微电网你并网运行

合集下载

微电网离网运行到并网运行的切换方法

微电网离网运行到并网运行的切换方法

专利名称:微电网离网运行到并网运行的切换方法
专利类型:发明专利
发明人:史伟,陈虹,承昊新,杨晓林,赵清源,殷烨虹,陆芸,王数申请号:CN202111353564.X
申请日:20211116
公开号:CN113972695A
公开日:
20220125
专利内容由知识产权出版社提供
摘要:本发明提供一种微电网离网运行到并网运行的切换方法,包括以下步骤:将VSG控制二次调频和二次调压的参考值设定为配电网的频率和所述配电网的电压;检测所述配电网的电压的幅值和相位;根据所述配电网的电压的幅值对所述微电网的电压的幅值进行幅值预同步控制;根据所述配电网的电压的相位对所述微电网的电压的相位和进行相位预同步控制;闭合所述微电网的公共连接点与所述配电网之间的开关,以使所述微电网从离网运行切换为并网运行。

本发明能够实现微电网离网运行到并网运行的平滑切换,对微电网无冲击,保证电力系统的安全。

申请人:国网江苏省电力有限公司常州供电分公司,国网江苏省电力有限公司,国家电网有限公司地址:213000 江苏省常州市局前街27号
国籍:CN
代理机构:常州佰业腾飞专利代理事务所(普通合伙)
代理人:陈红桥
更多信息请下载全文后查看。

微电网操作与控制

微电网操作与控制

微电网操作与控制微电网(Microgrid)是指由多种不同的分布式能源资源、负荷和能量储存设备组成的小型电力系统。

它具有自主运行、互联互通和可控性强的特点,已成为解决能源转型和可持续发展的重要手段。

本文旨在探讨微电网的操作与控制策略,帮助读者更好地理解和应用微电网技术。

一、微电网概述微电网由分布式能源资源(如光伏发电、风力发电等)、负荷(如住宅、商业建筑等)和能量储存设备(如储能电池等)组成,形成一个相对独立的电网系统。

与传统的中央电网系统相比,微电网更加灵活和可靠,并且具备自主控制和管理的能力。

二、微电网的运行模式微电网的运行模式可以分为三种:独立运行模式、与主电网并网运行模式以及与主电网脱网运行模式。

1. 独立运行模式在独立运行模式下,微电网与主电网完全隔离,完全依靠分布式能源和能量储存设备供电。

这种模式适用于一些远离主电网的地区,比如岛屿、山区等。

2. 与主电网并网运行模式与主电网并网运行是微电网最常见的工作方式。

在这种模式下,微电网可以通过电网互联与主电网交换电能,在能源供应不足时从主电网购电,能源供应充足时则可以将多余的电能卖回主电网。

3. 与主电网脱网运行模式与主电网脱网运行是指微电网不再与主电网交换电能,完全依靠自身的分布式能源和能量储存设备运行。

这种模式适用于一些需要独立供电的环境,比如远离城市的无人岛屿、油气开采现场等。

三、微电网的操作与控制策略为了实现微电网的安全稳定运行,需要采取一系列的操作与控制策略,具体如下:1. 能源管理和优化策略能源管理和优化是微电网操作与控制的核心任务。

通过合理调度和分配分布式能源资源,最大限度地提高能源利用效率,并确保电网系统的稳定运行。

包括实时监测和管理能源供需平衡、优化能源调度策略、灵活控制充放电等。

2. 集中与分散控制策略微电网的控制可分为集中控制和分散控制两种方式。

集中控制指的是通过一个中心控制单元实现对整个微电网的控制和管理。

分散控制则是将控制功能分散到各个设备上,通过设备之间的通信和协调实现微电网的控制。

微电网与智能电网的协同运行

微电网与智能电网的协同运行

微电网与智能电网的协同运行是当前能源领域的研究热点之一,随着能源需求的不断增长和能源结构的不断调整,微电网和智能电网的发展已经成为未来能源系统的重要方向。

微电网是指由多种分布式能源资源组成的小型电力系统,能够独立运行或与主电网互联运行。

智能电网是指利用先进的信息通信技术和智能控制技术,实现电力系统的智能化运行和管理。

微电网与智能电网的协同运行,可以实现能源的高效利用、提高电网的稳定性和安全性,促进清洁能源的发展和应用。

本文将从微电网与智能电网的概念、发展现状、协同运行机制和关键技术等方面进行深入探讨,为未来能源系统的发展提供参考和借鉴。

一、微电网与智能电网的概念及发展现状微电网是指由多种分布式能源资源组成的小型电力系统,通常包括太阳能发电、风能发电、燃料电池等多种能源资源。

微电网可以独立运行,也可以与主电网互联运行,具有一定的自治性和灵活性。

智能电网是指利用先进的信息通信技术和智能控制技术,实现电力系统的智能化运行和管理,提高电网的安全性、稳定性和经济性。

微电网和智能电网的发展,是为了应对能源需求的不断增长、能源结构的不断调整和环境污染的不断加剧等挑战,推动清洁能源的发展和应用。

目前,微电网和智能电网的发展已经取得了一定的成就。

在微电网方面,我国已经建成了一批具有代表性的微电网示范项目,如北京石景山微电网示范项目、上海浦东微电网示范项目等,这些项目在提高能源利用效率、促进清洁能源发展、改善电网供电质量等方面发挥了积极作用。

在智能电网方面,我国电力系统的智能化水平不断提高,智能电网技术在电网调度、运行管理、设备监测等方面得到了广泛应用,为电力系统的安全稳定运行提供了有力支持。

二、微电网与智能电网的协同运行机制微电网与智能电网的协同运行,是指微电网和智能电网之间通过信息通信技术和智能控制技术实现互联互通、协同运行,共同提高电力系统的安全性、稳定性和经济性。

微电网与智能电网的协同运行机制主要包括以下几个方面:1. 能源互联互通。

微网的光伏系统并网运行和离网运行的控制策略

微网的光伏系统并网运行和离网运行的控制策略

微网的光伏系统并网运行和离网运行的控制策略【摘要】光伏微网逆变器分为并网运行和离网运行双模式。

本文详细分析和研究微网逆变器的控制策略,确定了在离网工作模式下的电压闭环控制策略和在并网工作模式下的瞬时电流控制策略。

根据选定的控制策略分别对其控制系统进行了建模仿真和相关参数的设计,并利用Matlab/Simulink软件对并网和离网模式以及两种模式之间的相互切换进行仿真,仿真结果证明了本文所采用的控制方法的正确性和有效性。

【关键词】光伏微网;微网逆变器;并网;离网微网是一种由负荷和各种微型电源共同组成的系统,它可以同时提供电能和热量。

光伏微网发电技术是介于离网型光伏发电和并网型光伏发电之间的前沿技术,既结合了两种技术优点,又克服了并网型光伏发电只能将能量输送到电网所带来的缺陷,并且可以解决离网型光伏发电效率低下的问题,在国际上受到了广泛的重视,有实际的研究价值。

1.微网逆变器的工作模式1.1 并网工作模式在太阳光照充足的情况下,微网逆变器一般工作于并网模式,除了保证本地重要负载正常工作外,还可把多余的电能输送给电网,可等效于传统的并网型逆变器。

根据控制对象的不同,并网逆变器的输出控制方式有电压控制和电流控制两种,在逆变器与电网进行并联运行时,电网可看作一个容量无穷大的交流电压源,如果用电压型控制,则与电网之间很容易产生环流,所以并网逆变器的输出经常采用电流型控制,只要将逆变器的输出电流跟踪电网电压,同时设定输出电流的大小,就可以实现稳定并网运行,其控制方法相对简单,效果也较好。

1.2 离网工作模式具有离网单独运行的能力是微网逆变器最重要的特点之一。

当电网出现故障时,信号采样电流检测到电网故障,发出电网故障信号,经过DSP处理,发出指令,微网逆变器切换到离网模式,通过断开静态开关,利用蓄电池的储能,为本地重要负荷提供不间断供电,保证重要负荷供电的可靠与稳定。

微网逆变器离网运行的输出控制法也可分为电流型控制法和电压型控制法。

浅述微电网系统并网运行控制策略

浅述微电网系统并网运行控制策略
⑤检查储能单元当日充放电次数是否越限。 若 越限,则发储能充放电次数越限告警。
⑥检查储能单元 SOC 是否越限。 若是充电指 令,检查储能单元当前 SOC 是否越上限;若是放电 指令,检查储能单元当前 SOC 是否越下限。 若 SOC 越限,则告知用户及电网调度 SOC 越限,进入步骤 ⑦;否则,进入步骤⑧。
2风光储联合功率控制光伏发电和风力发电的出力易受到外部气象因素影响出力会有波动可根据分布式发电预测与负荷预测的结果科学控制微电网内储能单元出力弥补风光发电实时波动性使风光储联合发电出力稳定在一定的范围内满足稳定供电的要求这就是风光储联合功率控制
研究与发展
2020年第 1期
青海科技
浅述微电网系统并网运行控制策略
⑦若 SOC 低于下限,下达充电指令,储能单元 以较大功率充电;若 SOC 高于上限,下达放电指令, 储能单元以较大功率放电。 直到 SOC 恢复到某一设 定值。
⑧按照计算目标值下达储能充放电指令并检查 执行情况。 若风光出力实时监测值与预设出力有出 入,超过允许范围,则返回④,再次根据当前风光实 时出力情况计算储能单元的出力目标值并下达充放 电指令,直到进入风光出力预测下一时段。
与计划控制相比,风光储联合功率控制策略对 储能系统的控制提出了更高的要求,计划控制策略 中,储能系统大部分时候是恒功率运行;而在风光储 联合功率控制策略中,储能系统主要进行变功率充 放电运行。 为减少储能系统日充放电次数,提高储 能系统的使用寿命,要合理选取 PM 计算参数。 2.2 基于混合储能的功率平滑控制
以储能单元的充放电计划控制为例,详细步骤 如下:
①读取储能单元充放电计划控制曲线,检查储 能单元运行状态。 若储能单元处于停机状态,下达 并网开机指令;若储能单元处于正常运行状态,进入 步骤②。

新能源电网中微电源并网的控制方法探讨

新能源电网中微电源并网的控制方法探讨

新能源电网中微电源并网的控制方法探讨摘要:微电网作为当前环境中电力系统的发展方向,受到了各界广泛关注。

微电网在运行状态中,对逆变器的控制提出了较高要求,为了保障电能质量达标,技术人员需要保障频率、电压值被控制在合理范围中,因此有效解决并联组网问题,对微电网的发展具有重要意义。

关键词:新能源电网;微电源;并网控制1、微电网的基本结构微电网的构成要素包括:控制系统、储能装置、电力负荷等,电力电子作为电网和微电源的接口,能够保障系统正常运行。

为了保障电力负荷中的电能发挥作用,微电网的运行模式通常为:单独运行、并网运行。

当电能质量不符合系统规范时,微电网能够及时启动独立运行状态。

微电网呈放射状,通过外部电网与静态开关相连接。

微电网系统被静态开关划分为两个模块:馈线在连接过程中设置了微电源,支持本地供电。

当电网发生故障后,电网将进入独立运行状态;当非敏感负荷和馈线相连后,电网能够承载这些部件的运行。

由于微电网配置中设有潮流控制器、能量管理器,因此技术人员能够对微电网进行科学控制。

当负荷出现变化后,潮流控制器会参照电压情况、频率值进行潮流参数调整工作,对微电源的功率进行合理的减少、增加,可以达到整个微电网系统的平衡效果。

2、微电源定义及分类所谓的微电源就是指微电网中的逆变器、分布式电源及储能装置,其大致可以分为以下两类:第一类,传统的电机,如小型柴油发电、水力发电、潮汐和生物能发电。

第二类是与电网直接相连的电力电子型电源,同时也叫做逆变电源。

将逆变电源进行细分又可以分为以下类别:①燃料电池、飞轮储能、储蓄电池等直流电源;②小型燃气轮机、小型风力发电等高频交流电源,这种电源通过整流、逆变转化为交流。

由于第二类电源在微电网中具有明显的优势,因此未来的逆变电源将会发展的十分迅速,与常规电源相比,它的电压调整和控制方式比较特殊,因此需要制定相应的控制策略,来实现大规模微电源并入电网。

3、新能源电网中微电源并网控制对策3.1控制策略综述①电压的要求。

并网微电网运营方案

并网微电网运营方案

并网微电网运营方案一、背景介绍随着能源需求的不断增长和环境问题的日益严重,传统的中央化电网已经难以满足当前的能源需求和环境保护的要求。

而新型的并网微电网作为一种全新的能源管理模式,被广泛应用。

并网微电网通过将可再生能源、储能设备和智能电网技术集成在一起,可以实现能源供给的去中心化,提高电网的可靠性和灵活性,减少能源浪费和碳排放。

因此,为了更好地推进并网微电网的发展,我们需要建立一套完善的运营方案,以确保并网微电网的顺利运行和可持续发展。

二、运营目标我们的运营目标是通过建立高效、安全、可持续的运营机制,实现并网微电网的稳定运行和长期发展。

具体的运营目标包括:1.完善的监控系统:建立全面的监控系统,实时监测并网微电网的运行情况,及时发现和解决潜在问题,确保并网微电网的稳定运行。

2.匹配的运营策略:制定适合并网微电网特点的运营策略,包括电价制度、能源调度、维护管理等,以最大程度地提高并网微电网的运行效率和经济性。

3.安全可靠的运行保障:确保并网微电网的安全可靠运行,有效应对各类运行风险,减少因运行故障带来的损失。

4.可持续发展:致力于推进并网微电网的技术发展和升级,提高能源利用效率,降低碳排放,并促进并网微电网的可持续发展。

三、运营组织结构1.运营总负责人:负责制定并网微电网的运营策略和发展规划,协调各个部门的工作,推动并网微电网的稳定运行和长期发展。

2.技术支持部门:负责并网微电网的技术研发和升级,包括设备维护、技术支持、故障排查等工作。

3.运营管理部门:负责制定并实施并网微电网运营管理规范,包括电价制度、能源调度、安全管理等。

4.监控中心:负责实时监测并网微电网的运行情况,及时发现和解决问题,确保并网微电网的稳定运行。

四、运营流程1.设备检修:定期对并网微电网的各项设备进行检修和维护,确保设备的正常运行。

2.能源调度:根据实际情况对可再生能源和储能设备进行合理分配和调度,最大程度地提高能源利用效率。

微电网并网与孤岛运行模式切换的研究

微电网并网与孤岛运行模式切换的研究

参考内容
随着能源结构和电力系统的发展,微电网作为一种新型的电力系统和能源形态, 逐渐得到了广泛的和应用。微电网主要由分布式电源、储能装置、负荷等组成, 通过先进的控制技术和调度策略,实现电力系统的稳定、经济、安全运行。本 次演示将围绕微电网变流器并网运行及并网和孤岛切换技术展开研究。
一、微电网变流器并网运行
一、微电网的结构与运行方式
微电网是由分布式电源、储能装置、负荷、电力电子装置等组成的微型电力系 统。它具有独立、自治、灵活的特点,可以满足区域内重要负荷的持续可靠供 电需求。微电网的结构和运行方式因不同国家和地区而异,但通常都包括并网 运行和孤岛运行两种模式。
并网运行模式下,微电网通过公共耦合点(PCC)与大电网进行电能交换,大 电网为微电网提供电压和频率支撑,微电网则根据需求向大电网输送电能。孤 岛运行模式下,微电网断开与大电网的连接,依靠自身的分布式电源和储能装 置提供电能,保障重要负荷的持续供电。
为了实现平滑切换,首先需要准确快速地检测到电网故障或电能质量不达标的 情况。常用的故障检测方法包括基于电气量的故障检测、基于信号的故障检测 和基于人工智能的故障检测等。通过实时监测电压、电流等电气量,以及分析 功率不平衡等信号特征,可以有效地检测到电网故障。同时,利用人工智能算 法可以对电能质量进行评估和预测,提前发现潜在的电能质量问题。
二、微电网平滑切换控制策略
平滑切换控制策略是实现微电网由并网运行模式到孤岛运行模式无缝切换的关 键。在平滑切换过程中,微电网需要快速、准确地检测到电网故障或电能质量 不达标的情况,并立即进行运行模式的转换。同时,为了确保转换过程中的稳 定性和连续性,还需要采取相应的控制措施。
1、故障检测与识别
(2)电源稳定性问题:在切换过程中,微电网的电源稳定性可能会受到影响。 为了解决电源稳定性问题,可以对微电网的电源进行控制和管理,以保证微电 网的稳定运行。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要微电网为新能源并网发电规模化应用提供了有效技术途径,微电网技术可以对分布式电源进行有效管理,降低分布式电源对大电网安全运行的影响,有助于实现分布式电源的“即插即用”,同时可以最大限度地利用可再生能源,符合我国新能源发电和可持续发展战略的要求。

随着微电网技术不断发展的新需求,微电网中微电源的协调控制、微网运行模式切换等诸多问题亟待解决,因此,本文将从微电网的控制系统角度进行研究,以实现微网技术的规模化应用。

首先,本文系统详细的阐述了微网主要的整体控制策略以及微电源逆变器接口侧的控制方法,并对各种控制策略的工作原理、适用范围以及优缺点进行分析;其次,提出了基于P-f /Q-V下垂控制的微网功率最优分散协调控制方法。

针对微电网功率分配因微电源到负荷线路的影响而分配不合理的问题进行了深入的研究;分析了传统P-f /Q-U下垂控制的缺点,给出了P-f/Q-V下垂控制方法,建立了微网的数学模型,通过部分输出量反馈最优分散协调控制方法,使微网在实现微电源功率合理分配的基础上,保证电压和频率处在正常范围内,仿真结果表明微电网在输出有功功率分配不受影响的前提下,输出无功功率的分配情况得到明显的优化,而且微网始终处于稳定运行状态。

最后,提出了将对等控制与主从控制相结合的控制策略。

针对微网运行模式转换时存在的问题,给出了符合我国国情的微电网运行模式转换的条件,通过分析对等控制以及主从控制在微网运行模式切换时的优缺点,提出了将两者相结合的控制策略,并结合控制器状态跟随的平滑切换控制方法实现了微网运行模式的平滑、可控切换,减小了切换过程对微网的冲击,通过仿真实验验证了该控制策略的可行性。

关键词:微网;功率分配;协调控制;并网运行模式;孤岛运行模式目录摘要目录第1章绪论1.1课题研究背景1.2微电网的研究现状与前景1.2.1微电网的定义1.2.2国内外微电网的研究现状与概况1.3微电网运行控制研究现状与发展趋势1.3.1系统控制层面1.3.2分布式电源控制层面1.3.3微电网运行层面1.4本文所做的工作第2章微电网内分布式电源仿真建模与特性分析 2.1光伏发电系统建模及仿真2.1.1光伏电池数学模型2.1.2光伏电池建模与特性2.1.3 MPPT最大功率点跟踪原理与建模2.1.4光伏Boost升压控制器2.1.5光伏发电系统特性分析2.2微型燃气轮机发电系统建模及仿真2.2.1微型燃气轮机系统结构2.2.2永磁同步发电机模型2.2.3微型燃气轮机的整流器的控制 2.2.4微型燃气轮机特性仿真2.3蓄电池模型2.3.1蓄电池通用模型2.3.2蓄电池双向DC仍C变换器2.3.3蓄电池系统充放电仿真分析 2.4本章小结第1章绪论1.1课题研究背景能源与工业生产、交通运输、国防建设以及人类的日常生活各方面息息相关,在社会发展的进程中扮演着至关重要的角色。

尤其是近年来,随着全球经济的飞速发展,现代社会的生产方式和生活方式使人类对能源的需求量越来越大。

然而,对能源的过渡依赖导致了传统化石能源的日益枯竭,经济高速增长的同时带来了日益严重的环境恶化问题,例如最近对我国北方地区影响很大的“雾霆”现象,以及各种自然灾害,己经开始威胁人类的生存环境。

为应对这一系列的负面效应,世界各国政府都对能源政策做出了积极调整,要求加快对新能源的开发特别是清洁可再生能源的研究利用,并提高可再生能源发电所占的比重。

在这种背景下,分布式发电(Distributed Generation, DG)受到了广泛的关注,常见的DG主要包括光伏发电、风力发电、微燃机、燃料电池等。

分布式发电与传统发电方式相比,具有污染小、成本低、安装运行方便等优点,而且分布式发电系统可以就近供电,减少线路损耗;还可以降低温室气体排放,减少环境污染,为社会提供清洁能源,实现低碳经济。

尽管分布式发电优势很明显,但是分布式发电输出功率的波动性、随机性、间歇性等特点,也给大电网带来许多问题,例如大规模的分布式电源并网时,会对大电网的电能质量以及电网安全可靠性造成很大的影响。

为了解决上述问题,充分发挥分布式发电的优势,克服分布式发电对大电网造成的不良影响,提高电力系统运行的灵活可控性,微网(Microgrid)的概念应运而生。

微网是一种由微电源(Microsources,即:微网中的分布式电源)、储能装置、能量装换装置、负荷、监控和保护装置等汇集而成的小型发配电系统,是一个能够实现自我控制、保护和管理的自治系统微网作为一个子系统与大电网相连,通过灵活的控制方式内部解决分布式电源直接并网产生的负面问题,相对于主电网来说,该子系统是可控的。

微网技术提高了电力系统运行的安全性、可靠性,为分布式电源发电规模化应用提供了新的有效技术途径。

微网已经成为电气工程研究领域的最新的热门课题之一,受到了世界各国越来越多的关注。

但是微网技术仍然存在许多问题亟待解决。

在微网中,微电源主要通过电力电子接口并入微网系统,这导致微电源的输出特性与传统发电机有很多的迥异,为保证微电源与微网之间,以及微网与主电网之间功率传输的稳定、可控,对微网协调控制策略进行深入研究具有重要的意义。

而如何控制微网中的各个微电源在线路阻抗的影响下对功率进行合理分配且使微网的电压和频率运行在正常范围内;如何实现微网运行模式的平滑、可控的切换是保证微网能够安全、稳定运行的重要条件。

1.2微电网的研究现状与前景1.2.1微电网的定义为了更充分地发挥DG的价值与效益,国内外学者在广泛研究DG运行控制的基础上提出了一个新的概念——微电网(Micro.Grid,MG)。

美国方案联合会(CERTS)对微电网的定义为:微电网是一种由负荷和分布式电源共同组成的系统,它可以向用户提供电能和热能;微电网内的电源主要由电力电子器件负责能量的转换,并提供必要的控制;微电网相对于外部大电网表现为单一的受控单元,并可以满足用户对电能质量和供电安全等方面的要求。

欧盟对微电网的定义是:微电网是一种连接到低压配电网的小型电力系统,可以充分利用一次能源,将模块化的小型分布式电源互联,提供冷、热、电联供,并配有储能装置,使用电力电子装置进行能量调节。

日本则在发电容量等级上对微电网进行分类,将微电网分为大规模(1000MW等级)、中规模(1OOMW 等级)、和小规模(1OMW等级)三类,其分别应用于工业区,可再生能源工业区以及住宅楼、岛屿和偏远地区等小型区域电网。

1.2.2 国内外徼电网的研究现状与概况国外发达国家和地区对微网率先进行了研究,提出了一种含多个分布式电源(DG)的微网能量管理系统,通过建立一个多DG的微网系统的小信号动态模型,系统地评价了微网的稳定性。

针对微网的动态稳定性问题提出了评价指标和基于神经网络的评价方法,并针对微网的不安全运行状态提出了治理措施。

对不同运行方式下的微网控制进行了研究,提出了保持微网运行稳定性的方法。

目前美国“通用电气(General Electric Company, GE)全球研究( Global Research ) "计划旨在研发出一种全新的微电网能量管理系统(Microgrid Energy Management MEM),该系统不仅能够为微电网中各种装置提供完整的保护和控制,而且可以对内部能量进行统一管理和调度。

这项计划解决了微电网中多个分布式电源之间以及分布式电源与互联元件之间的协调控制矛盾,最终满足用户负荷提出的各种需求。

美国更重视配电侧和用电侧,重点发展具有商业前景的模式,进一步研究和实现分布式发电与电力储能技术,并最终发展为高温超导电网欧盟分别通过了第五框架、第六框架和第七框架研究计划,并投资了Microgrids项目和More Microgrids项目。

Microgrids项目主要研究对象是微电网中央控制器、黑启动控制和继电保护方案,以及如何对分布式电源建模怎样实现并/离网的无缝切换等。

More Microgrids0项目研究集中体现在如下几个方面:1)多个微电网与配电网相连时需要采用的控制策略,以及各微电网间能量协调管理方案;2)系统继电保护方案和经济调度解决方案以及协调控制方案;3)微电网对配电网内部用电负荷的影响等内容。

4)微网在孤岛模式下运行下电压和频率会随着功率的波动而改变近年来,可再生能源和新能源一直备受口本电力行业的关注,其被重视程度要超过其他国家。

为此,新能源与工业技术发展组织伽ew Energy and Industrial Technology Development Organization NEDO)开发重点放在了可再生能源的发电出力预测、储能元件技术以及传统发电系统与储能装置配合工作的控制系统研究。

同时因为属于岛国,日本格外重视微电网孤岛自治运行技术研究和示范工程建设。

通过总结可以看出,因各国自身能源构造、经济模式和电力发展方向的不同,其微电网研发重点和发展目标也略有不同。

虽然我国微电网项目的研究相比西方国家来说较晚,但国家863项目、973项目、国家自然基金项目等大型科学科研政策的导向性支持,目前,国内电力企业、众多高校和科研机构逐步投入大量人力、物力和财力来资助微电网相关技术的研究,主要是在示范项目和实验室层面上对微电网的控制、运行及稳定性进行了研究。

1)国家风光储输示范工程。

该工程整合了风电、光伏发电、储能及输电工程四位于一体,并首创了世界第一套风光储输技术,并实现了对新能源的可预测、可控制和可调度。

2)国家进一步研究微电网通过公共耦合点与大电网相连接,在公共耦合点处设一个主接口,通常由微电网并网控制开关——固态断路器或背靠背式的AC/DC/AC电力电子换流器构成3) 在实际工程方面,国家电网公司建设的河南财专微电网示范工程,作为国内第一个正式投入运行的微电网试点项目,取得了良好的运行业绩和社会效益;4)浙江省电力试验研究院设计的浙江东福山岛风光柴海水淡化综合系统,安装7台单机容量30kW的风力发电机组、100kWp的光伏发电系统及一套50t/d海水淡化系统,总装机容量300kW,并装设有蓄电池组进行调节,是目前国内最大的离网型综合微电网系统。

1.3微电网运行控制研究现状与发展趋势1.3.1系统控制层面目前针对微电网的运行控制,国内外研究人员主要提出了三种控制方式:主从控制、基于多代理系统的分布式控制和对等控制。

i)主从控制,首先通过中央控制器(Micro Grid Central Controller,MGCC)对布式电源的发电功率和负荷需求进行预测,制定相应的运行计划;然后检测系统中各种电气量对运行计划进行实时调整,借助通信统一控制“从属”DG和可控负荷的启停和输出来维持系统的功率平衡,使电压频率稳定在额定值。

主从控制是一种常规的控制方式,研究和应用的比较多。

相关文档
最新文档