飞行器绕横轴旋转;自动控制可以使飞行器在特定的飞行阶段自动地完成某些操作,例如自动起落、自动刹车等;飞行操纵则是指驾驶员通过操纵杆、脚蹬和其他操纵设备来控制飞行器的飞行方向。

飞行原理基础1解析

飞行原理基础1解析

第一章 第 页
45
1.1.3 操纵飞机的基本方法
6自由度: 3个空间位置,3个空间姿态
偏航控制
3个姿态: 俯仰控制:升降舵 滚转控制:副翼 偏航控制:方向舵 3个位置: 纵向位移:油门 侧向位移:间接实现 垂向位移:间接实现
第一章 第 页
俯仰控制
滚转控制
油门控制
飞机的操纵方法
46
●飞机的姿态控制
第一章 第 页
10
1.1 飞机的一般介绍
2016
第一章 第 页
11
飞机是目前最主要的飞行器。本节将简要介绍飞机 的主要组成部分及其功用、操纵飞机的基本方法及机 翼形状等。
第一章 第 页
12
1.1.1 飞机的主要组成部分及其功用
五大部分:机身,机翼,尾翼,起落装置,动力装置。
尾翼 机翼
机身
动力装置
第一章 第 页
20
●B747机翼上的主操纵和辅助操纵翼面
第一章 第 页
前缘襟翼
外侧(低 速)副翼
后缘内侧襟翼
地面扰流板
飞行扰流板 内侧(高
后缘外侧
速)副翼
襟翼
21
●机翼(TB200)
第一章 第 页
22
●机翼(B747)
第一章 第 页
23
●机翼(B747在着陆进近中)
第一章 第 页
24
③ 尾翼(Empennage)
➢ 产生拉力或推力。
➢ 发动机带动的发电机为 飞机用电设备提供电源, 从发动机引入的热气流 可用于座舱加温或空调 系统。
第一章 第 页
36
●动力装置的分类
➢ 活塞式 ➢ 涡轮式
第一章 第 页
●涡轮喷气式

科普飞行的原理了解飞机直升机和无人机的科学基础

科普飞行的原理了解飞机直升机和无人机的科学基础

科普飞行的原理了解飞机直升机和无人机的科学基础飞行是一种人类一直以来向往并追求的能力,也是现代航空科学的重要研究内容。

飞机、直升机和无人机作为常见的飞行器,它们的飞行原理对于了解科普飞行有着重要的作用。

本文将从科学基础的角度,介绍飞机、直升机和无人机的飞行原理。

飞机是一种能够在大气中飞行的航空器。

它的飞行原理基于空气动力学,主要由升力和阻力的相互作用来实现。

升力是指克服重力使飞机升空的力,其产生的关键在于机翼的设计。

机翼的上表面略微比下表面长,当飞机在空中飞行时,空气在机翼上下流动的速度不同,形成了上表面的气流速度更快,下表面的气流速度较慢的差异。

根据伯努利原理,气流速度较快的地方气压较低,而气流速度较慢的地方气压较高,因此在机翼上方形成了一个低气压区域,而在机翼下方形成了一个高气压区域。

这就使得飞机在机翼上方形成了一个向上的升力,克服了自身重力向上飞行。

与此同时,飞机在飞行过程中也会产生阻力。

阻力是沿飞行方向的力,阻碍飞机前进和保持速度的作用。

阻力主要由空气的摩擦和飞机形状的阻碍引起。

为了降低阻力,飞机通常采用流线型的外形设计,减少空气摩擦,并且通过控制飞行速度,使飞机处于最佳的阻力状态。

直升机是一种垂直起降并能够在空中停留的航空器。

它的飞行原理主要基于旋翼的工作原理。

直升机的旋翼由多个桨叶组成,类似于旋转的翅膀。

当旋翼快速旋转时,会产生一个向上的升力,使得直升机能够离开地面。

旋翼旋转的动力来源于发动机推力和机械传动系统的工作。

直升机通过改变旋翼的倾斜角度和旋转速度,实现对飞行方向和高度的控制。

然而,旋翼带来的升力和推力也会伴随着旋转桨叶产生的扭矩。

为了解决这个问题,直升机还需要配备尾部的反扭矩装置,例如尾旋翼或尾桨。

尾旋翼的旋转可以产生一定的反扭矩,以平衡直升机旋转桨叶引起的扭矩。

无人机是一种没有人操控的飞行器,其飞行原理与飞机和直升机有所不同。

无人机的飞行主要依靠电力推进和控制系统。

无人机通常采用多个电动螺旋桨或喷气发动机作为推进器,通过电能或燃料提供动力。

飞行原理简介

飞行原理简介

1.摩擦阻力——空气的物理特性之一就是粘性。当空气流过飞机表面时,由于粘性,空气同飞机表面发生摩擦,产生一个阻止飞机前进的力,这个力就是摩擦阻力。摩擦阻力的大小,决定于空气的粘性,飞机的表面状况,以及同空气相接触的飞机表面积。空气粘性越大、飞机表面越粗糙、飞机表面积越大,摩擦阻力就越大。
2.压差阻力——人在逆风中行走,会感到阻力的作用,这就是一种压差阻力。这种由前后压力差形成的阻力叫压差阻力。飞机的机身、尾翼等部件都会产生压差阻力。
②飞机的方向操纵性,就是在飞行员操纵方向舵后,飞机绕立轴偏转而改变其侧滑角等飞行特性。与俯仰角相似,在直线飞行中,每一个脚蹬位置,对应着一个侧滑角,蹬右舵,飞机产生左侧滑;蹬左舵,飞机产生右侧滑。
方向舵偏转后,同样产生方向舵枢轴力矩,飞行员需要用力蹬舵才能保持方向舵偏转角不变。方向舵偏转角越大,气动动压越大,蹬舵力越大。
4.起落装置——飞机的起落架大都由减震支柱和机轮组成,作用是起飞、着陆滑跑,地面滑行和停放时支撑飞机。
5.动力装置——动力装置主要用来产生拉力和推力,使飞机前进。其次还可为飞机上的其他用电设备提供电源等。现在飞机动力装置应用较广泛的有:航空活塞式发动机加螺旋桨推进器、涡轮喷气发动机、涡轮螺旋桨发动机和涡轮风扇发动机。除了发动机本身,动力装置还包括一系列保证发动机正常工作的系统。
①飞机的俯仰平衡是指作用于飞机的各俯仰力矩之和为零。飞机取得平衡后,不绕纵轴转动,迎角保持不变。作用于飞机的俯仰力矩很多,主要有:机翼力矩、水平尾翼力矩及拉力(推力)力矩。
影响俯仰平衡的因素:加减油门,收放襟翼、收放起落架和重心变化等。飞行中,影响飞机俯仰的因素是经常存在的。为了保持飞机的俯仰平衡,飞行员可前后移动驾驶杆偏转升降舵或使用调整片,产生操纵力矩,来保持力矩的平衡。

飞行原理

飞行原理

飞行原理關十言2013/8/111)流体力学基础对于亚音速气流,若流管面积减小,则流速增大,而超音速则刚好相反。

流体的伯努利原理表明,不管是超音速还是亚音速气流,只要流速增加,则压强就会减小。

由于飞机的翼型上表面向上弯曲的稍多一些,因此从整体上来说飞机下表面的流管截面积要大于上表面,使得亚音速飞机的下表面气流流动比上表面慢,压强则比上表面大,从而产生升力。

音速是微弱扰动的传播速度,与气体的种类和温度有关,随温度的升高而增加。

飞机的飞行马赫数是飞机真空速大小与飞行高度上音速之比,飞机的临界马赫数是当机翼上翼面低压力点的局部速度达到音速时的来流马赫数。

超音速气流流过外折角,则会在折点处形成膨胀波,使得气流经过膨胀波后的速度增加、压强减小;流过一个折角很小的二维内折翼面,会在折点处形成斜激波,如果折角比较大,则会形成曲面激波或者正激波。

超音速气流经过激波后压强、温度和密度会突然增大,速度会突然减小。

从飞机阻力增加的程度来讲,三种激波的影响从大到小依次是正激波、曲面激波和斜激波。

静止的流体中不会产生摩擦力(粘性力),只有运动的实际流体才会产生粘性力。

物体在流体中运动时所受的惯性力与粘性力之比就是雷诺数,雷诺数越大,说明粘性对飞机的影响就越小。

机翼表面受粘性影响比较大的区域叫做附面层,在附面层边界上,粘性使得该处的局部速度受到1%的影响,在附面层内需要考虑粘性的影响,之外则可以不考虑。

2)飞机的升阻力特性飞机的定常飞行中,升力等于重力,推力等于阻力。

飞机的升力与速度、大气密度、机翼面积、升力系数等有关。

升力系数随着飞机迎角的增大,起初会线性增加,达到斗振升力后,开始曲线增加,一直到最大升力系数(临界迎角),然后开始减小。

在其他条件一定时,飞机的升力系数随粘性增大而减小,随后掠角增大而减小。

临界迎角对应飞机的失速速度。

飞机在转弯时,升力的垂直分量需要平衡重力,使得飞机的升力随转弯坡度增加而增加,因此大坡度转弯时飞机的升力系数(迎角)较大,可能会引起飞机的抖动。

飞机飞行原理基础知识

飞机飞行原理基础知识

飞机飞⾏原理基础知识飞机飞⾏原理基础知识 当飞⾏员前推驾驶秆时,升降舱向下偏转,⽽飞机低头,当飞⾏员往后拉驾驶杆时,升降舵向上偏转,飞机便抬头。

这样,飞机便跟着驾驶杆的移动⽽转动。

下⾯是⼩编为⼤家分享飞机飞⾏原理基础知识,欢迎⼤家阅读浏览。

⼀、飞机的主要部分和它的功⽤ 1、尾翼 飞机尾翼的功⽤在于保证它的纵向和航向安定性及操纵性,它是由⽔平尾翼和垂直尾翼组成。

⽔平尾翼由不动部分和⽔平安定⾯与可动部分—升降舵现成。

⽔平安定⾯⽤于保证供飞机纵向安定性,也就是当飞机向上或向下产⽣不⼤的偏离时,使飞机能⾃动恢复到原先飞⾏状态的能⼒。

垂直尾翼同样也由不动部分、垂直安定⾯、可动部分和⽅向舵组成。

垂⾯安定⾯⽤于保证飞机的航向安定性,也就是在飞机向左或向右产⽣不⼤的偏离时,能⾃动地恢复到原先飞⾏状态的能⼒。

⽅向舵⽤于保证航向操纵性,使飞机能相对于飞⾏⽅向向左或向右转弯。

2、升降舵 升降舵⽤于保证飞机的纵向操纵性,也就是使飞机能相对于飞⾏⽅向,向上或向下改变倾⾓的⼤⼩。

3、起落架 ⽤于飞机在起飞和着陆时之滑跑,以及飞机的地⾯停放和运⾏,此外,还⽤于减轻飞机着陆时的撞击。

飞机的起落架通常采⽤三点式,即⼆个主轮和⼀个辅助轮。

由于辅助轮安放位置的不同,可以分为前三点与后三点。

飞机为了减少阻⼒,起落架做成在飞⾏时可收起的。

为了收起起落架,在飞机上必须有专门的机构。

⼆、飞机的操纵系统 飞机的操纵系统由:升降舵、⽅向舵、副翼和调整⽚等的操纵系统所组成。

⽽每个系统内⼜包括有位于驾驶舱内的操纵杆、连接驾驶杆与舵⾯的操纵线系以及舵⾯等。

副翼与升降始的操纵,在轻型飞机上利⽤驾驶杆,在重型飞机上利⽤转盘式驾驶柱。

⾄于⽅向舵的操纵则利⽤脚蹬来进⾏。

当飞⾏员前推驾驶秆时,升降舱向下偏转,⽽飞机低头,当飞⾏员往后拉驾驶杆时,升降舵向上偏转,飞机便抬头。

这样,飞机便跟着驾驶杆的移动⽽转动。

当驾驶杆向右偏转时,右副翼向上。

左副翼向下,即右翼向下⽽左翼向上,飞机向右倾侧。

飞机飞行的基本原理

飞机飞行的基本原理

飞机飞行的基本原理飞机飞行的基本原理主要包括三个方面:升力、阻力和重力。

1.升力:升力是由空气动力学原理产生的,它是由翼面上的气流产生的。

当翼面运动时,空气会在翼面上形成高压区和低压区,高压区下方产生升力,使飞机向上升。

2.阻力:阻力是飞机穿过空气时产生的阻碍力,包括空气阻力和摩擦阻力。

空气阻力是由飞机前进时空气对飞机表面的摩擦产生的,而摩擦阻力则是由飞机表面摩擦空气产生的。

3.重力:重力是由地球对物体产生的向下的引力。

飞机在飞行过程中需要不断产生升力来抵消重力的作用,以维持飞行。

当飞机的升力大于阻力和重力的总和时,飞机就会上升,而当升力小于阻力和重力的总和时,飞机就会下降。

飞机的驾驶员通过调整飞机的姿态和动力系统来控制飞机的升降和飞行速度。

除了升力、阻力和重力这三个基本原理之外,飞机飞行还需要考虑其他因素。

4.气流:空气的流动对飞机的飞行有重要影响。

飞机在飞行中会遇到不同类型的气流,如下推气流、上升气流和下沉气流等。

飞机的驾驶员需要根据气流的类型和强度来调整飞机的姿态和动力系统,以确保飞机的安全飞行。

5.气压: 气压的变化会对飞机的飞行产生影响。

飞机在飞行中会经历高气压和低气压,高气压会使飞机升高,而低气压则会降低飞机。

飞机的驾驶员需要根据气压的变化来调整飞机的姿态和动力系统。

6.温度:温度的变化也会对飞机的飞行产生影响。

高温会使飞机升高,而低温则会降低飞机。

飞机的驾驶员需要根据温度的变化来调整飞机的姿态和动力系统。

7.风:风的方向和强度会对飞机的飞行产生影响。

飞机的驾驶员需要根据风的方向和强度来调整飞机的姿态和动力系统,以确保飞机的安全飞行。

这些因素都需要飞行员经过严格的训练和经验积累来掌握,并在飞行过程中不断监测和调整,以确保飞机的安全飞行。

另外,飞机的结构和控制系统也对飞行有重要影响。

飞机的翼和机尾设计会影响飞机的升降和飞行速度,而飞机的动力系统会影响飞机的推进力和油耗。

总之,飞机飞行的基本原理需要结合空气动力学、气象学、航空工程等多个领域的知识来理解和掌握。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 第 页
3
前言
5. 本课教学对象
初始培训飞行员 管制、签派、情报专业学生 其他民航相关学科学生 航空爱好者
第一章 第 页
4
前言
6. 本课主要内容
第一章 飞机和大气的一般介绍 第二章 飞机的低速空气动力 第三章 螺旋桨的空气动力 第四章 飞机的平衡、稳定性和操纵性 第五章 平飞、上升和下降 第六章 盘旋 第七章 起飞和着陆 第八章 特殊飞行 第九章 重量与平衡 第十章 高速空气动力学基础
17
② 机翼(Wings)
➢ 机翼产生升力。
➢ 机翼在飞机的稳定性和操纵性中扮演重要角色,机翼上安装 的可操纵翼面主要有副翼、襟翼、前缘襟翼、前缘缝翼。
➢ 机翼还用于安装发动机、 起落架及其轮舱、油箱。
第一章 第 页
18
●机翼的分类
上单翼
下单翼
第一章 第 页
中单翼
19
●机翼的分类
单翼机、双翼机、多翼机
第一章 第 页
10
1.1 飞机的一般介绍
2016
第一章 第 页
11
飞机是目前最主要的飞行器。本节将简要介绍飞机 的主要组成部分及其功用、操纵飞机的基本方法及机 翼形状等。
第一章 第 页
12
1.1.1 飞机的主要组成部分及其功用
五大部分:机身,机翼,尾翼,起落装置,动力装置。
尾翼 机翼
机身
动力装置
若水平尾翼是整体活动面,则称全动平尾;升降舵 的后缘的活动面,称为配平片。
第一章 第 页
28
④ 起落装置(Landing Gear)
➢ 起落装置用于飞机的 起飞、着陆和滑行并 支撑飞机。
➢ 飞机的前轮可偏转, 用于地面滑行时控制 方向。
➢ 飞机的主轮上装有各 自独立的刹车装置。
第一章 第 页

29
●A320前起落架
飞行原理
Principles of Flight
2016 中国民航飞行学院飞行力学教研室
第一章 第 页
1
前言
1. 飞行原理课程的主要内容
理解飞机飞行的原理-为什么能飞? 理解飞机的运动规律-怎样操纵以及为什么? 理解飞机的飞行性能-飞机能飞多快、多远/久、多高?
2. 飞行原理所涵盖的学科范畴
空气动力学 空气与物体相互作用的规律。
➢ 产生拉力或推力。
➢ 发动机带动的发电机为 飞机用电设备提供电源, 从发动机引入的热气流 可用于座舱加温或空调 系统。
第一章 第 页
36
●动力装置的分类
➢ 活塞式 ➢ 涡轮式
第一章 第 页
●涡轮喷气式
37
➢ 涡轮桨叶式 ➢ 涡轮风扇式
第一章 第 页
38
1.1.2 飞机座舱基本仪表介绍
第一章 第 页
起落装置
第一章 第 页
13
① 机身(Fuselage)
➢ 装载机组、旅客、货物和其它必须设备。 ➢ 将飞机的其他部分如尾翼、机翼、发动机联结成一
个整体。
第一章 第 页
14
●驾驶舱( Cockpit )
第一章 第 页
15
●机身( B747 全货机)
第一章 第 页
16
●机身( B747经济舱)
第一章 第 页
➢ 操纵飞机的俯仰和偏转。 ➢ 是飞机稳定性的重要组成部分。
第一章 第 页
25
●尾翼
常见布局尾翼
T形尾翼
第一章 第 页
V形尾翼
26
●尾翼的构成
尾翼包括水平尾翼和垂直尾翼,水平尾翼由固定 的水平安定面和可动的升降舵组成;垂直尾翼包括固 定的垂直安定面和可动的方向舵组成。
第一章 第 页
27
●尾翼(TB200)
第一章 第 页
45
1.1.3 操纵飞机的基本方法
6自由度: 3个空间位置,3个空间姿态
偏航控制
3个姿态: 俯仰控制:升降舵 滚转控制:副翼 偏航控制:方向舵 3个位置: 纵向位移:油门 侧向位移:间接实现 垂向位移:间接实现
第一章 第 页
俯仰控制
滚转控制
油门控制
飞机的操纵方法
46
●飞机的姿态控制
第一章 第 页
30
●起落装置的分类
起落装置可分为前三点式、后三点式。
第一章 第 页
31
●起落装置的分类
起落装置还可分为固定式、可收放式。
第一章 第 页
32
●起落装置(水上飞机)
第一章 第 页
33
●水上飞机
第一章 第 页
34
●起落装置(雪上飞机)
第一章 第 页
35
⑤ 动力装置(Power Plant)
TB20座舱仪表
39
●小型飞机的六个基本仪表
Airspeed Indicator
Attitude Indicator
Altitude Indicator

姿







Turn Coordinator Horizontal Situation Indicator Vertical Speed Indicator
第一章 第 页
5
第一章
2016
飞机和大气的一般介绍
第一章 第 页
6
●人类早期的飞行
莱特兄弟的飞行者(“flyer” ) ,飞行距离120英尺, 持续时间12秒。
第一章 第 页
7
●人类早期的飞行
第一章 第 页
8
●人类早期的飞行
第一章 第 页
9
本章主要内容
1.1 飞机的一般介绍 1.2 飞机大气环境的一般介绍
第一章 第 页
20
●B747机翼上的主操纵和辅助操纵翼面
第一章 第 页
前缘襟翼
外侧(低 速)副翼
后缘内侧襟翼
地面扰流板
飞行扰流板 内侧(高
后缘外侧
速)副翼
襟翼
21
●机翼(TB200)
第一章 第 页
22
●机翼(B747)
第一章 第 页
23
●机翼(B747在着陆进近中)
第一章 第 页
24
③ 尾翼(Empennage)

















第一章 第 页
40
●不同飞行状态的转弯侧滑仪和地平仪
左转弯
右转弯
第一章 第 页
41
●不同飞行状态的转弯侧滑仪
第一章 第 页小球好比汽车过弯时仪表台上放置的眼镜。
42
●BASIC T(彩色)
第一章 第 页
43
●老式驾驶舱(B17)
第一章 第 页
44
●新式驾驶舱(B777)
偏 航


滚 转 控 制
第一章 第 页
俯 仰 控 制
47
●驾驶舱的其他操纵(TB20)
发动机操纵杆 及其松紧旋钮
襟翼操纵器 及指位表
俯仰配平
方向配平
甚高频通讯 收发机
甚高频导航 接收机
无线电测距仪
第一章 第 页
飞行力学
研究飞行性能、操纵性与稳定性。
飞行技术
建于实践基础上的综合学科。
第一章 第 页
2
前言
3. 本书内容涵盖范围
私照PPL与商照CPL知识领域。 适用于正常类与实用类飞机。 涵盖低速小型螺旋桨飞机气动、操纵与性能。
4. 本书学习方法
理论与实际相结合。 重点在于对理论以及结论的清晰理解。 不要过多的试图探究操纵感觉和操纵细节。
相关文档
最新文档