微机型发变组保护基本原理及整定
发变组保护配置和基本原理

保护总体方案设计思想
• 总体方案为双主双后,即双套主保护、双套后备保护、双套异常 运行保护的配置方案。其思想是将一个发变组单元的全套电量保 护集成在一套装置中,主保护和后备保护共用一组。
• 对于一个发变组单元,配置两套完整的电气量保护,每套保护装 置采用不同组,均有独立的出口跳闸回路。
• 非电量保护出口跳闸回路完全独立,和操作回路独立组屏。
电压互感器配置说明
• 两套电量保护尽量采用不同的电压互感器或互相 独立的绕组
• 对于零序电压,一般没有两个绕组,可并联接入 两套保护装置
• -保护装置主保护和部分后备保护介绍
发电机差动保护现状
• 大型发电机造价昂贵,内部故障造成的损失巨大,内部相间故障 由于故障点电势可能较低,故障时受过渡电阻影响较大,如何采 用新原理,不受过渡电阻影响,提高内部故障时保护灵敏度已成 为重要课题。
双主双后的优点
• 运行方便,安全可靠; • 设计简洁,二次回路清晰,由于主后共用一组,
总数没有增加或有所下降; • 整定、调试和维护方便。
二、的配屏方案
• 适用于大型发电机保护,主接线方式:发电机容 量 及以上、一台励磁变或励磁机。
• 适用于大型变压器保护,主接线方式:两圈主变 (或出线)、一台高厂变(两圈变)。
• 可通过整定值选择采用方向阻抗圆、偏移阻抗圆或全阻 抗圆。当某段阻抗反向定值整定为零时,选择方向阻抗 圆;当某段阻抗正向定值大于反向定值时,选择偏移阻 抗圆;当某段阻抗正向定值与反向定值整定为相等时, 选择全阻抗圆。阻抗元件灵敏角 ° ,阻抗保护的方向 指向由整定值整定实现,一般正方向指向发电机外。
失步保护功能
jx
U
Za
D OL IL
Zc
发变组保护概述及原理一

“三次谐波”,就是在50HZ的电路中,夹杂 有150HZ的交流正弦波,这个150HZ的交流 正弦波由于是50HZ的三倍,于是称之为三次 谐波。
3次谐波的产生
发电机的结构中,是不可能使磁通密度沿空间的分 布完全做到近正弦分布的,只能说是尽量接近正弦 颁布,所以磁通中都有高次谐波,电势中也就有高 次谐波。在高次谐波中,三次谐波占主要成分。 发电机下面所带的负载多为单相负载,这些负载在 运行过程中产生大量的三次谐波,所以你在发电机 的位置测量,会测量到大量的三次谐波。 发电机出现定子回路不对称,所以会有较高的三次 谐波。
13、频率异常 14、失步 15、非全相 16、断口闪络 17、误上电 18、主变压器差动 19、变压器瓦斯 20、主变零序 21、高厂变差动 22、高厂变瓦斯 23、阻抗 24、发变组差动
各保护装置动作后所控制的对象,依保护装置的性质、选择 性要求和故障处理方式的不同而不同。 全停:停汽机、停锅炉、断开高压侧断路器、灭磁、断开高 压厂用变压器低压侧断路器。 (主要是反映内部故障的保护:发电机差动、主变差动、高 厂变差动、励磁变差动、发变组差动、定子接地、匝间、突 上电、启停机、非全相、变压器瓦斯等) 解列灭磁:断开高压侧断路器、灭磁、断开高压厂用变压器 低压侧断路器。 (主要是反映外部故障的后备保护,较长的时限段以及一些 需灭磁的现象,无法维持厂用电运行,如励磁回路过负荷、 过激磁、转子过负荷)
发电机差动保护
A B C TV1 3U0 U TV2
3Uz
IF Uz
发电机差动 保护
87G
UR
励磁 系统
IN
Un
发变组保护原理组成及原理

发变组保护的未来发展方向
智能化
随着人工智能技术的发展,发变组保护将逐 渐实现智能化,能够更加快速、准确地识别 和应对各种故障。
网络化
网络技术的发展将使得发变组保护能够实现远程监 控和诊断,提高故障处理的效率和可靠性。
集成化
未来发变组保护将更加集成化,能够将多种 保护功能集成在一台装置中,降低设备成本 和维护成本。
发变组保护原理 组变组保护的组成 • 发变组保护的原理 • 发变组保护的应用与案例分析
01
发变组保护概述
定义与重要性
定义
发变组保护是用于保护发电机变压器(简称发变组)的一套安全控制系统,主要用于监测发变组的工作状态,并 在异常情况下采取相应的控制措施,以防止设备损坏和事故扩大。
THANKS
感谢观看
发变组保护的案例分析
某火电厂发变组保护误动 事故
某火电厂发变组保护在运行过程中发生误动 ,导致发电机跳闸。经过调查发现,原因是 保护装置的软件算法存在缺陷,导致正常运 行时的电压波动被误判为故障。
某核电站发变组保护拒动 事故
某核电站发变组保护在变压器故障时未能正 确动作,导致变压器烧毁。经调查发现,原 因是保护装置的硬件故障导致信号处理异常
发变组保护应具备选择性,即在设备发生 故障时,能够有选择地切除故障部分,尽 量减小对非故障部分的影响。
速动性
灵敏性
发变组保护应具备速动性,即在设备发生 故障时,能够迅速切除故障部分,以减小 对设备的损坏和事故的扩大。
发变组保护应具备灵敏性,即能够灵敏地 检测到设备的异常状态,并及时采取相应 的控制措施。
重要性
发变组是电力系统中的重要设备,其安全稳定运行对于保障电力系统的正常供电和电力企业的经济效益具有重要 意义。发变组保护能够及时发现并处理设备故障,避免设备损坏和事故扩大,对于保障电力系统的安全稳定运行 具有重要作用。
发变组保护原理与整定(转子接地)

T4
T3
T2
-
§1.转子回路的一般问题
1.2 转子回路故障现象 A、绝缘老化或下降,材料破损,绕组烧损,绕组结构松 动错位问题。(较易维修,易发生)
B、轴系等不带电部件磁化烧损问题。(不易维修,一般 故障较严重或持续时间过长未及时处理)
XJ Group Corporation
C、主要电气故障形式 转子回路匝间故障(内部)或接地故障(内部+外部相 关的励磁系统接地)
XJ Group Corporation
§2.转子接地保护原理
2.2转子接地保护原理介绍: A、WFB-822装置为注入工频交流电源原理。
XJ Group Corporation
§1.转子回路的一般问题
B、 WFB-800A 、WFB-810A、 WFB-820A系列的乒乓切换式原 理保护,励磁回路正负端需要外引的励磁系统,需利用励磁 电压本身。 αUfd (1-α)Ufd K
方波注入保护等效原理
§2.转子接地保护原理
D、其它实现原理。 如电桥平衡式、负端直接外加直流电源、外加100Hz、20Hz 交流电源等。
XJ Group Corporation
§3.转子接地保护整定
3.1发电机通用技术条件规定: 对于空冷及氢冷的汽轮发电机,励磁绕组的冷态绝缘电阻 不小于1M,直接水冷却的励磁绕组,其冷态绝缘电阻不 小于2k。水轮发电机:绕组的绝缘电阻在任何情况下都 不低于0.5M 。 3.2转子接地保护整定(导则): 对于直接水冷的励磁绕组,可整定1 k~5 k; 转子一点接地保护延时动作于信号或停机。 两点接地保护瞬时动作于停机。 实际定值一般根据现场经验值和不同原理整定有所不同。
R 错误测试
UfdR
Rot
发变组保护保护原理

华北电力大学
发变组保护原理
4、转子接地保护
• 对1MW及以下发电机的转子一点接地故障,可装设定期 检测装置。
• 1MW及以上的发电机应装设专用的转子一点接地保护装 置延时动作于信号,宜减负荷平稳停机,有条件时可动作 于程序跳闸。
• 对旋转励磁的发电机宜装设一点接地故障定期检测装置。
-摘自GB14285-2006继电保护和安全自动装置技术规程
华北电力大学
发变组保护原理
1、发电机差动保护
• 和应涌流,区外故障及其切除过程中由于两侧TA传变特 性不一致,都易导致差动保护误动;
dia
Id
dIA
Ir
图a 相电流波形
图b 差动电流和制动电流波形
1次判别 25次判别
华北电力大学
发变组保护原理
1、发电机差动保护
• 采用循环闭锁原理,进一步提高差动保护的可靠性; • 具有完善的抗TA饱和能力,以及故障恢复过程中不平
发变组保护原理
6、失步保护
jX
6区
5区 4区 3区
2区
1区
Xs B
Xt
减速失步
加速失步
-Rs -Rj 0
Rj
Rs
R
δ4
δ3
δ2 δ1
A
华北电力大学
7、逆功率保护
理论 传统
动作区 动作区
发变组保护原理
jQ
理想
P -Pset
• 对发电机变电动机运行的异常运行 方式,200MW及以上的汽轮发电机, 宜装设逆功率保护。
华北电力大学
发变组保护原理
华北电力大学
发变组保护原理
9、变压器差动保护
• 难点:
涌流的识别; TA饱和的识别; 和应涌流或区外故障切除后各侧TA暂态特性不一致导致的 差动保护误动。
发变组保护整定计算方案

发变组保护整定计算方案一、前言发变组是电力系统中的重要设备之一,作用是将输电线路的高电压变成适合于城市居民、企事业单位和居民生活的低电压,确保电能的稳定输送和供电质量。
然而,随着电网规模和负荷的不断增大,在发变组运行过程中,可能会受到各种各样的故障,如过电流、过电压等,从而造成发变组的损坏或电网的稳定性下降。
为了防止这些风险的发生,需要对发变组进行保护,其中,保护整定计算方案是发变组保护的关键所在。
二、什么是发变组保护整定计算方案发变组保护整定计算方案是指在发变组的保护装置上,设置一套合理的保护整定参数,以达到对发变组进行安全可靠保护的效果。
该方案需要结合电力系统的实际情况,包括发变组的技术参数、周边负荷情况和传输线路情况等,进行全面分析和综合考虑,从而确定最佳的保护整定参数,确保发变组的正常运行和电网的稳定输送。
三、发变组保护整定计算方案的意义1.确保发变组的正常运行发变组是电力系统中的重要设备,直接关系到电网的稳定性和供电质量。
保护整定计算方案的制定可以确保对发变组的有效保护,防止因过电流、过电压等故障造成的设备损坏,保障设备的正常运行。
2.保障电网的安全稳定发变组故障会导致电网负荷不均衡,造成电能的不稳定输送,甚至可能影响到周边用户的正常用电。
通过制定合理的保护整定计算方案,可以有效保障电网的稳定输送,提高电网的可靠性。
四、发变组保护整定计算方案的核心要素1.发变组技术参数发变组技术参数是指发变组的额定容量、电压等技术特性。
在制定保护整定计算方案时,需要结合发变组的技术参数信息,全面了解其工作状态和工作特性,确定发变组保护的必要性和保护参数。
这是保护整定计算方案的关键前提。
2.周边负荷情况周边负荷情况是指发变组连接的负荷变化情况。
发变组的电压和电流水平受到周边负荷的影响,因此在制定保护整定计算方案时,需要充分了解周边负荷情况,仔细分析和考虑周边负荷对发变组的影响,从而合理制定保护整定参数。
发变组保护原理及配置介绍

过热老化的保护。
发电机注入式转子一点接地保护(64E-A) 保护检测励磁回路对地绝缘值,如发生一点接地,指示故障点位置及故障点
接地过渡电阻值。机组运行、开机过程及机组停运时注入式保护均应起保护 作用。转子一点接地保护装置不允许采用电容分压,该保护装置安装在励磁 系统屏柜中。 发电机转子一点接地保护(64E-B) 保护采用乒乓切换原理实现,保护检测励磁回路对地绝缘值,如发生一点接 地,指示故障点位置及故障点接地过渡电阻值。保护装置安装在励磁系统屏 柜中。
注入式定子接地保护装置布置在发电机保护A屏。 2 面主变压器电气量保护屏应完全独立,每个保护屏配置一套完整的主变
压器和高压厂用变压器的主、后备保护装置,能反应主变压器和高压厂用 变压器的各种故障及异常状态,并能动作于跳闸或发信号。 跳闸信号光纤传输装置主变侧布置在地下厂房高压电缆保护柜内,500kV侧 布置在地面GIS楼高压电缆保护柜内,光纤传输装置间均采用独立光缆连接 。
发电机注入式定子 100%一点接地保护(64G-A) 保护反应定子 100%绕组一点接地故障,包括发电机中性点附近某点经一定大小 的电弧电阻接地或该点绝缘电阻下降至整定值的一点接地故障。机组运行、开机 过程及机组停运时注入式保护均应起保护作用。
二、发变组保护配置
发电机 100%定子一点接地保护(64G-B) 采用基波零序与三次谐波电压保护共同组成 100%定子一点接地保护。基波零序过 电压保护取机端电压,设两段保护,低定值段带时限动作于信号,高定值段带时限 动作于停机。三次谐波电压保护取机端和中性点电压进行三次谐波比较。
故障引起压力过大时,释压器动作,释放油箱内的油压力,并同时动作于发信 号。
发变组保护整定原则精华

名称图故障类型判据名称整定原则公式工程值参数名称灵敏度公式工程值时间原则工程值出口方式备注发电机比率差动机及引出线相间短路最小动作电流躲发电机正常额定负荷最大不平衡电流整定。
系统最小运行方式下不必校验0s停机拐点电流不必校验0s停机制动斜率躲区外故障最大穿越性电流可靠不误动不必校验0s停机差速断电流躲机组非同期合闸最大不平衡电流不必校验0s停机纵向零序电压定子绕组同分支匝间、同相不同分支匝间或相间短路动作电压躲正常运行时基波最大不平衡电压增设负序方向闭锁三次谐波滤过比大于80%T V断线闭锁躲专用T V一次断线判定时间0.2s停机发电机复压过流动作电流按额定负荷下可靠返回按主变高侧两相短路校验1、与主变后备保护配合,2、记忆元件时间长于动作时间停机低线电压躲失磁最低机端电压按主变高侧三相短路停机负序电压躲正常不平衡电压按主变高两相短路停机名称图故障类型判据名称整定原则公式工程值参数名称灵敏度公式工程值时间原则工程值出口方式备注定子接地定子绕组接地基波零序电压高躲正常运行时基波最大不平衡基波零序电压与系统接地保护配合,躲主变高耦合零序电压0.3~1.0停机基波零序电压低躲传递过电压与系统接地保护配合,躲主变高耦合零序电压0.3~1.0停机三次谐波电压实测最大三次谐波电压比最大三次谐波电压比信号注入式定子绕组接地接地阻值高值高值1~5s发信信号接地阻值低值低值0.3~1.0s停机停机接地零序电流按机端80%~90%范围整定0.3~1.0s停机转子接地转子接地高值水轮、空、氢冷10kΩ~30kΩ转子水冷5kΩ~15kΩ信号低值水轮、空、氢冷0.5kΩ~10kΩ转子水冷0.5kΩ~2.5kΩ5~10s停机对称过负荷定子过负荷定时限长期运行负荷可靠返回躲后备最大延时信号减负荷反时限特性制造厂定子绕组允许的过负荷能力反时限上限电流机端三相短路与出线快速保护动作配合停机反时限下限电流与过负荷配合程跳名称图故障类型判据名称整定原则公式工程值参数名称灵敏度公式工程值时间原则工程值出口方式备注励磁绕组过负荷励磁绕组过负荷定时限额定励磁电流可靠返回躲后备最大延时信号减负荷反时限特性制造厂定子绕组允许的过负荷能力反时限上限电流强励顶值倍数匹配2与定时限过负荷动作配合停机反时限下限电流与过负荷配合程跳不对称过负荷针对不对称过负荷、非全相、外部不对称故障引起的负序电力定时限长期允许负序电流可靠返回躲发变组后备保护最大时限信号反时限特性制造厂转子表层允许的过负荷能力反时限上限电流主变高两相短路与快速主保护动作配合停机反时限下限电流与定时限配合不必程跳失磁系统低电压防止发电机低励失磁引发系统电压崩溃机端低电压不破坏厂用电,躲强励启动电压异步边界阻抗圆低励限制时限先动作防止振荡误动静稳极限阻抗圆转子低电压停机变励磁电压瞬时闭锁延时8~10s名图故障类型判据名称整定原则公式工参数名称灵敏度公式工时间原则工出口备称程值程值程值方式注失步失步振荡的情况透镜遮挡器躲后备最大延时信号减负荷两侧电动势摆开角9~12电抗线变压器阻抗90%停机次数区外2~15次区内1~2次停机跳闸允许电流按断路器允许折断电流失步振荡的情况双遮挡器+R向-R加速失步电抗定值振荡中心在外可靠不动作9~12阻抗边界断路器跳开条件停机次数区内1~2次停机失步启动电流进相水轮机发电机过激磁发电机过励磁铁芯发热漏磁增加波形畸变过励倍数N低值躲正常时过励倍数设备过励特性信号减励磁过励倍数N高值过励能力解列程跳反时限发电机特性曲线曲线除以1.0560%~80%最小值和定时限配合解列程跳逆功率逆功率状态防止未燃尽物质爆炸着火动作功率逆功率最小值经主汽门1.0~1.5s不经15s信号1mi n解列解列定子过电压过电压电压定值定子过压能力0.5s可控硅水轮0.3s解列启停机低速时定子接地及相间故障零序电压不超过机端单相接地10%差动满负荷差动不平衡电流抽水机及母线相间低频过流躲低频工况最大负荷断路器触电低频继电器触点推出频率80%~90%停机误上电盘车、静止、并网前时误合断路器突然并网定子电流在气隙中产生旋转磁场在转子产生工频电流,造成转子过热,装在机端或主变高压侧全阻抗特性过流元件盘车停机误合闸流过发电机的电流全阻抗特性阻抗元件正常并网时最大输出电流全阻抗特性电阻动作值并网时系统同时发生冲击导致全电阻元件误动作来整定,也可装在主变高侧动作圆半径按照0.3倍变压器额定电路来整定0.1~0.2s偏移阻抗特性过流元件误上电时可靠启动误上电最小电流50%或发电机长期允许值(5%~10%)偏移阻抗特性正向阻抗反向阻抗若取主变高侧电压电流保证误上电振荡中阻抗可靠动作取机端电压电流保证误上电振荡中阻抗可靠动作躲可拉入同步的非同期合闸1s低频低压过流动作电流误上电时可靠启动误上电最小电流50%低频90%~96%低压闪络断口闪络负序电流躲正常时高压侧最大不平衡电流躲三相不一致0.1~0.2s灭磁失灵失灵保护断路器失灵相电流躲发电机额定电流躲断路器跳开时间0.3~0.5s负序电流躲正常时高压侧最大不平衡电流变压器纵差变压器绕组内部、套管、引出线相间接地故障、绕组匝间短路故障最小动作电流正常差动不平衡电流起始制动电流保护特性斜率躲外部三相短路不平衡双绕组躲最小方式主变引线两相短路速断躲最大励磁涌流或外部短路最大不平衡安装处两相短路二次谐波15%~20%间断角变压器分相比率变压器绕组内部、套管、引出线相间接地故障、绕组匝间短路故障最小动作电流正常差动不平衡电流起始制动电流保护特性最大制动系数躲外部三相短路不平衡躲最小方式主变引线两相短路速断躲最大励磁涌流或外部短路最大不平衡安装处两相短路瓦斯变压器内部故障,油面下降轻瓦斯气体容积250~300mL重瓦斯流速,取决于变压器容量、导管直径、冷却方式、气体继电器型式1.0~1.5变压器复压过流动作电流按躲变压器额定电流末端两相短路校验指向母线时与线路;配合,先分段母联再本侧最后各侧跳闸低线电压躲失磁最低机端电压安装处相间短路跳闸负序电压躲正常不平衡电压末端两相两相短路最小负序电压跳闸主变接地过流绕组引线相邻元件后备中性点直接接地一段与相应一段或主保护配合当指向变压器时对侧母线要灵敏度满足1.3躲高、中出线非全相时流过电流与线路接地距离后备配合中性点直接接地二段与零序过流后备配合1.5失灵失灵相电流躲最小三相短路,躲正常负荷躲断路器跳开时间0.15~0.3s零序或负序电流躲正常时正常最大不平衡电流非全相非全相状态零序或负序电流三相不一致结合电路判据躲正常时正常最大不平衡电流躲非同期合闸0.3~0.5s。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微机型发变组保护基本原理及整定
作者:邵子峻
来源:《中国科技博览》2018年第11期
[摘要]目前新建电厂的发变组保护装置已全部采用微机型,不管是国产还是进口的,发变组保护微机化减少了硬件设备,也使过去难以实现的保护原理通过软件设置很容易实现,从而大大降低了维护量。
但随着保护装置微机化的普及,同时在定值设置上也增加了灵活性,不但要设置保护数值的大小,而且还要设置诸如CT、PT的参数、变压器参数、保护元件的运算方式等原来不需要设置的一些非传统定值量,这就为定值设置增加了难度;而值得注意的是在定值计算时计算方往往只提供传统的定值大小等数据,而忽略了一些非传统定值设置,结果把问题就留给了现场工作人员。
[关键词]微机型;保护;基本原理;整定;分析
中图分类号:TM771 文献标识码:A 文章编号:1009-914X(2018)11-0112-01
引言
随着微机继电保护技术的发展,微机型发变组保护已完全取代了电磁型、整流型、集中电路型保护,目前省内电厂机组保护基本上实现了微机化。
微机型发变组保护装置显示了其独特的优点和强大的功能,在调试、运行维护方面己取得显著成果,实践证明正确动作率也是较高的。
微机保护在保护配置和整定方面非常灵活,但也有厂家追求其灵活性,人为增加保护配置和整定的复杂程度,容易造成误整定。
从执行保护的双重化配置反措规定,并推行强化主保护、简化后备保护的原则以来,后备保护的整定大大简化,甚至某些保护退出,逐步简化了保护的整定。
本文从保护原理及结构出发,介绍微机型发变组中几种主要保护的整定方法,并且在这个基础之上提出了下文中的一些内容。
1.大型微机发变组保护主要特点
一是按规程要求,100MW以上机组电量保护按双重化保护配置,2套保护之间没有电气联系,其工作电源取自不同的直流母线段,交流电流、电压分别取自互感器的不同绕组,每套保护出口与断路器的跳圈一一对应。
二是双重化配置的2套保护均采用主后一体化装置,主保护与后备保护的电流回路共用,跳闸出口回路共用,主后一体化设计简化了二次回路、减少了运行维护工作量,装置组屏简洁方便。
三是保护装置一般包含2套相互独立的CPU系统,低通、AD采样、保护计算、逻辑输出完全独立,任一CPU板故障,装置闭锁并报警,杜绝硬件故障引起的误动。
四是配置整定灵活方便,适应于不同主接线方式,保护动作出口逻辑可以灵活整定,有些保护整定值按标幺值整定,大大简化了保护的整定,装置支持在线或通过调试软件离线整定。
五是运行监视功能强大,实现GPSB码对时,装置能实时记录各种启动、告警、
开入量变位、跳闸等信息,事故报告能自动判别故障类型,录波文件采用COMTRADE格式,可用录波软件打开分析。
2.零序补偿设置
电力变压器的接线组别会导致相位的扭转,比如一个普通的△-Y1接线的变压器,其扭转角度为30°。
在传统继电器接线上,星侧绕组的CT要△连接,来补偿变压器的扭转角度,从而使继电器工作正常。
同时CT三角形接线可以使零序电流在接线中形成环流而流不出去,直接除去零序分量的影响。
但这时如果变压器三角形绕组侧保护范围内有接地,接地故障产生的零序电流只会在这一侧流入差动继电器,这时就会产生差动电流而使装置动作,所以考虑到这种情况需在变压器三角形绕组星形CT接线侧加设一个零序电流滤过器,将零序滤掉。
即如果变压器的一侧零序电流能流进和流出,而另一侧不能让零序电流流进和流出,则必须把能流入流出的那一侧零序电流去掉。
以往的变压器差动保护都是靠硬件或回路实现了上述功能,也形成了典型的变压器差动保护星/角接线型式。
变压器差动保护微机化后,变压器各侧为了简化电流互感器二次接线形式,均接成星型接线形式,在对保护装置内部设置不熟悉的情况,往往忽略相角和零序补偿问题,结果造成在区外故障时保护装置误动。
XX电厂启备变B避雷器爆炸后发生单相接地故障,故障点位于启备变差动保护范围内,启备变差动正确动作,但主变差动却误动跳闸。
后检查为该厂#1主变差动保护装置定值设置中有一项整定错误,定值中选择了高压侧零序电流通过中性点零序CT补偿滤消掉(而硬接线上无该CT),没有选通过软件将高压侧零序电流滤消掉。
对于零序电流系统来说,接地故障点为零序故障电流源,系统内中性点接地运行的变压器均会有零序故障电流流过接地运行的变压器的中性点,因此该电厂#1主变高压侧中性点接地自然会有零序电流流过。
相应电流互感器二次会感应出零序电流,而未接地的变压器低压侧是三角形接线,没有零序电流,这时差动保护两侧出现差流而误动。
3.发变组主要保护的原理及整定
3.1 发电机纵差保护
发电机完全纵差保护是发电机相间故障的主保护,其动作灵敏度较高,但不能反应定子绕组的匝间短路及线棒开焊。
不完全纵差保护除保护定子绕组的相间短路之外,尚能反应定子线棒开焊及某些匝间短路,但差动元件两侧TA型号及变比不同时,受系统暂态过程的影响较大。
3.2 变压器纵差保护
变压器纵差动保护是变压器内部及引出线上的相间短路和接地、内部匝间短路和接地故障的主保护。
目前,微机保护中变压器纵差保护采用软件移相及软件向量计算来消除零序电流,采用二次谐波闭锁或波形识别技术躲过励磁涌流,另外,保护能可靠判别TA断线并采取闭锁措施。
变压器纵差保护采用具有比率制动特性的差动元件,应用较多的是II段折线动作特性,
为防止内部故障电流很大时引起互感器饱和延迟保护动作,采用不带制动的差动速断作为补充。
3.3 发电机定子接地保护
基波零序电压型定子接地保护是现场应用较广且非常成熟的保护,取中性点电压互感器二次电压作为动作判据,为防止误动需完全滤除三次谐波及采用机端零序电压闭锁。
近几年注入式定子接地保护陆续应用到大型机组保护上,一般采用中性点TV二次侧注入20Hz交流电压并检测注入电流从而计算出接地电阻的原理。
上述两种类型定子接地保护的主要区别是:基波零序电压型结构简单,但保护范围通常不到95%,且要加一定的延时防止误动;注入式定子接地保护,其结构复杂,但范围达100%,灵敏度与运行工况无关。
3.4 发电机失磁保护
发电机失磁后,发电机要经历静稳破坏、失步和异步运行过程.发电机机端测量阻抗从阻抗平面的第一象限进入到第四象限,并进入静稳圆和异步圆且发生摆动;另外失磁后励磁电压会显著降低,系统和机端电压也会相应有所降低。
根据以上特征构成阻抗型失磁保护原理,其3个主要判据是:一是异步阻抗n或静稳边界n(定子侧阻抗判据);二是转子低电压判据或变励磁判据;三是(转子侧判据)、机端或系统低电压判据。
总结:通过上述内容进行分析研究后可以得出,因程序逆功率保护经主汽门关闭接点闭锁,发生误动可能性很小,其动作功率可适当降低至额定有功的0.8%~1%,而将纯逆功率保护的动作功率设定为额定有功的1%~2%作为后备,可大大降低其拒动的概率。
参考文献
[1] 潘龙兴,张莉,房鑫炎.300MW火力机组发变组保护改造研究[J].华东电力,2005,12:56-60.
[2] 吴济安,郑华.WFBZ-01型微机发变组保护运行总结[J].东北电力技术,1996,01:33-36.
[3] 张良辰,谭之文,王长川,王富群,裘勇浩.禹州电厂发变组保护及厂用电快切装置的调试[J].电力建设,2003,06:47-49.
[4] 韩志超.浅谈某电厂600MW火力机组发变组保护[J].广东科技,2010,12:96-97.
[5] 任洋,刘治国,康大为,鲍峰,马跃林,郎红军.白山发电厂发变组保护装置双重化配置及应用[J].水电厂自动化,2011,02:40-43.。