高一数学函数综合练习单元练习题

合集下载

综合题高一数学函数经典习题及答案

综合题高一数学函数经典习题及答案

函 数 练 习 题一、 求函数的定义域1、求下列函数的定义域:⑴y =⑵y =⑶01(21)111y x x =+-+-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。

4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。

二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥ ⑸y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼y =⑽4y =⑾y x =6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。

三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。

2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。

3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时,()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是 8、函数236xy x -=+的递减区间是;函数y =的递减区间是五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(,()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。

高一数学函数单元测试题

高一数学函数单元测试题

高一数学函数单元测试题一、选择题:(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、若0a >,且,m n 为整数,则下列各式中正确的是 ( )A 、mm nna a a ÷= B 、n m n m a a a ⋅=⋅ C 、()nm m n a a += D 、01n n a a -÷= 2、已知函数=-=+-=)(.)(.11lg )(a f b a f xxx f 则若 ( )A .bB .-bC .b1D .-b1 3、.若集合M={y|y=2—x }, P={y|y=1x -}, M ∩P= ( )A .{y|y>1}B .{y|y ≥1}C .{y|y>0 }D .{y|y ≥0} 4、由于电子技术的飞速发展,计算机的成本不断降低,若每隔5年计算机的价格降低31,则现在价格为8100元的计算机经 年后降为2400元. ( )A .14B .15C .16D .175、函数22log (1)y x x =+≥的值域为 ( )A 、()2,+∞B 、(),2-∞C 、[)2,+∞D 、[)3,+∞6、设 1.50.90.4812314,8,2y y y -⎛⎫=== ⎪⎝⎭,则 ( )A 、312y y y >>B 、213y y y >>C 、132y y y >>D 、123y y y >> 7、在(2)log (5)a b a -=-中,实数a 的取值范围是 ( ) A 、52a a ><或 B 、2335a a <<<<或 C 、25a << D 、34a <<8、有以下四个结论 ○1 l g(l g10)=0 ○2 l g(l ne)=0 ○3若10=l gx,则x=10 ○4 若e=l nx,则x=e 2, 其中正确的是 ( ) A.○1○3 B.○2○4 C.○1○2 D. ○3○4 9、已知函数f(x)=2x ,则f(1-x)的图象为 ( )ABCD10、已知f(x)是偶函数,它在[0,+∞)上是减函数,若)1()(lg f x f >,则x 的取值范围是( )A. )1,101(B.),1()101,0(+∞⋃C.)10,101( D.(0,1)∪(10,+∞) 11、世界人口已超过56亿,若按千分之一的年增长率计算,则两年增长的人口就可相当于一个 ( ) A.新加坡(270万) B.香港(560万) C.瑞士(700万) D.上海(1200万) 12、若函数()l o g (01)a f x x a =<<在区间[],2a a 上的最大值是最小值的3倍,则a 的值为( )A B C 、14 D 、12二、填空题:(本题共4小题,每小题5分,共20分,请把答案填写在答题纸上) 13、()0.7522310.25816--⎛⎫+- ⎪⎝⎭-lg25-2lg2=___________ ____;14、1log 32<a (a>0且a ≠1),a 的取值范围为 ;15、已知函数f(x)=log 2(x-2)的值域是[1,log 214],那么函数f(x)的定义域是 ; 16、设0≤x ≤2,则函数5234)(21+∙-=-x x x f 的最大值是________,最小值是______.三、解答题:(本题共4小题,共50分,解答应写出文字说明,证明过程或演算步骤.) 17、(12分)已知f(x)=log a x1x 1-+ (a>0, 且a ≠1)(1) 求f(x)的定义域(2) 求使 f(x)<0的x 的取值范围.18. (12分)某电器公司生产A 型电脑,1993年这种电脑每台平均生产成本为5000元,并以纯利润20%确定出厂价.从1994年开始,公司通过更新设备与加强管理.使生产成本逐年降低.到1997年,尽管A 型电脑出厂价是1993年的80%,但却实现了50%纯利润的高效益. (1) 求1997年每台A 型电脑的生产成本;(2) 以1993年的生产成本为基数,求成1993年至1997年生产成本平均每年降低的百分数(精确度0.01以下数据可供参考:)449.26,236.25==19、(12分)若()f x 是定义在()0,+∞上的增函数,且()()x f f x f y y ⎛⎫=-⎪⎝⎭(1)求()1f 的值; (2)若()61f =,解不等式()132f x f x ⎛⎫+-< ⎪⎝⎭.20.(14分)已知函数f(x 2-3)=l g 6x x 22-(1) 求f(x)表达式及定义域 ;(2)判断函数f(x)的奇偶性.21.(选做题)函数f(x)=log a(x-3),当点P(x,y)是函数y=f(x)图象上的点时,Q(x-2,-y)是函数y=g(x)图象上的点.(1)写出函数y=g(x)的解析式.(2)若f(x)>g(x),求x的取值范围.。

高一数学函数综合试题答案及解析

高一数学函数综合试题答案及解析

高一数学函数综合试题答案及解析1.定义运算:,对于函数和,函数在闭区间上的最大值称为与在闭区间上的“绝对差”,记为,则= .【答案】.【解析】记,,于是构造函数,则当时,;当或时,所以.即为所求.【考点】函数的最值及其几何意义.2.设,那么()A.B.C.D.【答案】B.【解析】观察题意所给的递推式特征可知:,所以,故选B.【考点】数列的递推公式.3.函数y=-xcosx的部分图象是().【答案】D.【解析】选判断函数的奇偶性,此时,有,可知此函数为奇函数,排除A,C;又当x>0时,取时,可知此时,易知图像与x轴交于,而当时,,故选D.【考点】函数图像的辨析与识别,奇偶函数的定义与性质,排除法,特殊角的三角函数值.4.方程在区间内的所有实根之和为 .(符号表示不超过的最大整数).【答案】2.【解析】设,当时,;当时,;当时,;当时,;即;令,得;令,得;的所有根为0,2,之和为2.【考点】新定义题、函数图像的交点.5.若不等式对任意的上恒成立,则的取值范围是()A.B.C.D.【答案】D.【解析】∵,又∵,,∴,又∵,根据二次函数的相关知识,可知当,时,,综上所述,要使不等式对于任意的恒成立,实数的取值范围是.【考点】1.函数求最值;2.恒成立问题的处理方法.6.下列四个命题:①方程若有一个正实根,一个负实根,则;②函数是偶函数,但不是奇函数;③函数的值域是,则函数的值域为;④一条曲线和直线的公共点个数是,则的值不可能是.其中正确的有________________(写出所有正确命题的序号).【答案】①④【解析】,故①正确;根据定义域,,所以,所以也是奇函数;故②不正确;仅是定义域变了,值域没有改变;故③不正确;是关于对称轴对称的图像,所以与其交点个数只能是偶数个,不可能是1.故④正确.【考点】1.方程根与系数的关系;2.函数奇偶性;3.抽象函数;4.函数图像.7.已知函数,则下列说法中正确的是()A.若,则恒成立B.若恒成立,则C.若,则关于的方程有解D.若关于的方程有解,则【答案】D.【解析】绝对值不等式,当时,则,此时,所以A错误;当恒成立时,有,此时假设,则由绝对值不等式可知恒成立,此时与恒成立矛盾,再结合对A选项的分析,可知,所以B选项错误;当时,则,此时,方程,左边是正数,右边是负数,无解,所以C错误;对于D,当关于的方程有解时,由上述C选项的分析可知不可能小于0,当时,,也不满足有解,所以,此时由有解,可得,所以,所以,选项D正确,故选D.【考点】函数与绝对值不等式.8.如果二次函数不存在零点,则的取值范围是()A.B.C.D.【答案】B【解析】∵二次函数不存在零点,二次函数图象向上,∴,可得,解得,故选D.【考点】1、函数零点;2、函数与方程的关系.9.已知函数是定义在上的奇函数,当时的解析式为.(Ⅰ)求函数的解析式;(Ⅱ)求函数的零点.【答案】(Ⅰ)(Ⅱ)零点为【解析】(Ⅰ)先利用奇函数的性质求时的解析式,再求时的解析式,最后写出解析式. 本小题的关键点:(1)如何借助于奇函数的性质求时的解析式;(2)不能漏掉时的解析式.(Ⅱ)首先利用求零点的方法:即f(x)=0,然后解方程,同时注意限制范围.试题解析:(Ⅰ)依题意,函数是奇函数,且当时,,当时,, 2分又的定义域为,当时, 2分综上可得, 2分(Ⅱ)当时,令,即,解得,(舍去) 2分当时,, 1分当时,令,即,解得,(舍去) 2分综上可得,函数的零点为 1分【考点】1、奇函数的性质;2、求方程的零点.10.函数的零点所在的区间是()A.B.C.D.【答案】C.【解析】因为函数的定义域为大于零的实数。

高一数学函数经典练习题(含答案)

高一数学函数经典练习题(含答案)

精心整理《函数》复习题一、 求函数的定义域1、求下列函数的定义域:⑴y =⑵y =01(21)111y x x =+-+-2为34、 求实数5⑴y =⑸y =⑼y =6三、求函数的解析式1、已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。

2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。

3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x =。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时,()(1f x x =+,则当(,0)x ∈-∞时()f x =_____()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间6、求下列函数的单调区间:⑴223y x x =++⑵y =261y x x =--789⑴1=y ⑶x f (。

A 10 A 1112 (A)02x << (B)0x <或2x > (C)1x <或3x > (D)11x -<<13、函数()f x =A 、[2,2]-B 、(2,2)-C 、(,2)(2,)-∞-+∞D 、{2,2}-14、函数1()(0)f x x x x=+≠是()A 、奇函数,且在(0,1)上是增函数B 、奇函数,且在(0,1)上是减函数C 、偶函数,且在(0,1)上是增函数D 、偶函数,且在(0,1)上是减函数15、函数22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x =16、已知函数的定义域是,则的定义域为。

高中数学 第三章 函数概念与性质单元测试卷精品练习(含解析)新人教A版必修第一册-新人教A版高一第一

高中数学 第三章 函数概念与性质单元测试卷精品练习(含解析)新人教A版必修第一册-新人教A版高一第一

第三章单元测试卷一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中只有一个是符合题目要求的)1.函数f(x)=x -1x -2的定义域为( ) A .(1,+∞) B .[1,+∞) C .[1,2) D .[1,2)∪(2,+∞)2.德国数学家狄利克雷在数学上做出了名垂史册的重大贡献,函数D(x)=⎩⎪⎨⎪⎧0,x ∉Q 1,x∈Q是以他名字命名的函数,则D(D(π))=( )A .1B .0C .πD .-13.已知f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=2x 2-2x +1,则f(-1)=( )A .3B .-3C .2D .-24.若函数y =f(x)的定义域是[0,2],则函数g(x)=f ⎝ ⎛⎭⎪⎫-x 2x +1的定义域是( )A .[-4,0]B .[-4,0)C .[-4,-1)∪(-1,0]D .(-4,0)5.若幂函数y =(m 2-3m +3)xm -2的图象不过原点,则m 的取值X 围为( )A .1≤m≤2B .m =1或m =2C .m =2D .m =16.已知函数f(x)是定义在R 上的偶函数,x ≥0时,f (x )=x 2-2x ,则函数f (x )在R 上的解析式是( )A .f (x )=-x (x -2)B .f (x )=x (|x |-2)C .f (x )=|x |(x -2)D .f (x )=|x |(|x |-2)7.已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤0,1,x >0,若f (x -4)>f (2x -3),则实数x 的取值X 围是( )A .(-1,+∞) B.(-∞,-1)C .(-1,4)D .(-∞,1)8.甲、乙二人从A 地沿同一方向去B 地,途中都使用两种不同的速度v 1与v 2(v 1<v 2),甲前一半的路程使用速度v 1,后一半的路程使用速度v 2;乙前一半的时间使用速度v 1,后一半的时间使用速度v 2,关于甲、乙二人从A 地到达B 地的路程与时间的函数图象及关系,有如图所示的四个不同的图示分析(其中横轴t 表示时间,纵轴s 表示路程,C 是AB 的中点),则其中可能正确的图示分析为( )二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.关于函数f (x )=-x 2+2x +3的结论正确的是( )A .定义域、值域分别是[-1,3],[0,+∞) B.单调增区间是(-∞,1] C .定义域、值域分别是[-1,3],[0,2] D .单调增区间是[-1,1] 10.已知f (2x -1)=4x 2,则下列结论正确的是( ) A .f (3)=9 B .f (-3)=4 C .f (x )=x 2D .f (x )=(x +1)211.关于定义在R 上的函数f (x ),下列命题正确的是( ) A .若f (x )满足f (2 018)>f (2 017),则f (x )在R 上不是减函数 B .若f (x )满足f (-2)=f (2),则函数f (x )不是奇函数C .若f (x )在区间(-∞,0)上是减函数,在区间[0,+∞)也是减函数,则f (x )在R 上是减函数D .若f (x )满足f (-2 018)≠f (2 018),则函数f (x )不是偶函数12.定义在R 上的函数f (x )满足f (x +y )=f (x )+f (y ),当x <0时,f (x )>0,则函数f (x )满足( )A .f (0)=0B .y =f (x )是奇函数C .f (x )在[m ,n ]上有最大值f (n )D .f (x -1)>0的解集为(-∞,1)三、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于________.14.长为4,宽为3的矩形,当长增加x ,宽减少x2时,面积达到最大,此时x 的值为________.15.定义在R 上的奇函数f (x )满足:当x ≥0,f (x )=x 2-2x +a ,则a =________,f (-3)=________.(本题第一空2分,第二空3分)16.已知f (x )=⎩⎪⎨⎪⎧x 2-2x +a ,x >1,3-2a x -1,x ≤1是R 上的单调递增函数,则实数a 的取值X围为________.四、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)已知函数f (x )=2x -1x +1,x ∈[3,5].(1)判断f (x )在区间[3,5]上的单调性并证明; (2)求f (x )的最大值和最小值.18.(本小题满分12分)已知函数f (x )=⎩⎪⎨⎪⎧1+1x,x >1,x 2+1,-1≤x ≤1,2x +3,x <-1.(1)求f (f (-2))的值; (2)若f (a )=32,求a .19.(本小题满分12分)已知幂函数f (x )=x -2m 2-m +3,其中m ∈{x |-2<x <2,x ∈Z }满足:(1)在区间(0,+∞)上是增函数; (2)对任意的x ∈R ,都有f (-x )+f (x )=0.求同时满足条件(1)(2)的幂函数f (x )的解析式,并求当x ∈[0,3]时,f (x )的值域.20.(本小题满分12分)设f(x)为定义在R上的偶函数,当x≥0时,f(x)=-(x-2)2+2.(1)求函数f(x)在R上的解析式;(2)在直角坐标系中画出函数f(x)的图象;(3)若方程f(x)-k=0有四个解,某某数k的取值X围.21.(本小题满分12分)如图所示,A、B两城相距100 km,某天然气公司计划在两地之间建一天然气站D给A、B两城供气.已知D地距A城x km,为保证城市安全,天然气站距两城市的距离均不得少于10 km.已知建设费用y(万元)与A、B两地的供气距离(km)的平方和成正比,当天然气站D距A城的距离为40 km时,建设费用为1300万元.(供气距离指天然气站到城市的距离)(1)把建设费用y(万元)表示成供气距离x(km)的函数,并求定义域;(2)天然气供气站建在距A城多远,才能使建设费用最小,最小费用是多少?22.(本小题满分12分)已知f(x)的定义域为(0,+∞),且满足f(2)=1,f(xy)=f(x)+f(y),又当x2>x1>0时,f(x2)>f(x1).(1)求f(1),f(4),f(8)的值;(2)若有f(x)+f(x-2)≤3成立,求x的取值X围.第三章单元测试卷1.解析:根据题意有⎩⎪⎨⎪⎧x -1≥0,x -2≠0,解得x ≥1且x ≠2.答案:D2.解析:∵函数D (x )=⎩⎪⎨⎪⎧0,x ∉Q 1,x ∈Q,∴D (π)=0,D (D (π))=D (0)=1.故选A.答案:A3.解析:令x =1,得f (1)+g (1)=1,令x =-1,得f (-1)+g (-1)=5,两式相加得:f (1)+f (-1)+g (1)+g (-1)=6.又∵f (x )是偶函数,g (x )是奇函数,∴f (-1)=f (1),g (-1)=-g (1).∴2f (-1)=6, ∴f (-1)=3,故选A. 答案:A4.解析:∵y =f (x )的定义域是[0,2],∴要使g (x )=f ⎝ ⎛⎭⎪⎫-x 2x +1有意义,需⎩⎪⎨⎪⎧0≤-x2≤2,x +1≠0,∴-4≤x ≤0且x ≠-1.∴g (x )=f ⎝ ⎛⎭⎪⎫-x 2x +1的定义域为[-4,-1)∪(-1,0].答案:C5.解析:由题意得⎩⎪⎨⎪⎧m -2≤0,m 2-3m +3=1,解得⎩⎪⎨⎪⎧m ≤2,m =1或m =2,∴m =1或m =2.答案:B6.解析:设x <0,则-x >0,f (x )=f (-x )=x 2-2(-x )=x 2+2x .故f (x )=|x |(|x |-2).答案:D 7.解析:f (x )的图象如图.由图知, 若f (x -4)>f (2x -3), 则⎩⎪⎨⎪⎧x -4<0,x -4<2x -3,解得-1<x <4.故实数x 的取值X 围是(-1,4). 答案:C8.解析:由题意可知,开始时,甲、乙速度均为v 1,所以图象是重合的线段,由此排除C ,D.再根据v 1<v 2可知两人的运动情况均是先慢后快,图象是折线且前“缓”后“陡”,故图示A 分析正确.答案:A9.解析:f (x )=-x 2+2x +3则定义域满足:-x 2+2x +3≥0解得:-1≤x ≤3 即定义域为[-1,3]考虑函数y =-x 2+2x +3=-(x -1)2+4在-1≤x ≤3上有最大值4,最小值0. 在[-1,1]上单调递增,在(1,3]上单调递减.故f (x )=-x 2+2x +3的定义域为[-1,3],值域为[0,2],在[-1,1]上单调递增,在(1,3]上单调递减.故选CD. 答案:CD10.解析:f (2x -1)=(2x -1)2+2(2x -1)+1,故f (x )=x 2+2x +1,故选项C 错误,选项D 正确;f (3)=16,f (-3)=4,故选项A 错误,选项B 正确.故选BD.答案:BD11.解析:由题意,对于A 中,由2 018>2 017,而f (2 018)>f (2 017),由减函数定义可知,f (x )在R 上一定不是减函数,所以A 正确;对于B 中,若f (x )=0,定义域关于原点对称,则f (-2)=f (2)=-f (2),则函数f (x )可以是奇函数,所以B 错误;对于C 中,由分段函数的单调性的判定方法,可得选项C 不正确;对于D 中,若f (x )是偶函数,必有f (-2 018)=f ( 2018),所以D 正确.故选AD.答案:AD12.解析:令x =y =0,则f (0)=f (0)+f (0),所以f (0)=0,故A 正确;再令y =-x ,代入原式得f (0)=f (x )+f (-x )=0,所以f (-x )=-f (x ),故该函数为奇函数,故B 正确;由f (x +y )=f (x )+f (y )得f (x +y )-f (x )=f (y ),令x 1<x 2,再令x 1=x +y ,x 2=x ,则y =x 1-x 2<0,结合x <0时,f (x )>0,所以f (x 1)-f (x 2)=f (x 1-x 2)>0,所以f (x 1)>f (x 2),所以原函数在定义域内是减函数,所以函数f (x )在[m ,n ]上递减,故f (n )是最小值,f (m )是最大值,故C 错误;又f (x -1)>0,即f (x -1)>f (0),结合原函数在定义域内是减函数可得,x -1<0,解得x <1,故D 正确.故选ABD.答案:ABD13.解析:若a >0,则2a +2=0,得a =-1,与a >0矛盾,舍去;若a ≤0,则a +1+2=0,得a =-3,所以实数a 的值等于-3.答案:-314.解析:由题意,S =(4+x )⎝ ⎛⎭⎪⎫3-x 2,即S =-12x 2+x +12,∴当x =1时,S 最大. 答案:115.解析:由定义在R 上的奇函数f (x )满足:当x ≥0,f (x )=x 2-2x +a , 可得f (0)=a =0,当x ≥0,f (x )=x 2-2x , 则f (-3)=-f (3)=-(32-2×3)=-3. 答案:0 -316.解析:f (x )=⎩⎪⎨⎪⎧x -12+a -1,x >1,3-2ax -1,x ≤1显然函数f (x )在(1,+∞)上单调递增.故由已知可得⎩⎪⎨⎪⎧3-2a >0,a -1≥3-2a ×1-1,解得1≤a <32.答案:⎣⎢⎡⎭⎪⎫1,32 17.解析:(1)函数f (x )在[3,5]上为增函数,证明如下: 设x 1,x 2是[3,5]上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=2x 1-1x 1+1-2x 2-1x 2+1=3x 1-x 2x 1+1x 2+1.∵3≤x 1≤x 2≤5,∴x 1-x 2<0,x 1+1>0,x 2+1>0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴函数f (x )在[3,5]上为增函数. (2)由(1)知函数f (x )在[3,5]单调递增,所以 函数f (x )的最小值为f (x )min =f (3)=2×3-13+1=54,函数f (x )的最大值为f (x )max =f (5)=2×5-15+1=32.18.解析:(1)因为-2<-1,所以f (-2)=2×(-2)+3=-1, 所以f (f (-2))=f (-1)=2.(2)当a >1时,f (a )=1+1a =32,所以a =2>1;当-1≤a ≤1时,f (a )=a 2+1=32,所以a =±22∈[-1,1]; 当a <-1时,f (a )=2a +3=32,所以a =-34>-1(舍去).综上,a =2或a =±22. 19.解析:因为m ∈{x |-2<x <2,x ∈Z }, 所以m =-1,0,1.因为对任意的x ∈R ,都有f (-x )+f (x )=0, 即f (-x )=-f (x ),所以f (x )是奇函数.当m =-1时,f (x )=x 2只满足条件(1)而不满足条件(2); 当m =1时,f (x )=x 0,条件(1)(2)都不满足; 当m =0时,f (x )=x 3,条件(1)(2)都满足. 因此m =0,且f (x )=x 3在区间[0,3]上是增函数, 所以0≤f (x )≤27,故f (x )的值域为[0,27]. 20.解析:(1)若x <0,则-x >0,f (x )=f (-x ) =-(-x -2)2+2=-(x +2)2+2,则f (x )=⎩⎪⎨⎪⎧-x -22+2,x ≥0,-x +22+2,x <0.(2)图象如图所示,(3)由于方程f (x )-k =0的解就是函数y =f (x )的图象与直线y =k 的交点的横坐标,观察函数y =f (x )图象与直线y =k 的交点情况可知,当-2<k <2时,函数y =f (x )图象与直线y =k 有四个交点,即方程f (x )-k =0有四个解.21.解析:(1)由题意知D 地距B 城(100-x )km ,则⎩⎪⎨⎪⎧100-x ≥10,x ≥10,∴10≤x ≤90.设比例系数为k ,则y =k [x 2+(100-x )2](10≤x ≤90). 又x =40时,y =1 300,所以1 300=k (402+602),即k =14,所以y =14[x 2+(100-x )2]=12(x 2-100x +5 000)(10≤x ≤90).(2)由于y =12(x 2-100x +5 000)=12(x -50)2+1 250,所以当x =50时,y 有最小值为1 250万元.所以当供气站建在距A 城50 km 时,能使建设费用最小,最小费用是1 250万元. 22.解析:(1)f (1)=f (1)+f (1),所以f (1)=0,f (4)=f (2)+f (2)=1+1=2,f (8)=f (2)+f (4)=1+2=3.(2)因为f (x )+f (x -2)≤3, 所以f [x (x -2)]≤f (8),又因为对于函数f (x ),当x 2>x 1>0时,f (x 2)>f (x 1),所以f (x )在(0,+∞)上为增函数,所以⎩⎪⎨⎪⎧x >0,x -2>0,x x -2≤8,解得2<x ≤4.故x 的取值X 围为(2,4].。

高一函数练习题及答案

高一函数练习题及答案

高一函数练习题及答案高一函数练习题及答案高一阶段是学习数学的重要时期,其中函数是一个重要的内容。

函数作为数学的一个基础概念,对于学生来说是一个相对抽象的概念。

因此,通过练习题的方式来巩固和提高对函数的理解和运用能力是非常必要的。

本文将为大家提供一些高一函数练习题及答案,希望能够帮助大家更好地掌握函数的知识。

一、选择题1. 设函数f(x) = 2x + 3,那么f(4)的值是多少?A. 7B. 11C. 9D. 8答案:B. 11解析:将x = 4代入函数f(x) = 2x + 3中,得到f(4) = 2 × 4 + 3 = 8 + 3 = 11。

2. 已知函数g(x) = x^2 + 3x - 2,求g(-1)的值是多少?A. -6B. -2C. 2D. 6答案:C. 2解析:将x = -1代入函数g(x) = x^2 + 3x - 2中,得到g(-1) = (-1)^2 + 3 × (-1) - 2 = 1 - 3 - 2 = -4。

3. 函数h(x) = 3x^2 - 2x + 1,求h(2)的值是多少?A. 9B. 11C. 15D. 19答案:A. 9解析:将x = 2代入函数h(x) = 3x^2 - 2x + 1中,得到h(2) = 3 × 2^2 - 2 × 2 + 1 = 3 × 4 - 4 + 1 = 12 - 4 + 1 = 9。

二、填空题1. 设函数f(x) = 2x + 3,求f(-1)的值是多少?答案:1解析:将x = -1代入函数f(x) = 2x + 3中,得到f(-1) = 2 × (-1) + 3 = -2 + 3 = 1。

2. 已知函数g(x) = x^2 + 3x - 2,求g(0)的值是多少?答案:-2解析:将x = 0代入函数g(x) = x^2 + 3x - 2中,得到g(0) = 0^2 + 3 × 0 - 2 = 0 - 2 = -2。

高一数学函数经典练习题(含答案详细)

高一数学函数经典练习题(含答案详细)

高一数学函数经典练习题(含答案详细)一、求函数的定义域1、求下列函数的定义域:⑴ $y=\frac{x^2-2x-15}{x+3-3}$答案:首先化简得到 $y=\frac{x^2+2x-15}{x}$。

然后根据分式的定义,分母不能为零,即 $x\neq0$。

同时,分子中有$x-5$ 和 $x+3$ 两个因式,因此 $x\leq-3$ 或 $x\geq5$。

综合起来得到定义域为 $\{x|x\leq-3 \text{ 或 } x\geq5 \text{ 或 }x\neq0\}$。

⑵ $y=1-\frac{x-1}{2x+2}$答案:首先化简得到 $y=\frac{x+1}{2x+2}$。

然后根据分式的定义,分母不能为零,即 $x\neq-1$。

同时,分子中有 $x-1$ 和 $x+1$ 两个因式,因此 $x\geq0$。

综合起来得到定义域为 $\{x|x\geq0 \text{ 且 } x\neq-1\}$。

2、设函数 $f(x)$ 的定义域为 $[0,1]$,则函数 $f(x^2)$ 的定义域为 _。

_。

_;函数 $x-2f(x-2)$ 的定义域为答案:对于 $f(x^2)$,$x^2\in[0,1]$,因此 $x\in[-1,1]$。

综合起来得到定义域为 $\{x|-1\leq x\leq1\}$。

对于 $x-2f(x-2)$,$x-2(x-2)\in[0,1]$,即 $2\leq x\leq3$。

因此定义域为 $\{x|2\leq x\leq3\}$。

3、若函数 $f(x+1)$ 的定义域为 $[-2,3]$,则函数 $f(2x-1)$ 的定义域是;函数 $f(\frac{x+2}{x})$ 的定义域为。

答案:对于 $f(2x-1)$,$2x-1\in[-2,3]$,因此 $-1\leqx\leq2$。

综合起来得到定义域为 $\{x|-1\leq x\leq2\}$。

对于 $f(\frac{x+2}{x})$,$x\neq0$ 且 $\frac{x+2}{x}\in[-2,3]$,即 $-2x\leq x+2\leq3x$,解得 $-3\leq x\leq-1$ 或$x\geq2$。

人教A版高一数学必修第一册《函数的概念与性质》单元练习题卷含答案解析(5)

人教A版高一数学必修第一册《函数的概念与性质》单元练习题卷含答案解析(5)

人教A 版高一数学必修第一册《函数的概念与性质》单元练习题卷(共22题)一、选择题(共10题)1. 设 D 是含数 1 的有限实数集,f (x ) 是定义在 D 上的函数.若 f (x ) 的图象绕原点逆时针旋转π6后与原图象重合,则在以下各项中,f (1) 的可能取值只能是 ( ) A . √3B .√32C .√33D . 02. 如果函数 f (x )=12(m −2)x 2+(n −8)x +1(m ≥0,n ≥0) 在区间 [12,2] 上单调递减,那么 mn 的最大值为 ( ) A .16 B .18 C .25D .8123. 定义“函数 y =f (x ) 是 D 上的 a 级类周期函数”如下:函数 y =f (x ),x ∈D ,对于给定的非零常数 a ,总存在非零常数 T ,使得定义域 D 内的任意实数 x 都有 af (x )=f (x +T ) 恒成立,此时 T 为 f (x ) 的周期.若 y =f (x ) 是 [1,+∞) 上的 a 级类周期函数,且 T =1,当 x ∈[1,2) 时,f (x )=2x +1,且 y =f (x ) 是 [1,+∞) 上的单调递增函数,则实数 a 的取值范围为 ( ) A . [56,+∞)B . [2,+∞)C . [53,+∞)D . [10,+∞)4. 下列函数中,既是偶函数又在 (0,+∞) 上单调递增的函数是 ( ) A . y =cosxB . y =x 3C . y =log 12xD . y =e x +e −x5. 若函数 f (x )(x ∈R ) 为奇函数,f (1)=12,f (x +2)=f (x )+f (2),则 f (5)= ( )A . 0B . 1C . 52D . 56. 设函数 f (x )={x 2+1,x ≤12x ,x >1,则 f(f (3)) 等于 ( )A . 15B . 3C . 23D .1397. 已知函数 f (x )={x 2−2ax +2a,x ≤12x −alnx,x >1.若关于 x 的不等式 f (x )≥a 2 在 R 上恒成立,则实数 a 的取值范围为 ( ) A . (−∞,2√e] B . [0,32] C . [0,2]D . [0,2√e]8. 函数 f (x )=2x 2+2x x+1是 ( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数9. 已知函数 f (x )={2x −2−x ,x ≥02−x −2x ,x <0,若对任意的 x ∈R ,都有 f (2x +1)≥f (x −a ) 成立,则实数 a 的值为 ( ) A . −12B . 12C . −1D . 110. 如图,在四边形 ABCD 中,AB ∥CD ,AB ⊥BC ,AD =DC =2,CB =√2,动点 P 从 A 点出发,按照 A →D →C →B 路径沿边运动,设 P 点运动的路程为 x ,△APB 的面积为 y ,则函数 y =f (x ) 的图象大致是 ( )A .B .C .D .二、填空题(共6题)11. 记 t =x +y −a(x +2√2xy),x >0,y >0.已知对任意的 x >0,y >0,恒有 t ≥0,则实数 a 的取值范围为 .12. 若函数 f (x )=√1−log 2x 的反函数为 f −1(x ),则 f −1(x ) 的值域为 .13. 已知函数 f (x )={x 2,x ≤0−x 2,x >0,则 f [f (−2)]= .14. 已知函数 f (x )=sinx +tanx .项数为 27 的等差数列 {a n } 满足 a n ∈(−π2,π2),且公差 d ≠0,若 f (a 1)+f (a 2)+⋯+f (a 27)=0,则当 k = 时,f (a k )=0.15. 试写出一个与函数 y =x 2 定义域和值域都相同的函数 .16. 已知 f (x ) 是定义在 R 上的奇函数.当 x >0 时,f (x )=x 2−4x ,则不等式 f (x )>x 的解集用区间表示为 .三、解答题(共6题)17. 某工厂有一段旧墙长 14 m ,现准备利用这段旧墙为一面建造平面图形为矩形,面积为 126 m 2 的厂房,工程条件是:(1)建 1 m 新墙的费用为 a 元; (2)修 1 m 旧墙的费用为 a4 元;(3)拆去 1 m 的旧墙,用可得的建材建 1 m 的新墙的费用为 a2 元. 经讨论有两种方案:①利用旧墙一段 x m (0<x <14) 为矩形一边; ②矩形厂房利用旧墙的一面边长 x ≥14. 试写出两种方案中总费用关于 x 的函数关系.18. 定义在 R 上的严格减函数 y =f (x ) 满足:当且仅当 x ∈M ⊆R + 时,函数值 f (x ) 的集合为[0,2] 且 f (12)=1;对 M 中的任意 x 1,x 2 都有 f (x 1⋅x 2)=f (x 1)+f (x 2).(1) 求证;14∈M ,18∉M ;(2) 求证:y =f (x ) 在 M 上的反函数 f −1(x ) 满足 f −1(x 1)⋅f −1(x 2)=f −1(x 1+x 2); (3) 设 x ∈[0,2],解不等式 f −1(x 2+x )⋅f −1(x +2)≤14.19. 已知函数 f (x ) 对一切实数 x ,y 都有 f (x +y )=f (x )+f (y ).(1) 求证:f (x ) 是奇函数;(2) 若 f (−3)=a ,试用 a 表示 f (12).20. 判断函数 f (x )={x 2−2x +3,x >0,0,x =0,−x 2−2x −3,x <0. 的奇偶性.21. 设函数 y =f (x ) 的表达式为 f (x )=x 2+∣x −a ∣,其中 a 为实常数.(1) 判断函数 y =f (x ) 的奇偶性,并说明理由; (2) 设 a >0,函数 g (x )=f (x )x在区间 (0,a ] 上为严格减函数,求实数 a 的最大值.22. 已知 f (x ) 是定义在 R 上的奇函数,且 f (1)=1,对于任意的 x 1,x 2∈R (x 1≠x 2),都有f (x 1)−f (x 2)x 1−x 2>0.(1) 解关于 x 的不等式 f (x 2−3ax )+f (2a 2)<0;(2) 若 f (x )≤m 2−2am +1 对所有 x ∈[−1,1],a ∈[−1,1] 恒成立,求实数 m 的取值范围.答案一、选择题(共10题) 1. 【答案】B【知识点】抽象函数2. 【答案】B【解析】当 m =2 时,f (x )=(n −8)x +1,要使其在区间 [12,2] 上单调递减,则 n −8<0⇒n <8,于是 mn <16,则 mn 无最大值.当 m ∈[0,2) 时,f (x ) 的图象开口向下,要使 f (x ) 在区间 [12,2] 上单调递减,需 −n−8m−2≤12,即 2n +m ≤18,又 n ≥0,则 mn ≤m (9−m2)=−12m 2+9m . 而 g (m )=−12m 2+9m 在 [0,2) 上为增函数,所以 m ∈[0,2) 时,g (m )<g (2)=16,故 m ∈[0,2) 时,mn 无最大值. 当 m >2 时,f (x ) 的图象开口向上,要使 f (x ) 在区间 [12,2] 上单调递减,需 −n−8m−2≥2,即2m +n ≤12,而 2m +n ≥2√2m ⋅n ,所以 mn ≤18,当且仅当 {2m +n =12,2m =n. 即 {m =3,n =6. 时,取“=”,此时满足 m >2. 故 (mn )max =18.【知识点】二次函数的性质与图像、函数的最大(小)值、函数的单调性3. 【答案】C【解析】 f (n +1)=af (n )=a (2n +1)≥2(n +1)+1,a ≥1+22n+1 对 n ≥1,n ∈N ∗ 恒成立, 所以 a ≥(1+22n+1)max=1+23=53.【知识点】函数的最大(小)值4. 【答案】D【解析】 y =cosx 是偶函数,但在 (0,+∞) 不是单调递增,y =x 3 和 y =log 12x 2 不是偶函数,所以只有 y =e x +e −x 满足题意. 【知识点】函数的奇偶性、函数的单调性5. 【答案】C【解析】因为 f (x ) 为奇函数,所以 f (−1)=−f (1), 又 f (x +2)=f (x )+f (2),令 x =−1,得 f (1)=f (−1)+f (2), 于是 f (2)=2f (1)=1;令 x =1,得 f (3)=f (1)+f (2)=32,于是 f (5)=f (3)+f (2)=52. 故选C .【知识点】函数的奇偶性、抽象函数6. 【答案】D【解析】因为 f (3)=23≤1,所以 f(f (3))=(23)2+1=139.【知识点】分段函数7. 【答案】C【知识点】分段函数、恒成立问题8. 【答案】D【解析】因为 f (x )=2x 2+2x x+1的定义域为 {x∣ x ≠−1},定义域不关于原点对称,所以 f (x ) 既不是奇函数也不是偶函数. 【知识点】函数的奇偶性9. 【答案】A【解析】函数 f (x )={2x −2−x ,x ≥02−x −2x ,x <0,所以当 x ≥0 时,f (x )=2x −2−x , −x <0,即 f (−x )=2x −2−x , 所以 f (x )=f (−x ),同理当 x <0 时,f (x )=2−x −2x , 则 −x >0,则 f (−x )=2−x −2x , 即 f (x )=−f (−x ),综上可知,函数 f (x )={2x −2−x ,x ≥02−x −2x ,x <0 为偶函数,当 x ≥0 时,f (x )=2x −2−x ,此时 f (x ) 单调递增, 所以由偶函数对称性可知当 x <0 时 f (x ) 单调递减,若对任意的 x ∈R ,都有 f (2x +1)≥f (x −a ) 成立,则需 ∣2x +1∣≥∣x −a ∣,两边同时平方,移项化简可得3x2+(2a+4)x+1−a2≥0,由二次函数性质,可得Δ=(2a+4)2−4×3×(1−a2)≤0,化简可得(2a+1)2≤0,由平方数性质可知(2a+1)2≥0,所以只能是(2a+1)2=0,解得a=−12.【知识点】函数的奇偶性、函数的单调性、分段函数10. 【答案】A【解析】当x∈[0,2]时,y=f(x)=√2+12,x,y与x成正比,故排除C,D;当x∈(2,4]时,y=f(x)=1+√2,△APB的面积保持不变,排除B.故选A.【知识点】函数图象、函数的表示方法二、填空题(共6题)11. 【答案】{a∣ a≤12}【解析】由t≥0,得x+y≥a(x+2√2xy).因为x>0,y>0,所以a≤x+2√2xy.因为2√2xy≤x+2y,所以x+2√2xy ≥x+yx+(x+2y)=12,当且仅当x=2y>0时,等号成立,因为a≤12,所以实数a的取值范围是{a∣ a≤12}.【知识点】均值不等式的应用12. 【答案】(0,2]【解析】求原函数定义域即解不等式1−log2x>0.【知识点】函数的值域的概念与求法13. 【答案】−16【解析】f[f(−2)]=f(4)=−16.【知识点】分段函数14. 【答案】14【解析】提示:函数 f (x )=sinx +tanx 为奇函数,a 1+a 27=a 2+a 26=⋯=2a 14=0 时,满足题意.又因为此函数在 (−π2,π2) 上为增函数,所以 k 只能等于 14. 【知识点】函数的奇偶性、等差数列15. 【答案】 y =(x +1)2(答案不唯一)【知识点】函数的相关概念16. 【答案】 (−5,0)∪(5,+∞)【解析】因为 f (x ) 是定义在 R 上的奇函数,所以 f (0)=0, 又当 x <0 时,−x >0,所以 f (−x )=x 2+4x . 又 f (x ) 为奇函数,所以 f (−x )=−f (x ), 所以 f (x )=−x 2−4x (x <0), 所以 f (x )={x 2−4x,x >00,x =0−x 2−4x,x <0①当 x >0 时,由 f (x )>x 得 x 2−4x >x ,解得 x >5; ②当 x =0 时,f (x )>x 无解;③当 x <0 时,由 f (x )>x 得 −x 2−4x >x ,解得 −5<x <0. 综上,不等式 f (x )>x 的解集用区间表示为 (−5,0)∪(5,+∞). 【知识点】函数的奇偶性、二次不等式的解法三、解答题(共6题)17. 【答案】方案①:修旧墙费用为 x ⋅a4 元,拆旧墙造新墙费用为 (14−x )⋅a2 元,其余建新墙费用为 (2x +2×126x−14)a 元,∴ 总费用 y =7a (x4+36x−1)(0<x <14).方案②:利用旧墙费用为 14⋅a 4=7a 2(元),建新墙费用为 (2x +252x−14)a (元),总费用 y =2a (x +126x)−212a (x ≥14).【知识点】建立函数表达式模型18. 【答案】(1) 因为 12∈M ,又 14=12×12,f (12)=1, 所以 f (14)=f (12×12)=f (12)+f (12)=2∈[0,2],所以 14∈M ,又因为 f (18)=f (14×12)=f (14)+f (12)=3∉[0,2], 所以 18∉M .(2) 因为 y =f (x ) 在 M 上是严格减函数,所以 y =f (x ) 在 M 上有反函数 y =f −1(x ),x ∈[0,2].任取 x 1,x 2∈[0,2],设 y 1=f −1(x 1),y 2=f −1(x 2), 所以 x 1=f (y 1),x 2=f (y 2)(y 1,y 2∈M ). 因为 x 1+x 2=f (y 1)+f (y 2)=f (y 1y 2), 所以 y 1y 2=f −1(x 1+x 2).又 y 1y 2=f −1(x 1)f −1(x 2),所以 f −1(x 1)⋅f −1(x 2)=f −1(x 1+x 2). (3) 因为 y =f (x ) 在 M 上是严格减函数, 所以 f −1(x ) 在区间 [0,2] 上也是严格减函数.f −1(x 2−x )⋅f −1(x +2)≤14 等价于 f −1(x 2−x +x +2)≤f −1(2).转化为 {0≤x 2−x ≤2,0≤x +2≤2,x 2+2≥2,解得 {−1≤x ≤0或1≤x ≤2,−2≤x ≤0,x ∈R. 即 −1≤x ≤0.所以,不等式的解集为 [−1,0].【知识点】函数的单调性、抽象函数、反函数19. 【答案】(1) 由已知 f (x +y )=f (x )+f (y ), 令 y =−x 得 f (0)=f (x )+f (−x ), 令 x =y =0 得 f (0)=2f (0), 所以 f (0)=0, 所以 f (x )+f (−x )=0, 即 f (−x )=−f (x ), 故 f (x ) 是奇函数.(2) 由(1)知 f (x ) 为奇函数. 所以 f (−3)=−f (3)=a , 所以 f (3)=−a .又 f (12)=f (6)+f (6)=2f (3)+2f (3)=4f (3), 所以 f (12)=−4a .【知识点】函数的奇偶性20. 【答案】若 x >0,则 −x <0,f (−x )=−(−x )2−2(−x )−3=−x 2+2x −3=−f (x ); 若 x =0,则 −x =0,f (−x )=f (0)=0=−f (0);若 x <0,则 −x >0,f (−x )=(−x )2−2(−x )+3=x 2+2x +3=−f (x ). 综上所述 f (−x )={−x 2+2x −3,x >0,0,x =0,x 2+2x +3,x <0.所以 f (−x )=−f (x ),所以 f (x ) 是奇函数.【知识点】函数的奇偶性21. 【答案】(1) 当 a =0 时,y =f (x ) 为偶函数;当 a ≠0 时,y =f (x ) 为非奇非偶函数;(2) a ∈(0,1].【知识点】函数的单调性、函数的最大(小)值22. 【答案】(1) 因为对于任意 x 1,x 2∈[−1,1],x 1≠x 2,总有 f (x 1)−f (x 2)x 1−x 2>0,所以函数 f (x ) 在 [−1,1] 上是递增的奇函数.不等式 f (x 2−3ax )+f (2a 2)<0 变形为不等式 f (x 2−3ax )<−f (2a 2)=f (−2a 2), 所以 x 2−3ax +2a 2<0⇒(x −2a )(x −a )<0. ①当 a >0 时,不等式解集为 {x∣ a <x <2a }; ②当 a =0 时,不等式解集为 ⌀;③当 a <0 时,不等式解集为 {x∣ 2a <x <a }.(2) 所以函数 f (x ) 在 [−1,1] 上是增函数,且 f (x )max =f (1)=1.所以问题转化为 t 2−2αt −1≥f (x )max =f (1)=1 对任意的 α∈[−1,1] 恒成立. 令 g (α)=m 2−2αm +1,α∈[−1,1],只需 {g (1)=m 2−2m +1≥1,g (−1)=m 2+2m +1≥1, 解得 m =0 或 m ≥2 或 m ≤−2.所以实数 m 的取值范围为 {m∣ m =0 或 m ≥2 或 m ≤−2}. 【知识点】函数的单调性、函数的奇偶性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学函数综合练习
单元练习题
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
高一数学系列练习 (函数综合题)
一、选择题:
1、下列四组函数中表示同一函数的是 ( A )
A f (x)=| x | 与g(x)=2x
B y=x 0 与y=1
C y=x+1与y=11
2--x x D y=x -1与y=122+-x x
2、函数y=)12(log 2
1-x 的定义域为
( C )
A .(21
,+∞) B .[1,+∞) C .( 21
,1] D .(-
∞,1)
3、已知f (x 1)=11
+x ,则f (x)的解析式为 ( C ) A f(x) =x +11 B f (x)=x x
+
1 C f (x)=x x
+1 D f (x)=1+x
4、函数y=x 2-6x+10在区间上(2,4)上 ( D )
A 单调递增
B 单调递减
C 先递增后递减
D 先递减后递增
5、若24x =-2x ,则实数x 的取值范围是 ( D )
A x>0
B x<0
C x ≥0
D x ≤0
6、函数y=12
-+x x 的定义域为 ( D )
A x ≠1
B x ≥-2
C -2<x<1或x>1
D -2≤x<1或x>1
7、若y=(1-a)x 在R 上是减函数,则a 的取值范围是 ( B )
A (1,+∞)
B (0,1)
C (-∞,1)
D (-1,1)
8、函数f (x)=x x 2)21(2
+ ( B )
A 是奇函数
B 是偶函数
C 非奇非偶
D 既奇既偶
9、指数式b 3=a (b>0,且b ≠1)所对应的对数式是 ( D )
A log 3a=b
B log 3b=a
C log a b=3
D log b a=3
10、下列等式一定成立的是 ( D )
A .2331a a ⋅=a
B .2121a a
⋅-=0 C .(a 3)2=a 9 D .613121a a a =÷ 11、函数y=log 21|x|的图象特点为 ( B )
A 关于x 轴对称
B 关于y 轴对称
C 关于原点对称
D 关于直线y=x 对称
12、已知ab>0,下面四个等式中,正确命题的个数为 ( B )
①lg (ab )=lga+lgb ②lg b a =lga -lgb ③b a b a lg )lg(212= ④lg (ab )=10log 1ab
A .0
B .1
C .2
D .3
二、填空题:
13、已知f(x)=⎩⎨⎧>+-≤+)
1(3)1(1x x x x ,则f(f(25))=_______3______; 14、若f(x)的定义域为[-1,4],则函数f(x+2)的定义域为_____[-3,2]_______;
15.若11)1(2-=-x x f ,则)(x f = x
x 212+ . 16.若函数2)(+=x x x f ,则)3
1(1-f = 1 . 17.函数4)1lg()(2-+-=x x x f ,则函数定义域为 [2,+∞) .
18.设函数1)1(log )(+-=x x f a ,则它的反函数图像过定点 (1,2) .
19.函数32-+=x x y 的值域为 [3,+∞) .
20.函数)82(log 23
1--=x x y 的单调递减区间为 (4,+∞) .
三、解答题:
21、求证:y=kx+b(k>0)是R 上的增函数.
证明:在R 上任取x 1<x 2,x 1-x 2<0,则
f(x 1)-f(x 2)=(kx 1+b)-(kx 2+b)=k(x 1-x 2)<0
即f(x 1)<f(x 2),所以y=kx+b(k>0)是R 上的增函数.
21、已知二次函数y=f(x)满足条件f(0)=1,f(x+1)-f(x)=2x,求f(x)的表达式. 解:设二次函数f(x)=ax 2+bx+c(a ≠0),
由f (0)=1得,a02+b0+c=1,即c=1;
由f(x+1)-f(x)=2x 得,a(x+1)2+b(x+1)+c -(ax 2+bx+c)=2x,整理得:2ax+a+b=2x 即⎩
⎨⎧=+=022b a a 得a=1,b=-1,c=1 所以:f(x)=x 2-x+1.
22、试判断函数x
x x f 2)(+=在[2,+∞)上的单调性. 解:设+∞<<≤212x x ,则有
=-)()(21x f x f )2(22211x x x x +-+=)22()(2
121x x x x -+- =)22()(211221x x x x x x ⋅-+-=)21)((2
121x x x x ⋅-- =)2)((2
12121x x x x x x ⋅--. +∞<<≤212x x ,021<-x x 且0221>-x x ,021>x x ,
所以0)()(21<-x f x f ,即)()(21x f x f <.
所以函数)(x f y =在区间[2,+∞)上单调递增.
23、定义在(-1,1)上的函数f(x)是增函数,且满足f(a -1)<f(3a),求a 的取值范围.
解:由题意得,⎪⎩⎪⎨⎧<-<<-<-<-a a a a 31131111即⎪⎪⎪⎩
⎪⎪⎪⎨⎧-><<-<<21313120a a a 所以0<a<31
24、给出函数2()log (0,1)2
a x f x a a x +=>≠-. (1) 求函数的定义域;
(2) 判断函数的奇偶性;
(3) 求)(1x f -的解析式.
解:(1)由题意,02
2>-+x x 解得:22>-<x x 或, 所以,函数定义域为}22|{>-<x x x 或.
(2)由(1)可知定义域关于原点对称,则 22log )(--+-=-x x x f a =22log +-x x a =1)2
2(log --+x x a =22log -+-x x a =)(x f -. 所以函数)(x f y =为奇函数.
(3)设22log -+=x x y a ,有y a x x =-+2
2,解得122-+=y y a a x , 所以122)(1
-+=-x x a a x f ,{|1,}x x x x ∈≠∈R .。

相关文档
最新文档