六年级奥数秋季班-(第16讲)小升初行程重点考查内容-(公式类行程问题)

合集下载

小升初典型奥数:行程问题(讲义)-2023-2024学年六年级下册数学全国通用

小升初典型奥数:行程问题(讲义)-2023-2024学年六年级下册数学全国通用
2.学校组织学生步行去野外实习,每分钟走80米,出发9分钟后,班长发现有重要东西还在学校,就以原速度返回,找到东西再出发时发现又耽搁了18分钟,为了在到达目的地之前赶上队伍他改骑自行车,速度为260米/分,当他追上学生队伍时距目的地还有120米.求走完全程学生队伍步行需多长时间?
3.A,B两地相距540千米.甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快.设两辆车同时从A地出发后第一次和第二次相遇都在途中P地.那么到两车第三次相遇为止,乙车共走了多少千米?
13.上海小学有一长 米长的环形跑道,小亚和小胖同时从起跑线起跑,小亚每秒钟跑 米,小胖每秒钟跑 米.
小亚第一次追上小胖时两人各跑了多少米?
小亚第二次追上小胖两人各跑了多少圈?
14.龟兔进行1000米的赛跑,小兔心想:我1分钟能跑100米,而你乌龟每分钟只能跑10米,哪是我的对手.比赛开始后,当小兔跑到全程一半时,发现把乌龟甩得老远,便在路旁睡着了.当乌龟跑到距终点还有40米时,小兔醒了拔腿就跑.当胜利者到达终点时,另一个距终点还有几米?
10.甲乙两车从相距800千米的两地同时相向而行,已知甲车每小时行42千米,乙车每小时行58千米,两车相遇时乙车行了多少千米?
11.一列火车通过一条长1260米的桥梁(车头上桥到车尾离桥)用了60秒,用同样的速度火车穿越2010米的隧道用了90秒,这列火车的车速和车身长度分别是多少?
12.甲、乙两站从上午6时开始每隔8分同时相向发出一辆公共汽车,汽车单程运行需45分。有一名乘客乘坐6点16分从甲站开出的汽车,途中他能遇到几辆从乙站开往甲站的公共汽车?
=54000÷10÷60
=90(分钟)
他们应该是7:30出发的。
答:小明和小红出发时间是7:30。

小升初行程重点考查内容————(行程方法技巧总结——S—T图)

小升初行程重点考查内容————(行程方法技巧总结——S—T图)

千里之行,始于足下。

小升初行程重点考查内容(★★☆)龟兔从同一起点举行赛跑,兔子在途中睡觉歇息,直到乌龟从身边跑过一段时光后,兔子醒来再起身向前跑去。

兔子总算以率先100米的成绩取胜,求比赛路程是多少米?(★★★☆)甲、乙两人分离从A、B两地同时出发,在A、B之间不断往返前进。

当甲第三次到达B地时,乙恰好第5次回到B地,请问:在甲、乙两人行进的过程中,共相遇多少次?(迎面相遇和追上都算相遇)(★★★★)甲、乙两地间有一条马路,铮铮从甲地出发步行去乙地,同时昊昊从乙地出发骑第 1 页/共 3 页朽木易折,金石可镂。

摩托车去甲地。

80分钟后两人在途中相遇。

昊昊到达甲地后赶紧折回乙地,在第一次相遇后又经过20分钟在途中追上铮铮。

昊昊到乙地后又赶紧折回甲地,这样向来下去。

当铮铮到达乙地时,昊昊共追上铮铮多少次?(★★★★)一条大河,水由A港流向B港,流速4千米/时,甲、乙两船同时由A向B行驶,各自不停的在A、B之间往返航行,甲船在静水中的速度是28千米/时,乙船在静水中的速度是20千米/时,已知两船第二次迎面相遇的地点与两船第五次相遇的地点相距50千米,那么A、B两港相距______千米。

(★★★★☆) (1994年第10届北京市小学“迎春杯”第二大题第9题)男、女两名田径运动员在长110米的斜坡上练习跑步(坡顶为A,坡底为B)。

两人同时从A点出发,在A、B之间不停地往返奔走。

倘若男运动员上坡速度是每秒3米,下坡速度是每秒5米;女运动员上坡速度是每秒2米,下坡速度是每秒3米,那么两人第二次迎面相遇的地点离A点_______米。

千里之行,始于足下。

第 3 页/共 3 页。

六年级奥数(行程问题)

六年级奥数(行程问题)

学习改变命运,思考成就(chéngjiù)未来!姓名(xìngmíng) _______________行程问题是我们在小学应用题中经常会遇到的,其中还包括水流问题以及一些特殊的行程问题我们在解决(jiějué)行程问题前,要牢记以下公式行程问题是研究(yánjiū)物体运动的,它研究的是物体速度、时间、行程三者之间的关系。

基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间路程一定,时间(shíjiān)和速度成反比速度一定,路程和时间成正比时间一定,路程和速度成正比关键问题:确定行程过程中的位置相遇问题:速度和×相遇时间=相遇路程相遇路程÷速度和=相遇时间相遇路程÷相遇时间= 速度和追及问题:追及时间=路程差÷速度差速度差=路程差÷追及时间追及时间×速度差=路程差追及问题:(直线):距离差=追者路程-被追者路程=速度差X追击时间追及问题:(环形):快的路程-慢的路程=曲线的周长流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷21、甲乙两车同时从AB两地相对开出。

甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。

求AB两地相距多少千米 ?2、一辆客车和一辆货车分别从甲乙两地同时相向开出。

货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。

甲乙两地相距多少千米?3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。

现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。

求乙绕城一周所需要的时间?4、甲乙两人同时从A地步行走向B地,当甲走了全程的1\4时,乙离B地还有640米,当甲走余下的5\6时,乙走完全程的7\10,求AB两地距离是多少米?5、甲,乙两辆汽车同时从A,B两地相对(xiāngduì)开出,相向而行。

六年级数学行程问题四种类型专讲完整版讲解

六年级数学行程问题四种类型专讲完整版讲解

六年级行程问题专讲第一部分:相遇问题知识概述:行程问题是研究相向运动中的速度、时间和路程三者之间关系的问题,(涉及两个或两个以上物体运动的问题)指两个运动的物体同时由两地出发相向而行,在途中相遇,这类应用题叫做相遇问题。

数量关系:总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)另一个速度=甲乙速度和-已知的一个速度注:(1)在处理相遇问题时,一定要注意公式的使用时二者开始运动那一刻所处的状态;(2)在行程问题里所用的时间都是时间段,而不是时间点(非常重要);(3)无论是在哪类行程问题里,只要是相遇,就与速度和有关。

解题秘诀:(1)必须弄清物体运动的具体情况,运动方向(相向),出发地点(两地),出发时间(同时、先后),运动路径(封闭、不封闭),运动结果(相遇)等。

(2)要充分运用图示、列表等方法,正确反映出数量之间的关系,帮助我们理解题意,迅速的找到解题思路。

典型例题:例1.东西两地相距60千米,甲骑自行车,乙步行,同时从两地出发,相对而行,3小时后相遇。

已知甲每小时的速度比乙快10千米,二人每小时的速度各是多少千米?习题:一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,相向而行,汽车每小时行50千米,摩托车每小时行40千米,8小时两车相距多少千米?例2.甲港和乙港相距662千米,上午9点一艘“名士”号快艇从甲港开往乙港,中午12点另一艘“日立”号快艇从乙港开往甲港,到16点两艇相遇,“名士”号每小时行54千米,“日立”号的速度比“名士”号快多少千米?习题:甲乙两地的路程是600千米,上午8点客车以平均每小时60千米的速度从甲地开往乙地。

货车以平均每小时50千米的速度从乙地开往甲地。

要使两车在全程的中点相遇,货车必须在上午几点出发?例3.甲骑摩托车,乙骑自行车,同时从相距126千米的A 、B 两城出发相向而行。

3小时后,在离两城中点处24千米的地方,甲、乙二人相遇。

六年级奥数行程问题

六年级奥数行程问题

行程问题的三个基本量是距离、速度和时间。

其互逆关系可用乘、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;(3)追及问题。

行 程问题的主要数量关系是:距离=速度×时间。

它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和×时间。

(3)同向而行:速度慢的在前,快的在后。

追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。

追及距离=速度差×时间。

解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。

两辆汽车同时从某地出发,运送一批货物到距离165千米的工地。

甲车比乙车早到8分钟,当甲车到达时,乙车还距工地24千米。

甲车行完全程用了多少小时?解答本题的关键是正确理解“已知甲车比乙车早到8分钟,当甲车到达时,乙例题专题简行程问题(一)车还距工地24千米”。

这句话的实质就是:“乙48分钟行了24千米”。

可以 先求乙的速度,然后根据路程求时间。

也可以先求出全程165千米是24千米的多少倍,再求甲行完全程要用多少小时。

解法一:乙车速度:24÷48×60=30(千米/小时)甲行完全程的时间:165÷30—4860=4.7(小时) 解法二:48×(165÷24)—48=282(分钟)=4.7(小时)答:甲车行完全程用了4.7小时。

1、甲、乙两地之间的距离是420千米。

两辆汽车同时从甲地开往乙地。

第一辆每小时行42千米,第二辆汽车每小时行28千米。

第一辆汽车 到乙地立即返回。

两辆汽车从开出到相遇共用多少小时?2、A 、B 两地相距900千米,甲车由A 地到B 地需15小时,乙车由B 地到A 地需10小时。

两车同时从两地开出,相遇时甲车距B 地还有多少千米?3、甲、乙两辆汽车早上8点钟分别从A 、B 两城同时相向而行。

小学六年级奥数——行程问题

小学六年级奥数——行程问题

⼩学六年级奥数——⾏程问题第1节怎样学好⾏程问题?——从杯赛必考知识点说起⼀、从99.26%到100%!在各类数学竞赛试卷中,⾏程问题的考察⽐例达到了99.26%,重要性可想⽽知。

⽽在历届某杯赛邀请赛中,⽆论是初赛还是决赛,对于⾏程问题的考察⽐例为100%!很显然,⽆论是杯赛的初赛还是决赛,⾏程问题为必考点!并且在杯赛前三届决赛中⾏程问题都作为压轴题出现!⼆、为什么⼩学⽣⾏程问题普遍学不好?1、⾏程问题的题型多,综合变化多。

⾏程问题涉及的变化较多,有的涉及⼀个物体的运动,有的涉及多个物体的运动。

涉及两个物体运动的,⼜有“相向运动”(相遇问题)、“同向运动”(追及问题)和“相背运动”(相离问题)三种情况。

⾏程问题每⼀类型题的考察重点都不⼀样,往往将多种题型综合起来考察。

⽐如遇到相遇问题关键要抓住速度和,追击问题则要抓住速度差,流⽔⾏船中的相遇追及问题要注意跟⽔速⽆关等等。

2、⾏程问题要求学⽣对动态过程进⾏演绎和推理。

奥数中静态的知识学⽣很容易学会。

打个⽐⽅,⽐如数线段问题,学⽣掌握了⽅法,依葫芦画瓢就⾏。

⼀般情况,静态的奥数知识,学⽣只要理解了,就能容易做出来。

⾏程问题难就难在过程分析是动态的,甲⼄两个⼈从开始就在运动,整个过程来回跑。

学⽣对⽂字题描述的过程很难还原成对应的数学模型,不画图,习惯性的在脑海⾥分析运动过程。

还有的学⽣会⽤⼿指,⽤橡⽪模拟,转来转去往往把⾃⼰都兜晕了还是没有搞明⽩这个过程,更别说找出解题所需要的数量关系了。

三、⾏程问题“九⼤题型”与“五⼤⽅法”。

很多学⽣对⾏程问题的题型不太清楚,对⾏程问题的常⽤解法也不了解,那么我给⼤家归纳⼀下。

1、九⼤题型:⑴简单相遇追及问题;⑵多⼈相遇追及问题;⑶多次相遇追及问题;⑷变速变道问题;⑸⽕车过桥问题;⑹流⽔⾏船问题;⑺发车问题;⑻接送问题;⑼时钟问题。

2、五⼤⽅法:⑴公式法:包括⾏程基本公式、相遇公式、追及公式、流⽔⾏程公式、⽕车过桥公式,这种⽅法看似简单,其实也有很多技巧,使⽤公式不仅包括公式的原形,也包括公式的各种变形形式,⽽且有时条件不是直接给出的,这就需要对公式⾮常熟悉,可以推知需要的条件。

小升初行程问题

小升初行程问题

小升初行程问题本文介绍了常见的行程问题公式,包括一般行程问题公式、相遇问题公式、追及问题公式、火车过桥公式和流水行船公式等。

同时,还给出了一些例题,供读者练。

一般行程问题公式很简单,即速度×时间=路程,路程÷时间=速度,路程÷速度=时间。

相遇问题公式是速度和×相遇时间=相遇路程,相遇路程÷相遇时间=速度和,相遇路程÷速度和=相遇时间。

追及问题公式是速度差×追及时间=追及距离,追及距离÷追及时间=速度差,追及距离÷速度差=追及时间。

火车过桥公式是火车速度×过桥时间=车长+桥长。

流水行船公式是顺水速度=船速+水速,逆水速度=船速-水速,船速=(顺水速度+逆水速度)÷2,水速=(顺水速度-逆水速度)÷2,顺水速度=逆水速度+水速×2,逆水速度=顺水速-水速×2.下面给出一些例题供读者练:例1:甲乙二人同时从两地出发,相向而行。

走完全程,甲需要60分钟,乙需要40分钟。

出发后5分钟,甲因忘带东西而返回出发点,取东西又耽误了5分钟。

甲再次出发,多长时间后两人相遇?例2:两列火车从甲、乙两地相向而行,慢车从甲地到乙地需要8小时,比快车从乙地到甲地多用1小时的时间。

如果两车同时开出,那么相遇时快车比慢车多行40千米。

求甲、乙两地的距离。

例3:一艘轮船顺流航行120千米,逆流航行80千米共用了16小时,逆流航行120千米也用了16小时。

求水流速度。

例4:已知某铁路长1000米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用了120秒,整列火车完全在桥上的时间为80秒,求火车的速度和长度。

例5:甲乙二人在操场的400米跑到上练竞走,两人同时出发,出发时甲在乙的后面,出发后6分钟甲第一次追上乙,22分钟时甲第二次追上乙。

假设两人的速度都保持不变,问:出发时甲在乙身后多少米?例6:甲乙两车分别从A、B两地同时出发,在A、B之间不断往返行驶。

小升初数学综合行程的考察

小升初数学综合行程的考察

小升初数学综合行程的考察备考期间,考生可以适当放松,同时也要静下心来做好接下来的复习。

下文是查字典数学网为您准备了小升初数学综合行程综合行程基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系。

基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定运动过程中的位置和方向。

相遇问题:速度和×相遇时间=相遇路程(请写出其他公式) 追及问题:追及时间=路程差÷速度差(写出其他公式)流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2流水问题:关键是确定物体所运动的速度,参照以上公式。

过桥问题:关键是确定物体所运动的路程,参照以上公式。

主要方法:画线段图法死记硬背是一种传统的教学方式,在我国有悠久的历史。

但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。

其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。

相反,它恰是提高学生语文水平的重要前提和基础。

基本题型:已知路程(相遇路程、追及路程)、时间(相遇时间、追及时间)、速度(速度和、速度差)中任意两个量,求第三个量。

家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。

我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。

我和家长共同配合,一道训练,幼儿的阅读能力提高很快。

为您准备了小升初数学综合行程,希望大家考试顺利。

观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小升初行程重点考查内容
(★★★)
猎狗前面26步远有一只野兔,猎狗追之。

兔跑8步的时间狗跑5步,兔跑9步的距离等于狗跑4步的距离。

问:兔跑多少步后被猎狗抓获?此时猎狗跑了多少步?
(★★☆)
某人沿电车线路行走,每12分钟有一辆电车从后面追上,每4分钟有一辆电车迎面开来。

假设两个起点站的发车间隔是相同的,求这个发车间隔?
(★★★)
小峰骑自行车去小宝家聚会的路上注意到,每隔9分钟就有一辆公交车从后方超越小峰,小峰骑车到半路,车坏了,于是只好坐出租车去小宝家,这时小峰又发现出租车也是每隔9分钟超越一辆公交车,已知出租车的速度是小峰骑车速度的5倍,那么如果这三种车辆在行驶过程中都保持匀速,那么公交车站每隔多少分钟发一辆车?
(★★☆)
已知某铁路桥长1000米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用120秒,整列火车在桥上的时间为80秒,求火车的速度和长度。

(★★★)
铁路与公路平行。

公路上有一行人,速度是每小时4千米,一列火车追上并超过这个人用了6秒。

公路上还有一辆汽车与火车同向行驶,速度是每小时60千米,火车追上并超过这辆汽车用了54秒。

火车的速度是每小时______千米。

(汽车的长度忽略不计)。

相关文档
最新文档