微电网并网控制与保护论述

合集下载

微网的控制与保护策略研究

微网的控制与保护策略研究

微网的控制与保护策略研究随着分布式能源的快速发展,微网作为一种灵活、高效的能源管理系统,逐渐受到人们的。

微网的控制与保护策略是实现其稳定、安全运行的关键。

本文将围绕微网的控制与保护策略进行研究,旨在为相关领域提供有益的参考。

关键词:微网、控制、保护、策略、分布式能源、稳定性、安全性分布式能源系统由于其节能、环保、高效的特性而逐渐得到广泛应用。

微网作为分布式能源的重要组成部分,其控制与保护策略的研究具有重要意义。

微网的控制策略旨在维持系统稳定性,提高电能质量,而保护策略则旨在确保系统安全,防止故障发生。

本文将针对微网的控制与保护策略进行深入探讨。

微网控制策略是实现其高效运行的关键。

微网中的电压控制、功率控制以及闭环控制等策略对于维持系统稳定性具有重要意义。

电压控制策略是通过调节分布式能源的输出电压,确保微网内的电压稳定。

功率控制策略则是对微网的输出功率进行调节,以实现对其功率的精确控制。

闭环控制策略则是在电压控制和功率控制的基础上,通过反馈信息形成闭环控制系统,进一步提高微网的稳定性和电能质量。

微网保护策略是确保系统安全的关键。

电压保护、电流保护以及功率因数保护等策略在防止微网故障中具有重要作用。

电压保护策略是通过监测微网的电压值,当电压超出安全范围时,系统自动采取保护措施,以确保设备不受到损害。

电流保护策略则是通过监测微网的电流值,当电流超出安全范围时,系统自动切断电源,以防止故障扩大。

功率因数保护策略则是通过监测微网的功率因数值,当功率因数过低时,系统会自动调整,以提高电能利用率,同时防止设备过热。

随着微网技术的不断发展,越来越多的研究者投入到微网控制与保护策略的研究中。

目前,国内外的相关研究主要集中在以下几个方面:控制算法研究:研究者们不断尝试应用各种先进的控制算法,如模糊控制、神经网络控制等,以进一步提高微网的控制效果和响应速度。

保护措施研究:针对微网可能出现的各种故障,研究者们致力于研究更加快速、准确的保护措施。

科技成果——微电网并网运行及接入控制关键技术

科技成果——微电网并网运行及接入控制关键技术

科技成果——微电网并网运行及接入控制关键技术技术类别零碳技术适用范围电力行业微电网领域行业现状分布式发电/微电网并网运行及接入控制关键技术,包含分布式电源的并网接入和微电网的运行控制技术两方面内容。

近年来,随着能源安全和环境污染问题日益突出,为了实现可持续发展,我国政府加大了可再生能源发电及清洁能源利用技术的推广和应用力度。

分布式发电是可再生能源利用的重要形式,也是传统大电网的必要补充。

作为智能电网的关键技术之一,微电网并网接入控制及运行控制技术具有较大发展潜力。

五、技术内容技术原理该技术是以可再生能源利用为基础的微网技术。

针对分布式电源(微电网)并网点处并网设备冗余、安全维护性差的缺点,通过先进的集成技术,实现保护、通信、电能质量监测、远动、计量等功能一体化。

通过区域性系统管理平台(微网领域使用微网运行控制器)实现区域内各类电源的协调运行,不仅增加了可再生能源供给的稳定性,同时也提高了可再生能源的使用效率,为可再生能源高效利用提供了保障,可减少化石能源的消耗,实现碳减排。

关键技术(1)分布式电源(微电网)保护、测控、通讯、远动、电能质量监测、抄表等多种管控功能的集成化应用技术。

(2)分布式电源的管控与即插即用技术分布式电源的管控与即插即用技术是实现主站对分布式电源的优化调度、管理,以及分布式电源友好并网的基础。

该技术构建了基于IEC61850标准的分布式电源并网标准模型,对主站采用标准信息交互接口,分布式电源建成后通过模型一致性测试,即可接入主站接受调度。

布式电源接入控制系统整体架构图(3)基于全景监测技术的多时间尺度分布式电源/微电网协调调度策略基于各种清洁能源的特点,从环境和经济效益出发,以储能系统作为动态调节单元,采用多能源互补方法实现能量供需平衡。

并网运行情况下,微电网调度控制器按照既定的目标函数(分布式电源最大化利用/峰谷电价策略/储能最优化利用等),实现特定的运行结果。

离网运行情况下,微电网调度控制器将以微电网的电压频率稳定为基础,以微电网的长期运行为目标函数,最大时间、最大程度的支撑负荷。

微电网运行控制与保护技术

微电网运行控制与保护技术

微电网运行控制与保护技术发布时间:2022-05-26T02:00:02.956Z 来源:《福光技术》2022年11期作者:董茂华[导读] 随着能源危机和环境污染等问题的加剧以及能源需求的增加,绿色发展理念深入人心,可再生能源整合进电网成为一种不可避免的趋势。

目前,将风能和太阳能以微电网(MG)的形式整合进电网受到了广泛关注。

国网四川阿坝州电力有限责任公司四川阿坝州 623200摘要:工业化浪潮掀起以来,传统能源被大量消耗,环境污染问题也在日益突出。

在这种整体环境下,新能源的开发和利用越发受到人们的关注,我国也在风能发电和太阳能发电等领域做出了积极探索,并取得了一定的成就。

不过需要注意的是,分布式发电的间歇性始终会对电网安全产生不利影响。

为了妥善解决这些问题,为新能源技术的应用提供设备支持,研究微电网的运行控制与保护就显得尤为重要。

关键词:微电网;运行控制;保护技术1微电网运行控制随着能源危机和环境污染等问题的加剧以及能源需求的增加,绿色发展理念深入人心,可再生能源整合进电网成为一种不可避免的趋势。

目前,将风能和太阳能以微电网(MG)的形式整合进电网受到了广泛关注。

MG不仅能够为当地用户提供不间断供电,而且可以为电力系统带来多重技术上益处,如降低网络损耗、提高电压质量,从而提高电力系统的经济性和安全性。

然而,与传统的发电模式不同,MG中分布式电源(DG)的出力具有不确定性,可能造成能源的浪费。

储能装置的应用能够在一定程度上平衡DG出力的随机性。

此外,大量运行条件和每个DG运行的差异为电网的安全和经济运行带来巨大挑战。

微电网的运行控制主要分为主从控制和对等控制。

主从控制一般用于孤岛运行状态,分为主要部分及从属部分。

主要部分一般由比较稳定可靠的大容量蓄电池来充当;从属部分的要求相对较低。

而在对等控制下,微电网内的电源具有同等的地位。

微电网系统内的电源根据其本身的特点来选择对应的工作方式,各电源彼此间不需要联络线通信,实现了“即插即用”。

浅述微电网系统并网运行控制策略

浅述微电网系统并网运行控制策略
⑤检查储能单元当日充放电次数是否越限。 若 越限,则发储能充放电次数越限告警。
⑥检查储能单元 SOC 是否越限。 若是充电指 令,检查储能单元当前 SOC 是否越上限;若是放电 指令,检查储能单元当前 SOC 是否越下限。 若 SOC 越限,则告知用户及电网调度 SOC 越限,进入步骤 ⑦;否则,进入步骤⑧。
2风光储联合功率控制光伏发电和风力发电的出力易受到外部气象因素影响出力会有波动可根据分布式发电预测与负荷预测的结果科学控制微电网内储能单元出力弥补风光发电实时波动性使风光储联合发电出力稳定在一定的范围内满足稳定供电的要求这就是风光储联合功率控制
研究与发展
2020年第 1期
青海科技
浅述微电网系统并网运行控制策略
⑦若 SOC 低于下限,下达充电指令,储能单元 以较大功率充电;若 SOC 高于上限,下达放电指令, 储能单元以较大功率放电。 直到 SOC 恢复到某一设 定值。
⑧按照计算目标值下达储能充放电指令并检查 执行情况。 若风光出力实时监测值与预设出力有出 入,超过允许范围,则返回④,再次根据当前风光实 时出力情况计算储能单元的出力目标值并下达充放 电指令,直到进入风光出力预测下一时段。
与计划控制相比,风光储联合功率控制策略对 储能系统的控制提出了更高的要求,计划控制策略 中,储能系统大部分时候是恒功率运行;而在风光储 联合功率控制策略中,储能系统主要进行变功率充 放电运行。 为减少储能系统日充放电次数,提高储 能系统的使用寿命,要合理选取 PM 计算参数。 2.2 基于混合储能的功率平滑控制
以储能单元的充放电计划控制为例,详细步骤 如下:
①读取储能单元充放电计划控制曲线,检查储 能单元运行状态。 若储能单元处于停机状态,下达 并网开机指令;若储能单元处于正常运行状态,进入 步骤②。

智能微电网的保护与控制

智能微电网的保护与控制

智能微电网的保护与控制摘要:随着新能源的快速发展以及智能化技术的日益成熟,智能微电网的研究越来越受到人们的重视。

本文对智能微电网最新发展展开了综述,从智能微电网的概述及特点、智能微电网的保护技术以及控制技术等方面进行了总结研究,并从电力市场背景下及新能源背景下进行了智能微电网未来发展的展望,为智能微电网的实用化和应用推广提供了理论参考。

关键词:智能微电网;保护技术;控制技术1 智能微电网概述智能微电网是集成先进电力技术的分散独立供能系统,靠近用户侧,容量相对较小,将分布式电源、负荷、储能元件及监控保护装置等有机融合,形成了一个单一可控单元;通过静态开关在公共连接点与上级电网相连,可实现孤岛与并网模式间的平滑转换;就近向用户供电,减少了输电线路损耗,增强了抵御来自上级电网故障影响的能力。

当上级电网发生故障或电能质量不能满足要求时,微电网切换到孤岛模式下运行,保证自身安全稳定运行。

综上所述,智能微电网主要具有以下特点:(1)自治性:微电网是由分布式电源、负荷、储能单元构成的小型系统,运行方式灵活,可以独立自治运行,实现自我控制、保护与管理。

(2)互动性:微电网运行控制在采集分布式单元信息的基础上,实现了配电网、微电网、控制器间的互动通信。

(3)多元性:微电源构成多元化,有热电联产燃气轮机、柴油机等高效低污染电源及风力、光伏发电单元。

负荷类型多元化,有敏感型、非敏感型,可控型、非可控型等。

2 智能微电网的保护技术与传统大电网的保护策略不同,在进行智能微电网保护技术的设计时要注意以下问题:(1)智能微电网内部的短路电流是双向的;(2)在并网和孤岛两种运行模式下,智能微电网的短路电流有明显差异;(3)智能微电网系统中可能含有不同类型的分布式电源,各种分布式电源的短路电流差异较大;(4)更短的故障切除时间;(5)微电网的拓扑结构会发生变化。

为确保智能微电网保护策略的成功实施,在进行智能微电网保护技术的设计过程中必须解决以下关键问题:(1)建立智能微电网以及各分布式电源的故障特征模型。

微电网控制与保护学习心得

微电网控制与保护学习心得

微电网控制与保护学习心得摘要:本文介绍了文献查阅后总结的微电网的基本知识和微电网控制与保护相关的一些问题。

微电网的出现协调了大电网与分布式电源的矛盾,对大电网表现为单一的受控单元,对用户则表现为可定制的电源,可以提高本地供电可靠性,降低馈线损耗。

但是目前我国微电网的发展尚处于起步阶段,还有很多问题有待研究。

微电网的保护和控制问题是目前分布式发电供能系统广泛应用的主要技术瓶颈之一。

微电网的保护既要克服微电网接入对传统配电系统保护带来的影响,又要满足含微网配电系统对保护提出的新要求,这方面的研究是保证分布式发电供能系统可靠运行的关键。

文中提出了一些现有的文献中提及的微电网继电保护方法和保护方案。

关键词:微电网;控制;保护;分布式发电Abstracts:This article describes the literature review after the conclusion of the basics of micro grid and micro grid control and protection-related problems. The emergence of micro-coordination of a large power grid and distributed power conflicts, the performance of a single large power controlled unit, users can customize the performance of the power supply, can improve local supply reliability and reduce feeder loss. But at present, the development of micro-grid is still in its infancy, there are many problems to be studied. Microgrid protection and control of distributed power generation is widely used for energy systems one of the main technical bottlenecks. Microgrid protection is necessary to overcome the Microgrid access to protect the traditional distribution system impact, but also to meet with micro network distribution system to protect the new requirements, this research is to ensure that distributed generation energy supply system reliable operation of the key. This paper presents some of the existing literature mentioned methods and microgrid relay protection scheme.Key Words:Microgrid; Control; Protection; Distributed Power Generation一、微电网基本知识当前电力系统已成为集中发电、远距离高压输电的大型互联网络系统。

微电网并网控制与保护论述

微电网并网控制与保护论述

微电网并网控制与保护论述摘要:介绍了微电网概述及其发展现状,并对其控制和保护方面进行了分析。

关键词:微电网;控制;保护中图分类号:tm770引言微电网从系统来看,是将发电机、负荷、储能装置及控制装置等结合,形成一个单一可控的单元,同时向用户供给电能和热能。

与传统集中式能源供电系统相比,微电网接近负荷,可以减少线损,节省输配电建设投资和运行费用;微电网有以下几方面特点,首先由于分布式电源的灵活性可就地供电,解决了电力系统输配电中存在的一些问题提高了供电可靠性。

其次,微电网中电源包括风力发电机、光伏电池、小型燃气轮机以及超级电容等,随着微网的运用有利于可再生能源在我国的发展。

再次,微电网采取电能在靠近用户的地方生产并直接为用户供电的方式能够有效减少对集中式大型发电厂电力生产的依赖以及远距离电能传输、多级变送的损耗,从而延缓电网投资,降低网损有利于建设节约型社会。

微电网的特点适应中国电力发展的需求与方向,在中国有着广阔的发展前景。

但是微网接入大电网还存在很多问题,如分布式电源供电的可靠性、电能质量和供电效率等问题,为了保证稳定、可靠的系统运行,需要对接入电网的微源发电系统进行有效的控制是解决问题的有效方法之一。

欧盟把微网定义为:“充分利用一次能源,将小的、模块化的分布式电源互联,能实现冷、热、电联供,配有储能装置,连接到低压配电网的系统”。

光伏、燃料电池和微型燃气轮机通过电力电子接口连接到微网,小的风力发电机直接连接到微网,中心储能单元被安装在交流母线侧。

美国电气可靠性技术解决方案联合会(certs)和威斯康辛大学定义微网为:“微网是一个由负载和分布式电源组成的独立可控系统,对当地提供电能和热能”。

采用微型燃气轮机和燃料电池作为主要的电源,储能装置连接在直流侧与分布式电源一起作为一个整体通过电力电子接口连接到微网。

其控制方案相关研究重点是分布式电源的“即插即用”式控制方法。

到目前为止,他们不允许微网向大电网供电。

新能源电网中微电源并网的控制方法探讨

新能源电网中微电源并网的控制方法探讨

新能源电网中微电源并网的控制方法探讨摘要:微电网作为当前环境中电力系统的发展方向,受到了各界广泛关注。

微电网在运行状态中,对逆变器的控制提出了较高要求,为了保障电能质量达标,技术人员需要保障频率、电压值被控制在合理范围中,因此有效解决并联组网问题,对微电网的发展具有重要意义。

关键词:新能源电网;微电源;并网控制1、微电网的基本结构微电网的构成要素包括:控制系统、储能装置、电力负荷等,电力电子作为电网和微电源的接口,能够保障系统正常运行。

为了保障电力负荷中的电能发挥作用,微电网的运行模式通常为:单独运行、并网运行。

当电能质量不符合系统规范时,微电网能够及时启动独立运行状态。

微电网呈放射状,通过外部电网与静态开关相连接。

微电网系统被静态开关划分为两个模块:馈线在连接过程中设置了微电源,支持本地供电。

当电网发生故障后,电网将进入独立运行状态;当非敏感负荷和馈线相连后,电网能够承载这些部件的运行。

由于微电网配置中设有潮流控制器、能量管理器,因此技术人员能够对微电网进行科学控制。

当负荷出现变化后,潮流控制器会参照电压情况、频率值进行潮流参数调整工作,对微电源的功率进行合理的减少、增加,可以达到整个微电网系统的平衡效果。

2、微电源定义及分类所谓的微电源就是指微电网中的逆变器、分布式电源及储能装置,其大致可以分为以下两类:第一类,传统的电机,如小型柴油发电、水力发电、潮汐和生物能发电。

第二类是与电网直接相连的电力电子型电源,同时也叫做逆变电源。

将逆变电源进行细分又可以分为以下类别:①燃料电池、飞轮储能、储蓄电池等直流电源;②小型燃气轮机、小型风力发电等高频交流电源,这种电源通过整流、逆变转化为交流。

由于第二类电源在微电网中具有明显的优势,因此未来的逆变电源将会发展的十分迅速,与常规电源相比,它的电压调整和控制方式比较特殊,因此需要制定相应的控制策略,来实现大规模微电源并入电网。

3、新能源电网中微电源并网控制对策3.1控制策略综述①电压的要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微电网并网控制与保护论述
作者:杨浩亮秦立军
来源:《中国科技博览》2013年第24期
摘要:介绍了微电网概述及其发展现状,并对其控制和保护方面进行了分析。

关键词:微电网;控制;保护
中图分类号:TM77
0引言
微电网从系统来看,是将发电机、负荷、储能装置及控制装置等结合,形成一个单一可控的单元,同时向用户供给电能和热能。

与传统集中式能源供电系统相比,微电网接近负荷,可以减少线损,节省输配电建设投资和运行费用;微电网有以下几方面特点,首先由于分布式电源的灵活性可就地供电,解决了电力系统输配电中存在的一些问题提高了供电可靠性。

其次,微电网中电源包括风力发电机、光伏电池、小型燃气轮机以及超级电容等,随着微网的运用有利于可再生能源在我国的发展。

再次,微电网采取电能在靠近用户的地方生产并直接为用户供电的方式能够有效减少对集中式大型发电厂电力生产的依赖以及远距离电能传输、多级变送的损耗,从而延缓电网投资,降低网损有利于建设节约型社会。

微电网的特点适应中国电力发展的需求与方向,在中国有着广阔的发展前景。

但是微网接入大电网还存在很多问题,如分布式电源供电的可靠性、电能质量和供电效率等问题,为了保证稳定、可靠的系统运行,需要对接入电网的微源发电系统进行有效的控制是解决问题的有效方法之一。

欧盟把微网定义为:“充分利用一次能源,将小的、模块化的分布式电源互联,能实现冷、热、电联供,配有储能装置,连接到低压配电网的系统”。

光伏、燃料电池和微型燃气轮机通过电力电子接口连接到微网,小的风力发电机直接连接到微网,中心储能单元被安装在交流母线侧。

美国电气可靠性技术解决方案联合会(CERTS)和威斯康辛大学定义微网为:“微网是一个由负载和分布式电源组成的独立可控系统,对当地提供电能和热能”。

采用微型燃气轮机和燃料电池作为主要的电源,储能装置连接在直流侧与分布式电源一起作为一个整体通过电力电子接口连接到微网。

其控制方案相关研究重点是分布式电源的“即插即用”式控制方法。

到目前为止,他们不允许微网向大电网供电。

日本没有明确给出微网定义,但是在发展微网展示平台方面做出了重要贡献。

2微电网控制与保护的研究
2.1控制
微网运行有三种状态:并网运行、孤岛运行、并网运行和孤岛运行之间转换的过渡过程。

为保证微网安全有效的运行,在微网结构和负荷发生变化时仍能发挥最大效能,对微网的
控制则显得尤为重要。

微网并网模式下的控制技术:微网中微源大多是通过逆变器接入电网的,对微网的控制即转变为对逆变器的控制。

而微网是基于不间断电源(UPS)并联思想提出来的,在实际中,基于传统发电机系统下垂特性的逆变器并联技术得到了广泛的运用。

微网孤岛模式下的控制技术:基于多代理技术的控制策略,该方法将传统电力系统中的多代理技术应用于微网系统中。

微网控制系统使用多代理系统,可以比集中式控制包含更多的信息,在优化方法和决策控制过程上提高效率,由于每个代理都是相互独立的,每一个代理加入电网时,其他代理就会根据所设定的逻辑关系迅速地调整控制策略。

但是其优越性仅仅是在管理层面,至于微网电能质量的控制在多代理系统中没有深入。

现阶段对多代理系统的研究还不够成熟,没有形成完整的体系,但是其策略还是比较新颖的,应该能够成为日后研究的热点;主从控制,至少应该有一个微源为整个系统提供电压和频率支持,并且电压和频率的变化应该在规定的范围之内;其他微源采用PQ控制策略。

一般微网综合控制目标为:
(l)由故障反馈情况或微网自身的需要,与主网之间实现平滑自主的分离、并列或是两者的过渡转化运行,从而保证其在并网和孤岛运行方式之间的平滑、可控的切换,并能灵活调节微网内的馈线潮流对无功和有功进行独立解耦控制,实现不同模式下微网内负荷和微型电源间供需平衡;
(2)确保较大的感性电流环流不会出现在电源之间,因此需调节每个微型电源接口处的电压,保证电压的稳定性;
(3)在孤网运行时确保电压、频率或调差控制微型电源能快速响应并分担由主网提供的负荷。

2.2保护
与大电网不同,微网的保护与运行具有自己的特殊性:
(1)微网潮流
内部的结构决定了微网的双向潮流特性,传统保护中的选择性原则在微网保护中较难满足。

微网中一般根据不同电源的特点采取不同的控制方式,对于风力发电和光伏发电这些输出功率受天气影响比较大的电源,若通过配备储能装置的方法使这类电源根据负荷需求调整发电量,则需要配备较大容量的储能装置,这会降低系统的经济性,因此这类可再生能源的目标是保持最大的利用率,分布式电源能输出多少功率就输出多少功率,微网设计时一般会满足此类电源“即插即用”的特点。

这就加剧了微网中潮流流动的不确定性,设计保护方法时应尽可能做到不受潮流的影响。

(2)通信
在同等电压等级配电网中一般较少采用基于通信的保护。

微网中,故障的判断较为复杂,有时需要利用多点的信息;为了维持微网的稳定,也需要确保故障能够及时地切除。

基于通信的保护可以很好地完成这些功能。

(3)DG不同控制方式与保护的对应
DG 的控制是微网控制的基础,目前关于 DG的控制方法的研究比较多,常见的有恒压恒频控制、PQ 控制、P-f,Q-V 下垂控制、f-P,V-Q 下垂控制等。

不同方法的控制模块输入量及其所控制DG 的输出量不同,当控制方式中没有加入任何针对故障的模块时,故障情况下,控制方式也会使所控制 DG 的输出量向参考值靠近,从而引起可以用以保护的电气量例如电压、电流等发生失常变化。

在对分布式电源控制方法进行设计时,应该考虑到故障情况并采取必要措施,例如数值限幅,跳闸时间配合等;同时保护方式也应该充分地考虑到DG 控制方式的影响,设计与对应控制方式相协调的保护或是可适用于任何控制方式的保护。

(4)故障切除时间
微网中的分布式电源多采用电力电子接口,这使得微网具有缺少惯性、响应速度快等特点。

若采用配电网相同电压等级下的故障切除时间,容易使微网系统失去稳定。

故障切除时间还应该考虑到负荷的敏感程度,保证故障切除后系统还能保持稳定。

例如,电动机负荷所占的比例越大,临界故障切除时间越短;三相短路故障点离感应电动机负荷点越近,临界故障清除时间越短。

3结论
在能源日益紧缺的背景下,可再生能源、新能源的开发利用普遍受到重视,微网在提高供电可靠性、改善电能质量、节约能源与环保等方面的突出优点都决定了微网的研究具有现实意义和价值,也将是今后电力系统发展的重要课题。

参考文献
[1] 鲁宗相,王彩霞,闵勇等.微网研究综述[J].电力系统自动化,2007,3l(19):100-107.
[2] 左文霞,李澍霖,等.微电网技术及发展概况[J].中国电力,2009,(7):26-30.
[3] 盛鹍,孔力,齐智平,等.新型电网—微电网(Microgrid)研究综述[J].继电器,2007。

相关文档
最新文档