2020北京中考数学二模分类汇编26题代数综合

合集下载

2020北京海淀初三二模数学含答案

2020北京海淀初三二模数学含答案

2020北京海淀初三二模数 学 2020.6学校姓名准考证号第1-8题均有四个选项,符合题意的选项只有一个. 1.下面的四个图形中,是圆柱的侧面展开图的是2.若代数式12x −有意义,则实数x 的取值范围是 A. 0x =B. 2x =C. 0x ≠D. 2x ≠3.如图,在ABC 中,3AB cm =,通过测量,并计算ABC 的面积,所得面积与下列数值最接近的是A. 21.5cmB. 22cmC. 22.5cmD. 23cm4.图中阴影部分是由4个完全相同的的正方形拼接而成,若要在①,②,③,④四个区域中的某个区域处添加一个同样的正方形,使它与阴影部分组成的新图形是中心对称图形,则这个正方形应该添加在 A. 区域①处 B. 区域②处 C. 区域③处D. 区域④处5.如图,在ABC 中, //,EF BC ED 平分BEF ∠,且70DEF ∠=︒,则B ∠的度数为A.70°B.60°C.50°D.40°6.如果220a a −−=,那么代数式()()()2122a a a −++−的值为A.1B.2C.3D.47.如图,O 的半径等于4,如果弦AB 所对的圆心角等于90︒,那么圆心O 到弦AB 的距离为B.2C.D.8.在平面直角坐标系xOy 中,对于点(),P a b ,若0ab >,则称点P 为“同号点”.下列函数的图象中不存在“同号点”的是 A.1y x =−+B.22y x x =−C.2y x=−D.21y x x=+二、填空题(本题共16分,每小题2分) 9.单项式23x y 的系数是 .10.如图,点,,A B C 在O 上,点D 在O 内,则ACB ∠ADB ∠.(填>=<“”,“”或“”) 11.下表记录了一名篮球运动员在罚球线上投篮的结果:根据上表,这名篮球运动员投篮一次,投中的概率约为.(12.函数)1(0y kx k =+≠的图象上有两点()()11221,1,P y P y −,,若12y y <,写出一个符合题意的k 的值:.13.如图,在ABC 中,120AB BC ABC =∠=︒,,过点B 作BD BC ⊥,交AC 于点D ,若1AD =,则CD 的长度为.14.如图,在平面直角坐标系xOy 中,已知点 ()3,2C ,将ABC 关于直线4x =对称,得到111A B C ,则点C 的对应点1C 的坐标为;再将111A B C 向上平移一个单位长度,得到222A B C ,则点1C 的对应点2C 的坐标为.15.小华和小明周末到北京三山五园绿道骑行.他们按设计好的同一条线路同时出发,小华每小时骑行18km ,小明每小时骑行12km ,他们完成全部行程所用的时间,小明比小华多半小时.设他们这次骑行线路长为xkm ,依题意,可列方程为.16.如图,在平面直角坐标系xOy 中,有五个点()()()()()2,0,0,2,2,4,4,2,7,0A B C D E −−−,将二次函数()2)0(2y a x m m =−+≠的图象记为W .下列的判断中 ①点A 一定不在W 上; ②点,,B C D 可以同时在W 上; ③点C E ,不可能同时在W 上. 所有正确结论的序号是.三、解答题(本题共68分,第17~22题,每小题5分,第23~26题,每小题6分,第27~28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.计算:10112cos302π−+−()(2020-)18.解不等式()214x x −<−,并在数轴上表示出它的解集.19.下面是小王同学“过直线外一点作该直线的平行线”的尺规作图过程.已知:直线l 及直线l 外一点P . 求作:直线PQ ,使得//PQ l .作法:如图,①在直线l 外取一点A ,作射线AP 与直线l 交于点B ,②以A 为圆心,AB 为半径画弧与直线l 交于点C ,连接AC , ③以A 为圆心,AP 为半径画弧与线段AC 交于点Q , 则直线PQ 即为所求.根据小王设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明. 证明:AB AC =,ABC ACB ∴∠=∠,()(填推理的依据)AP = ,APQ AQP ∴∠=∠.180ABC ACB A ∠+∠+∠=︒, 180APQ AQP A ∠+∠+∠=︒,APQ ABC ∴∠=∠. //PQ BC ∴ ()(填推理的依据).即//PQ l .20.已知关于x 的一元二次方程220x x n −+=.(1)如果此方程有两个相等的实数根,求n 的值; (2)如果此方程有一个实数根为0,求另外一个实数根.21.如图,在Rt ABC 中,90,ACB D ∠=︒为AB 边的中点,连接CD ,过点A 作//AG DC ,过点C 作//CG DA AG ,与CG 相交于点G(1)求证:四边形ADCG 是菱形; (2)若3104AB tan CAG =∠=,,求BC 的长.22.坚持节约资源和保护环境是我国的基本国策,国家要求加强生活垃圾分类回收与再生资源回收有效衔接,提高全社会资源产出率,构建全社会的资源循环利用体系.图1反映了2014-2019年我国生活垃圾清运量的情况.图2反映了2019年我国G 市生活垃圾分类的情况.根据以上材料回答下列问题:(1)图2中,n 的值为;(2)2014-2019年,我国生活垃圾清运量的中位数是;(3)据统计,2019年G 市清运的生活垃圾中可回收垃圾约为0.02亿吨,所创造的经济总价值约为40亿元.若2019年我国生活垃圾清运量中,可回收垃圾的占比与G 市的占比相同,根据G 市的数据估计2019年我国可回收垃圾所创造的经济总价值是多少.23.如图,AB 为O 的直径,C 为O 上一点,CE AB ⊥于点E ,O 的切线BD交OC 的延长线于点D . (1)求证:DBC OCA ∠=∠;(2)若302BAC AC ∠=︒=,.求CD 的长.24.如图,在平面直角坐标系xOy 中,函数2(0)y x x=>的图象与直线(0)y kx k =≠交于点(1,)P p .M 是函数2(0)y x x=>图象上一点,过M 作x 轴的平行线交直线(0)y kx k =≠于点N .(1)求k 和p 的值; (2)设点M 的横坐标为m .①求点N 的坐标;(用含m 的代数式表示) ②若OMN 的面积大于12,结合图象直接写出m 的取值范围.25.如图1,在四边形ABCD 中,对角线AC 平分,901BAD B ACD AC AB ∠∠=∠=︒−=,.为了研究图中线段之间的数量关系,设,AB x AD y ==.(1)由题意可得(),AB AC AD=(在括号内填入图1中相应的线段) y 关于x 的函数表达式为y =;(2)如图2,在平面直角坐标系xOy 中,根据(1)中y 关于x 的函数表达式描出了其图象上的一部分点,请依据描出的点画出该函数的图象;(3)结合函数图象,解决问题:①写出该函数的一条性质: ;②估计AB AD +的最小值为 .(结果精确到0.1)26.在平面直角坐标系xOy 中,已知二次函数223y mx mx =++的图象与x 轴交于点()3,0A −,与y 轴交于点B ,将其图象在点,A B 之间的部分(含,A B 两点)记为F .(1)求点B 的坐标及该函数的表达式;(2)若二次函数22y x x a =++的图象与F 只有一个公共点,结合函数图象,求a 的取值范围.27.如图1,等边三角形ABC 中,D 为BC 边上一点,满足BD CD <,连接AD ,以点A 为中心将射线AD 顺时针旋转60︒,与ABC 的外角平分线BM 交于点E . (1)依题意补全图1; (2)求证:AD AE =;(3)若点B 关于直线AD 的对称点为F ,连接CF . ①求证://AE CF ;②若BE CF AB +=成立,直接写出BAD ∠的度数为°28.在平面内,对于给定的ABC ,如果存在一个半圆或优弧与ABC 的两边相切,且该弧上的所有点都在ABC 的内部或边上,则称这样的弧为ABC 的内切弧.当内切弧的半径最大时,称该内切弧为ABC 的完美内切弧.(注:弧的半径指该弧所在圆的半径)在平面直角坐标系xOy 中,()()8,0,0,6A B . (1)如图1,在弧1G ,弧2G ,弧3G 中,是OAB 的内切弧的是;(2)如图2,若弧G 为OAB 的内切弧,且弧G 与边,AB OB 相切,求弧G 的半径的最大值; (3)如图3,动点(),3M m ,连接,OM AM . ①直接写出OAM 的完美内切弧的半径的最大值;②记①中得到的半径最大时的完美内切弧为弧T .点P 为弧T 上的一个动点,过点P 作x 轴的垂线,分别交x 轴和直线AB 于点,D E ,点F 为线段PE 的中点,直接写出线段DF 长度的取值范围.2020北京海淀初三二模数学参考答案一、选择题9. 3 10. < 11. 0.6812. 1 (答案不唯一)13. 2 14. (5,2),(5,3) 15.112182x x −= 16. ①②注:第14题每空1分;第16题答对一个得1分,答对2个得满分,含有错误答案得0分 三、解答题17.解:原式=2+1+√3−1−2×√32=218.解:去括号,得:224x x −<−.移项,得:2+42x x <+. 合并同类项,得:36x <. 系数化成1得:2x <.该不等式的解集在数轴上表示为:19.解:(1)补全图形如图所示:l(2)等边对等角.AQ .同位角相等,两直线平行.20.解:(1)∵原方程有两个相等实数根,∴Δ=0. 即2(2)40n −−=. ∴1n =.(2)∵原方程有一个实数根为0, ∴20200n −⨯+= 即0n =.∴原方程可化为220x x −=. ∴另一个根为2. 21.(1)证明:∵AG ∥DC ,CG ∥DA ,∴四边形ADCG 为平行四边形.∵Rt ABC △中,90ACB ∠=︒,D 为AB 边的中点, ∴AD CD BD ==. ∴四边形ADCG 是菱形.(2)解:∵四边形ADCG 是菱形, ∴CAG BAC ∠=∠.∵3tan =4CAG ∠,∴3tan =4BAC ∠.∴34BC AC =.BC=.∴622.解:(1)18.(2)2.1.(3)2.520%0.5()⨯=亿吨÷=亿元/亿吨400.022000()⨯(亿元)20000.5=1000答:根据G市的数据估计2019年我国可回收垃圾所创造的经济总价值是1000亿元.23.(1)证明:∵DB是⊙O的切线,∴∠OBD=∠OBC+∠DBC=90°.∵AB是⊙O的直径,∴∠ACB=∠OCA+∠OCB=90°.∵OC=OB,∴∠OBC=∠OCB.∴∠DBC=∠OCA.(2)解:在Rt△ACB中,∠A=30°,AC=2,可得CB=AC tan A∵∠A=30°,∴∠COB=2∠A=60°.∴∠D=90°−∠COB=30°.∵OA=OC,∴∠OCA=∠A=30°.∴∠DBC=∠OCA=30°.∴∠D=∠DBC.∴CD24.解:(1)依题意,P (1,p )在函数2(0)y x x=>的图象上, 可得21p ==2,得点P (1,2). 将P (1,2)代入直线(0)y kx k =≠,得2k =.(2)①由于M 是函数2(0)y x x=>图象上一点,且点M 的横坐标为m , 可得点M 的纵坐标为2m. 又因为过M 作x 轴的平行线交直线(0)y kx k =≠于点N ,得22x m =,解得1x m =,即N 点坐标为(1m ,2m).②03m <<或者m >. 25.解:(1)AC ,2(1)x x+.(2)如图所示:(3)①当x >1时,y 随x 的增大而增大(答案不唯一).图 226.解:(1)∵y =mx 2+2mx +3的图象与与y 轴交于点B ,∴点B 的坐标为(0,3).∵y =mx 2+2mx +3的图象与x 轴交于点(3,0)A −, ∴将(3,0)A −代入y =mx 2+2mx +3可得9630m m −+=. ∴m =-1.∴该函数的表达式为y =-x 2-2x +3.(2)∵将二次函数y =mx 2+2mx +3的图象在点A ,B 之间的 部分(含A ,B 两点)记为F ,∴F 的端点为A ,B ,并经过抛物线y =mx 2+2mx +3的 顶点C (其中C 点坐标为(-1,4)). ∴可画F 如图1所示.∵二次函数y =x 2+2x +a 的图象的对称轴为x =-1, 且与F 只有一个公共点,∴可分别把A ,B ,C 的坐标代入解析式y =x 2+2x +a 中. ∴可得三个a 值分别为-3,3,5. 可画示意图如图2所示. ∴结合函数图象可知:二次函数y =x 2+2x +a 的图象与F 只有一个公共点时,a 的取值范围是-3≤a <3或a =5.27.(1)依题意补全图形C图 1图 2(2)证明:∵△ABC是等边三角形,∴AB=AC,∠BAC=∠ABC=∠C=60°.∴∠1+∠2=60°.∵射线AD绕点A顺时针旋转60°得到射线AE,∴∠DAE=60°.∴∠2+∠3=60°.∴∠1=∠3.∵∠ABC=60°,∴∠ABN=180°-∠ABC=120°.∵BM平分∠ABN,∴∠4=∠5=60°.∴∠4=∠C.∴△ABE≌△ACD.∴AD=AE.(3)①证明:连接AF,设∠BAD=α,∵点B与点F关于直线AD对称,∴∠FAD=∠BAD=α,FA=AB.∵∠DAE=60°,∴∠BAE=∠DAE-∠DAB=60°-α.∵等边三角形ABC中,∠BAC=60°,∴∠EAC=∠BAE+∠BAC=120°-α.∵AB=AC,AF=AB,∴AF=AC.∴∠F=∠ACF.FDNEAB C M∵∠FAC =∠BAC -∠FAD -∠BAD =60°-2α, 且∠F +∠ACF +∠FAC =180°, ∴∠ACF =60°+α. ∴∠EAC +∠ACF =180°. ∴AE ∥CF . ②20°.28.解:(1)弧G 2,弧G 3.(2)∵弧G 为△OAB 的内切弧,且弧G 与边AB ,OB 相切, ∴弧G 所在圆的圆心在∠OBA 的角平分线BI 上.易知若弧G 的半径最大,则弧G 所在圆的圆心I 在 △OAB 的边OA 上.设弧G 与边AB ,OB 相切分别 切于点O ,H. ∴IH ⊥AB . ∵A (8,0),B (0,6),∴BO =6,AO =8,AB=10. ∵∠IOB =∠IHB =90°,OI =IH ,BI =BI , ∴△IOB ≌△IHB . ∴BH =BO =6.∴AH =AB -BH =4,AI =AO -OI =8-OI ,OI =HI . 在Rt△AIH 中,AI 2=AH 2+HI 2,即222(8)4OI OI −=+. 解得OI =3.(3)①△OAM 的完美内切弧半径的最大值为125. ②线段DF 长度的取值范围是335DF ≤≤且4825DF ≠. 注:本试卷各题中若有其他合理的解法请酌情给分.。

2020北京市中考数学二模分类26题代数综合

2020北京市中考数学二模分类26题代数综合

2018北京市中考数学二模分类26题代数综合题2018东城二模26.在平面直角坐标系xOy 中,抛物线()230y ax bx a =+-≠经过点()1,0A -和点()45B ,.(1)求该抛物线的表达式;(2)求直线AB 关于x 轴的对称直线的表达式;(3)点P 是x 轴上的动点,过点P 作垂直于x 轴的直线l ,直线l 与该抛物线交于点M ,与直线AB 交于点N .当PM PN <时,求点P 的横坐标P x 的取值范围.2018西城二模26. 抛物线M :241y ax ax a =-+- (a ≠0)与x 轴交于A ,B 两点(点A 在点B 左侧),抛物线的顶点为D .(1)抛物线M 的对称轴是直线____________; (2)当AB =2时,求抛物线M 的函数表达式;(3)在(2)的条件下,直线l :y kx b =+(k ≠0)经过抛物线的顶点D ,直线y n =与抛物线M 有两个公共点,它们的横坐标分别记为1x ,2x ,直线y n =与直线l 的交点的横坐标记为3x (30x >),若当2-≤n ≤1-时,总有13320x x x x ->->,请结合函数的图象,直接写出k 的取值范围. 2018海淀二模26.在平面直角坐标系xOy 中,已知点(3,1)A -,(1,1)B -,(,)C m n ,其中1n >,以点,,A B C 为顶点的平行四边形有三个,记第四个顶点分别为123,,D D D ,如图所示.(1)若1,3m n =-=,则点123,,D D D 的坐标分别是( ),( ),( );(2)是否存在点C ,使得点123,,,,A B D D D 在同一条抛物线上?若存在,求出点C 的坐标;若不存在,说明理由.2018朝阳二模26.已知二次函数)0(222≠--=a ax ax y . (1)该二次函数图象的对称轴是直线 ;(2)若该二次函数的图象开口向上,当-1≤x ≤5时,函数图象的最高点为M ,最低点为N ,点M 的纵坐标为211,求点M 和点N 的坐标;(3)对于该二次函数图象上的两点A (x 1,y 1),B (x 2,y 2),设t ≤ x 1 ≤ t +1,当x 2≥3时,均有y 1 ≥ y 2,请结合图象,直接写出t 的取值范围. 2018丰台二模26.在平面直角坐标系xOy 中,二次函数22y x hx h =-+的图象的顶点为点D .(1)当1h =-时,求点D 的坐标; (2)当1x -≤≤≤1≤1时,求函数的最小值m .(用含h 的代数式表示m )2018石景山二26.在平面直角坐标系xOy 中,抛物线()240y ax x c a =++≠经过点()34,A -和()02,B .(1)求抛物线的表达式和顶点坐标;(2)将抛物线在A 、B 之间的部分记为图象M (含A 、B 两点).将图象M 沿直线3x =翻折,得到图象N .若过点()94,C 的直线y kx b =+与图象M 、图象N 都相交,且只有两个交点,求b 的取值范围. 2018门头沟二模26.在平面直角坐标系xOy 中,有一抛物线其表达式为222y x mx m =-+. (1)当该抛物线过原点时,求m 的值;(2)坐标系内有一矩形OABC ,其中(4,0)A 、(4,2)B .①直接写出C 点坐标;②如果抛物线222y x mx m =-+与该矩形有2个交点,求m 的取值范围.2018顺义二模26.在平面直角坐标系中,二次函数y =. (1)求二次函数的表达式;(2)若一次函数(0)y kx b k =+≠x 轴上同一点,探究实数k ,b 满足的关系式;(3)将二次函数221y x ax a =+++的图象向右平移2个单位,若点P (x 0,m )和Q (2,n )在平移后的图象上,且m >n ,结合图象求x 0的取值范围.2018房山二模26. 在平面直角坐标系x O y 中,二次函数2y ax bx c =++(0a ≠)的图象经过A (0,4),B (2,0),C (-2,0)三点. (1)求二次函数的表达式;(2)在x 轴上有一点D (-4,0),将二次函数的图象沿射线DA 方向平移,使图象再次经过点B .①求平移后图象顶点E 的坐标;②直接写出此二次函数的图象在A ,B 两点之间(含A ,B 两点)的曲线部分在平移过程中所扫过的面积. 2018怀柔二模26.在平面直角坐标系xOy 中,二次函数C 1:()332--+=x m mx y (m >0)的图象与x轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交x于点C .(1)求点A 和点C 的坐标; (2)当AB =4时,①求二次函数C 1的表达式;②在抛物线的对称轴上是否存在点D ,使△DAC 的周长最小,若存在,求出点D 的坐标,若不存在,请说明理由;(3)将(2)中抛物线C 1向上平移n 个单位,得到抛物线C 2,若当0≤x ≤25时,抛物线C 2与x 轴只有一个公共点,结合函数图象,求出n 的取值范围. 2018平谷二模26.在平面直角坐标系中,点D 是抛物线223y ax ax a =--()0a >的顶点,抛物线与x轴交于点A ,B (点A 在点B 的左侧). (1)求点A ,B 的坐标;(2)若M 为对称轴与x 轴交点,且DM =2AM ,求抛物线表达式; (3)当30°<∠ADM <45°时,求a 的取值范围. 2018昌平二模26.在平面直角坐标系xOy 中,抛物线223(0)y ax ax a a =--≠,与x 轴交于A 、B 两点(点A 在点B 的左侧). (1)求点A 和点B 的坐标;(2)若点P (m ,n )是抛物线上的一点,过点P 作x 轴的垂线,垂足为点D .①在0a >的条件下,当22m -≤≤时,n 的取值范围是45n -≤≤,求抛物线的表达式; ②若D 点坐标(4,0),当PD AD >时,求a 的取值范围.。

13.代数综合:2020年北京市各区初三数学二模试题分类整理(教师版)

13.代数综合:2020年北京市各区初三数学二模试题分类整理(教师版)

202006初三数学二模试题整理:代数综合(教师版)一、直线(或线段)与抛物线的交点问题: (一)定直线+动抛物线 1.(2020密云二模26)(1)定线段(2)动抛物线:①不变:对称轴、顶点;②变:开口大小方向在平面直角坐标系xOy 中,抛物线C 1:y=x 2+bx+c 与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C .点B 的坐标为(3,0),将直线y=kx 沿y 轴向上平移3个单位长度后,恰好经过B 、C 两点. (1)求k 的值和点C 的坐标;(2)求抛物线C 1的表达式及顶点D 的坐标; (3)已知点E 是点D 关于原点的对称点,若抛物线 C 2:y=ax 2-2(0a )与线段AE 恰有一个公共 点,结合函数的图象,求a 的取值范围.26.(1)解:∵直线y=kx +3经过点B (3,0) ∴3k+3=0 k=-1 ……1分∴y=-x +3与y 轴的交点,即为点C (0,3) ……2分 (2)解:∵抛物线y=x 2+bx+c 经过点B (3,0)和点C (0,3) ∴ y=x 2+bx+3∴ 9+3b +3=0 b=-4∴抛物线C 1的函数表达式为y = x 2-4x+3 ……3分∴y =(x -2)2-1∴顶点D 的坐标为(2,-1) ……4分(3)解:∵点E 是点D 关于原点的对称点∴点E 的坐标为(-2,1) 当y=ax 2-2经过点E (-2,1)时,a =当y=ax 2-2经过点A (1,0)时,a =2∴a 的取值范围是 ≤a <2 ……………6分4343(1)定线段(2)动抛物线:①不变:过定点②变:开口、对称轴在平面直角坐标系xOy 中,已知抛物线()()231210y mx m x m m =--+-≠. (1)当m =3时,求抛物线的顶点坐标;(2)已知点A (1,2).试说明抛物线总经过点A ;(3)已知点B (0,2),将点B 向右平移3个单位长度,得到点C ,若抛物线与线段BC只有一个公共点,求m 的取值范围.26.解:(1)把m =3代入()23121y mx m x m =--+-中,得223653(1)2y x x x =-+=-+,∴抛物线的顶点坐标是(1,2).…………………………………2分 (2)当x =1时,3(1)2133212y m m m m m m =--+-=-++-=. ∵点A (1,2),∴抛物线总经过点A .………………………………………………3分(3)∵点B (0,2),由平移得C (3,2).① 当抛物线的顶点是点A (1,2)时,抛物线与线段BC 只有一个公共点.由(1)知,此时, m =3.……………………………………4分 ② 当抛物线过点B (0,2)时,将点B (0,2)代入抛物线表达式,得2m -1=2.∴m =32>0.此时抛物线开口向上(如图1). ∴当0<m <32时,抛物线与线段BC 只有一个公共点.………5分③当抛物线过点C (3,2)时,将点C (3,2)代入抛物线表达式,得 9m -9(m -1)+2m -1=2. ∴m =-3<0.此时抛物线开口向下(如图2). ∴当-3<m <0时,抛物线与线段BC只有一个公共点. ………………… 6分 综上,m 的取值范围是m =3或0<m <32或-3<m <0.图2图1(1)定线段(2)动抛物线:①不变:与y 轴交点②变:开口、对称轴,顶点坐标在隐藏函数图象上动在平面直角坐标系xOy 中,抛物线22y ax a x c =++与y 轴交于点(0,2).(1)求c 的值;(2)当a =2时,求抛物线顶点的坐标;(3)已知点A (-2,0),B (1,0),若抛物线22y ax a x c =++与线段AB 有两个公共点,结合函数图象,求a 的取值范围.26.解:(1)∵抛物线22y ax a x c =++与y 轴交于点(0,2),∴c =2.(2)当a =2时,抛物线为2422++=x x y ,∴顶点坐标为(-1,0). (3)当0a >时,①当a =2时,如图1,抛物线与线段AB 只有一个公共点.②当21+=a 时,如图2,抛物线与线段AB 有两个公共点.结合函数图象可得212a <+≤. 当0a <时,抛物线与线段AB 只有一个或没有公共点.综上所述,a 的取值范围是212a <+≤.图1图2(二)含同参的动线段+动抛物线 4.(2020房山二模26)(1)动线段:一个端点定,另一个端点在y 轴动 (2)动抛物线:①不变:对称轴,与x 轴交点 ②变:开口在平面直角坐标系中,已知抛物线22y ax ax c =++与x 轴交于点A 、B ,且4AB =.抛物线与y 轴交于点C ,将点C 向上移动1个单位得到点D . (1)求抛物线对称轴;(2)求点D 纵坐标(用含有a 的代数式表示);(3)已知点()4,4P -,若抛物线与线段PD 只有一个交点,求a 的取值范围. 26.(1)对称轴-1=22-=aax ……………………………………1分(2)∵4AB =A (-3,0),B (1,0) ……………………………………2分 把(1,0)代入表达式:0=c +2a +a 得:a 3-=c ……………3分 ∴C (0,-3a )∴ D (0,-3a+1), 31D y a =-+ …………………………4分 (3)当0a >时将点()4,4P -代入抛物线223y ax ax a =+-得:41683a a a =--, 45a =∴当45a ≥时,抛物线与线段PD 只有一个交点…5分当0a <时抛物线的顶点为()1,4a -- 当44a -=时1a =- …………………6分综上所述,当45a ≥或1a =-时,抛物线与线段PD 只有一个交点.5.(2020燕山二模26)(1)动线段:一个端点定(2)动抛物线:①不变:对称轴,与x 轴交点 ②变:开口在平面直角坐标系xOy 中,抛物线24(0)y ax ax a =-≠与x 轴交于点A ,B (A 在B 的左侧). (1) 求点A ,B 的坐标及抛物线的对称轴;(2) 已知点P (2,2),Q (2+2a ,5a ),若抛物线与线段PQ 有公共点,请结合函数图象,求a的取值范围.26.解:(1) ∵24y ax ax =-=(4)ax x -,∴抛物线与x 轴交于点A (0,0),B (4,0). 抛物线24y ax ax =-的对称轴为直线:422ax a-=-=.………3分 (2) 24y ax ax =-=2(4)a x x -=2(2)4a x a --, 抛物线的顶点坐标为(2,-4a ). 令5y a =,得245ax ax a -=,(5)(1)0a x x -+=,解得1x =-,或5x =,∴当5y a =时,抛物线上两点M (-1,5a ),N (5,5a ).①当0a >时,抛物线开口向上,顶点位于x 轴下方,且Q (2+2a ,5a )位于点P 的右侧,如图1,当点Q 与点N 重合或位于点N 右侧时,抛物线与线段PQ 有公共点, 此时2+2a ≥5,14xyNMQ P图3 14xyNMQP 图214xy NMQP O解得32a≥.②当0a<时,抛物线开口向下,顶点位于x轴上方,点Q(2+2a,5a)位于点P的左侧,(ⅰ)如图2,当顶点与点P重合或位于点P下方时,抛物线与线段PQ有公共点,此时-4a≤2,解得12a≥-.(ⅱ)如图3,当顶点位于点P上方,点Q与点M重合或位于点M左侧时,抛物线与线段PQ有公共点,此时2+2a≤-1,解得32a≤-.综上,a的取值范围是32a≥,或12a<-≤,或32a≤-.…………………6分6.(2020丰台二模26)(1)动线段:一两个端点都动(2)动抛物线:①不变:对称轴,与x 轴交点②变:开口在平面直角坐标系xOy 中,抛物线243=-+y ax ax a 与y 轴交于点A . (1)求点A 的坐标(用含a 的式子表示); (2)求抛物线与x 轴的交点坐标;(3)已知点P (a ,0),Q (0,2-a ),如果抛物线与线段PQ 恰有一个公共点,结合函数 图象,求a 的取值范围.26.解:(1)令x =0,则y =3a.∴点A 的坐标为(0,3a ). ………………………………………………1分(2)令y =0,则ax 2-4ax +3a =0. …………………………………………2分 ∵a ≠0, ∴解得121,3x x ==.∴抛物线与x 轴的交点坐标分别为(1,0), (3,0). …………4分 (3)①当a <0时,可知3a ≥a -2. 解得a ≥-1. ∴ a 的取值范围是-1≤a <0 .② 当a >0时,由①知a ≥-1时,点Q 始终在点A 的下方,所以抛物线与线段PQ 恰有一个公共点时,只要1≤a <3即可.综上所述,a 的取值范围是-1≤a <0或1≤a <3. .......….........….....………7分二、定抛物线(部分图象)与动抛物线的交点问题: 7.(2020海淀二模26)在平面直角坐标系xOy 中,已知二次函数y =mx 2+2mx +3的图象与x 轴交于点(3,0)A -, 与y 轴交于点B ,将其图象在点A ,B 之间的部分(含A , B 两点)记为F . (1)求点B 的坐标及该函数的表达式;(2)若二次函数y =x 2+2x +a 的图象与F 只有一个公共点, 结合函数图象,求a 的取值范围. 26. 解:(1)∵y =mx 2+2mx +3的图象与与y 轴交于点B ,∴点B 的坐标为(0, 3).∵y =mx 2+2mx +3的图象与x 轴交于点(3,0)A -, ∴将(3,0)A -代入y =mx 2+2mx +3可得9630m m -+=.∴ m = -1.∴该函数的表达式为y =-x 2-2x +3.(2)∵将二次函数y =mx 2+2mx +3的图象在点A ,B 之间的部分(含A , B 两点)记为F ,∴F 的端点为A , B ,并经过抛物线y =mx 2+2mx +3的 顶点C (其中C 点坐标为(-1,4)). ∴可画F 如图1所示.∵二次函数y =x 2+2x +a 的图象的对称轴为x =-1,且与F 只有一个公共点,∴可分别把A , B , C 的坐标代入解析式y =x 2+2x +a 中. ∴可得三个a 值分别为-3,3,5. 可画示意图如图2所示.∴结合函数图象可知:二次函数y =x 2+2x +a 的图象与F 只有一个公共点时, a 的取值范围是-3≤a <3或a =5.图 2三、整点问题8.(2020平谷二模26) 含同参的动线段+动抛物线。

2020-2021学年北京市各区中考数学二模《代数》综合考点题汇总含答案

2020-2021学年北京市各区中考数学二模《代数》综合考点题汇总含答案

最新北京市各区初三数学二模代数综合题汇总西城27.在平面直角坐标系xOy 中,抛物线1C :2144y ax ax =--的顶点在x 轴上,直线l :25y x =-+与x 轴交于点A .(1)求抛物线1C :2144y ax ax =--的表达式及其顶点坐标;(2)点B 是线段OA 上的一个动点,且点B 的坐标为(t ,0).过点B 作直线BD ⊥x轴交直线l 于点D ,交抛物线2C :2344y ax ax t =--+于点E .设点D 的纵坐标为m ,点E 的纵坐标为n ,求证:m n ≥;(3)在(2)的条件下,若抛物线2C :2344y ax ax t =--+与线段BD 有公共点,结合函数的图象,求t 的取值范围.西城27.(1)解:∵抛物线1C :2144y ax ax =--, ∴它的对称轴为直线422ax a-=-=.∵抛物线1C 的顶点在x 轴上,∴它的顶点为(2,0).……………………………………………………1分∴当2x =时,440y a =--=.∴1a =-.∴抛物线1C 的表达式为2144y x x =-+-.………………………………2分(2)证明:∵点B 的坐标为(t ,0),且直线BD ⊥x 轴交直线l :25y x =-+于点D ,∴点D 的坐标为(t ,5t -+).……………………………………………3分∵直线BD 交抛物线2C :2344y x x t =-+-+于点E ,∴点E 的坐标为(t ,254t t -+-).……………………………………4分 ∵m n -=(5)t -+2(54)t t --+-269t t =-+ 2(3)0t =-≥,∴m n ≥.……………………………………………………………………5分(3)解:∵抛物线2C :2344y x x t =-+-+与线段BD 有公共点,∴点E 应在线段BD 上.∵由(2)可知,点D 要么与点E 重合,要么在点E 的上方, ∴只需0n ≥, 即2540t t -+-≥. ∵当2540t t -+-=时, 解得1t =或4t =.∴结合函数254y t t =-+-的图象可知,符合题意的t 的取值范围是14t ≤≤.海淀27.已知:点(,)P m n 为抛物线24y ax ax b =-+(0a ≠)上一动点.(1) 1P (1,1n ),2P (3,2n )为P 点运动所经过的两个位置,判断1n ,2n 的大小,并说明理由;(2) 当14m ≤≤时,n 的取值范围是14n ≤≤,求抛物线的解析式. 西城 解:(1)12n n =. ……………… 1 分理由如下:由题意可得抛物线的对称轴为2x =.∵1P (1,1n ),2P (3,2n )在抛物线24y ax ax b =-+上, ∴12n n =.………………3分 (2)当0a >时,抛物线的顶点为(2,1),且过点(4,4),∴抛物线的解析式为23344y x x =-+.………………5分 当0a <时,抛物线的顶点为(2,4),且过点(4,1),∴抛物线的解析式为23314y x x =-++. 综上所述,抛物线的解析式为23344y x x =-+或23314y x x =-++.…………7 分房山27.如图,在平面直角坐标系xoy 中,已知点P (-1,0),C()11-2,,D (0,-3),A ,B 在x 轴上,且P 为AB 中点,1=∆CAP S .(1)求经过A 、D 、B 三点的抛物线的表达式.(2)把抛物线在x 轴下方的部分沿x 轴向上翻折,得到一个新的图象G ,点Q 在此新图象G 上,且APC APQ S S ∆∆=,求点Q 坐标.(3)若一个动点M 自点N (0,-1)出发,先到达x 轴上某点(设为点E ),再到达抛物线的对称轴上某点(设为点F ),最后运动到点D ,求使点M 运动的总路程最短的点E 、点F 的坐标.房山27.解:(1)∵1=∆CAP S ,C()1,12-,∴1121=⨯AP ,∴AP =2,∵P 为AB 中点,P (-1,0), ∴A (-3,0),B (1,0); -----------1分∴过A 、B 、D 三点的抛物线的表达式为:322-+=x x y ----------------------2分(2)抛物线322-+=x x y 沿x 轴翻折所得的新抛物线关系式为322+--=x x y ,∵1==∆∆APC APQ S S ,∴点Q 到x 轴的距离为1,且Q 点在图象G 上(27题图1)∴点Q 的纵坐标为1 ∴1322=+--x x 或1322=-+x x .----------------------------------3分解得:311+-=x ,312--=x ,513+-=x ,514--=x -----4分∴所求Q 点的坐标为:)1,31(1+-Q ,)1,31(2--Q ,)1,51(3+-Q ,)1,51(4--Q ----5分27题图227题图1 (3)如图(27题图2)∵N (0,-1),∴点N 关于x 轴对称点N ′(0,1), ∵点D (0,-3),∴点D 关于对称轴的对称点D ′(-2,-3),∴直线N ′D ′的关系式为y =2x +1, -----------------------------------6分∴E (-0,21)当x =-1时,y =-1,∴F (-1,-1) ----------------------------------7分直线与抛物线交点:朝阳27.在平面直角坐标系xOy 中,抛物线22(9)6y x m x =-++-的对称轴是2x =.(1)求抛物线表达式和顶点坐标;(2)将该抛物线向右平移1个单位,平移后的抛物线与原抛物线相交于点A ,求点A 的坐标;(3)抛物线22(9)6y x m x =-++-与y 轴交于点C ,点A 关于平移后抛物线的对称轴的对称点为点B ,两条抛物线在点A 、C 和点A 、B 之间的部分(包含点A 、B 、C )记为图象M .将直线22y x =-向下平移b (b >0)个单位,在平移过程中直线与图象M 始终有两个公共点,请你写出b 的取值范围_________.朝阳27.解:(1)∵抛物线()2296y x m x =-++-的对称轴是2x =,∴922(2)m +-=⨯-.∴1m =-. ……………………………………………………………1分∴抛物线的表达式为2286y x x =-+-.…………………………………2分 ∴22(2)2y x =--+.∴顶点坐标为(2,2).………………………………………………3分 (2)由题意得,平移后抛物线表达式为()2232y x =--+……………………4分∵()()222223x x --=--,∴52x =. ∴A (52,32).………………………5分(3)702b <≤.……………………………7分丰台27.在平面直角坐标系xOy 中,抛物线223(0)y mx mx m =--≠与x 轴交于A ,B 两点,且点A 的坐标为(3,0). (1)求点B 的坐标及m 的值;(2)当23x -<<时,结合函数图象直接写出y 的取值范围;(3)将抛物线在x 轴上方的部分沿x 轴翻折,抛物线的其余部分保持不变,得到一个新图象M .若)0(1≠+=k kx y 直线与图象M 在直线21=x 左侧的部分只有一个公共点,结合图象求k 的取值范围.丰台27.(1)将()3,0A 代入,得1m =.-------1分∴抛物线的表达式为223y x x =--.∴B 点的坐标()1,0-.-------2分 (2)y 的取值范围是45y -≤<.-------5分(3)当x =21时,y =415-. 代入1y kx =+得219-=k .当x =-1时,y =0,代入1y kx =+得k =1.结合图象可得,k 的取值范围是1=k 或192k <-. -------7分怀柔27.已知:二次函数y 1=x 2+bx+c 的图象经过A (-1,0),B (0,-3)两点. (1)求y 1的表达式及抛物线的顶点坐标;(2)点C (4,m )在抛物线上,直线y 2=kx+b(k ≠0)经过A , C 两点,当y 1 >y 2时,求自变量x 的取值范围; (3) 将直线AC 沿y 轴上下平移,当平移后的直线与抛物线只有一个公共点时,求平移后直线的表达式.怀柔27.解:(1)把A (-1,0)、B (0,-3)两点带入y 1 得: y 1=x 2-2x-3………………………………1分顶点坐标(1,-4) ………………………………………2分 (2)把C (4,m )代入y 1, m=5,所以C (4,5), ……………………………………3分把A 、C 两点代入y 2 得:y 2 =x+1.………………………………………………4分如图所示:x 的取值范围:x<-1或x>4 . …………………………………………………5分 (3)设直线AC 平移后的表达式为y=x+k得: x 2-2x-3=x+k ………………………………………6分 令Δ=0,k=-421 所以平移后直线的表达式:y=x-421. ………………………7分xyO–5–4–3–2–112345–7–6–5–4–3–2–11234567顺义27.已知关于x 的一元二次方程2(21)20x m x m -++=. (1)求证:不论m 为任何实数时,该方程总有两个实数根; (2)若抛物线2(21)2y x m x m =-++与x 轴交于A 、B 两点(点A 与点B 在y 轴异侧),且4AB =,求此抛物线的表达式;(3)在(2)的条件下,若抛物线2(21)2y x m x m =-++向上平移b 个单位长度后,所得到的图象与直线y x =没有交点,请直接写出b 的取值范围. 顺义27. 解:(1)[]22224(21)42441(21)b ac m m m m m ∆=-=-+-⨯=-+=- -----1分∵不论m 为任何实数时 ,总有2(21)0m ∆=-≥,∴该方程总有两个实数根 . --------------------------------------------------2分(2)24(21)(21)2b b ac m m x -±-+±-==∴12x m =, 21x =………………………………………………….… 4分 不妨设点(1,0)B ,依题意则点(3,0)A - ∴ 32m =-∴ 抛物线的表达式为223y x x =+-…………….…………………5分(3)134b >……………………………………………...………………….…7分 抛物线与抛物线交点东城27.二次函数21:C y x bx c =++的图象过点A (-1,2),B (4,7).(1)求二次函数1C 的解析式;(2)若二次函数2C 与1C 的图象关于x 轴对称,试判断二次函数2C 的顶点是否在直线AB上;(3)若将1C 的图象位于A ,B 两点间的部分(含A ,B 两点)记为G ,则当二次函数221y x x m =-+++与G 有且只有一个交点时,直接写出m 满足的条件.东城27.解:(1)∵21:C y x bx c =++的图象过点A (-1,2),B (4,7),∴217164.b c b c =-+⎧⎨=++⎩,∴21.b c =-⎧⎨=-⎩,∴221y x x =--. …………2分(2)∵二次函数2C 与1C 的图象关于x 轴对称,∴22:21C y x x =-++.∴2C 的顶点为(1,2). ∵A (-1,2),B (4,7),∴过A 、B 两点的直线的解析式:3y x =+. 令x =1,则y =4.∴2C 的顶点不在直线AB 上. …………4分 (3)414m <≤或4m =-. …………7分抛物线与双曲线交点 平谷27.反比例函数()0ky k x=≠过A (3,4),点B 与点A 关于直线y =2对称,抛物线2y x bx c =-++过点B 和C (0,3).(1)求反比例函数的表达式; (2)求抛物线的表达式;(3)若抛物线2y x bx m =-++在2-ky x=无公共点,求m 的取值范围.平谷27.(1)∵反比例函数ky x=过A (3,4), ∴12k =. ∴12y x=.…………………………………………………………………………1 (2)∵点B 与点A 关于直线y =2对称,∴B (3,0). (2)∵抛物线2y x bx c =-++过点B 和C (0,3)∴9303b c c ⎧-++=⎨=⎩.∴23b c ⎧=⎨=⎩.……………………………………………………………………………3 ∴223y x x =-++. (4)(3)12y x=, 令2x =-时,6y =-,即()26,--令2x =时,6y =,即()26, (5)当2y x bx m =-++过()26,--时,2m =. 当2y xbx m =-++过()26,时,6m=. (6)∴26m <≤ (7)两个直接写出结果的问题:昌平27. 在平面直角坐标系xOy 中,直线y=kx +b 的图象经过(1,0),(-2,3)两点,且与y 轴交于点A .(1)求直线y=kx +b 的表达式;(2)将直线y=kx +b 绕点A 沿逆时针方向旋转45º后与抛物线21:1(0)G y ax a =->交于B ,C 两点.若BC ≥4,求a 的取值范围;(3)设直线y=kx +b 与抛物线22:1G y x m =-+交于D ,E直接写出m 的取值范围.昌平27.解:(1)∵直线y=kx +b 的图象经过(1,0),(-2,3)两点,∴0,2 3.k b k b +=⎧⎨-+=⎩………………………………………………………………1分解得:1,1.k b =-⎧⎨=⎩∴直线y=kx +b 的表达式为: 1.y x =-+…………………………………………2分 (2)①将直线1y x =-+绕点A 沿逆时针方向旋转45º后可得直线1y =.…………3分∴直线1y =与抛物线21:1(0)G y ax a =->的交点B ,C 关于y 轴对称.∴当线段BC 的长等于4时,B ,C 两点的坐标分别为(2,1),(-2,1). ∴1.2a =…………………………………………………………………………………4分由抛物线二次项系数的性质及已知a >0可知,当BC ≥4时,10.2a ≤<……………5分②40.m -≤≤………………………………………………………………………………7分石景山27.已知关于x 的方程()021222=-+-+m m x m x .(1)求证:无论m 取何值时,方程总有两个不相等的实数根;(2)抛物线()m m x m x y 21222-+-+=与x 轴交于()0,1x A ,()0,2x B 两点,且210x x <<,抛物线的顶点为C ,求△ABC 的面积;(3)在(2)的条件下,若m 是整数,记抛物线在点B ,C 之间的部分为图象G (包含B ,C 两点),点D 是图象G 上的一个动点,点P 是直线b x y +=2上的一个动点,若线段DP 的最小值是55,请直接写出b 的值. 石景山27.解:(1)∵1=a ,()12-=m b ,m m c 22-= ∴()()0424144222>=---=-=∆m m m ac b∴无论m 取任何实数时,方程总有两个不相等的实数根.……2分(2)令,则()021222=-+-+m m x m x()()02=-++m x m x∴m x -=或2+-=m x ∵210x x <<∴m x -=1,22+-=m x …………………………………………4分 ∴2=AB当1+-=m x 时,1-=y ∴1-=c y∴121=⨯=∆c ABC y AB S .………………………………………5分 (3)0=b 或3-=b .……………………………………………………..7分如何找对称点:通州27. 已知:二次函数c b x -x y ++=2的图象过点A (-1,0)和C (0,2).(1)求二次函数的表达式及对称轴;(2)将二次函数c b x -x y ++=2的图象在直线y =1上方的部分沿直线y =1翻折,图象其余的部分保持不变,得到的新函数图象记为G ,点M (m ,1y )在图象G 上,且0y 1≥,求m 的取值范围。

2020年北京市中考二模数学试题分类汇编:解析

2020年北京市中考二模数学试题分类汇编:解析

1.(西城3).焦点在x 轴的正半轴上,且焦点到准线的距离为4的抛物线的标准方程是( A) 24x y = ( B) 24y x = ( C) 28x y = ( D) 28y x =答案D2.(西城6)圆224210x y x y ++-+= 截x 轴所得弦的长度等于( A)2 ( B) ( C) ( D)4 答案 B3.(西城14).能说明“若m ( n +2)≠0,则方程2212x y m n +=+表示的曲线为椭圆或双曲线”是错误的一组m , n 的值是 .答案答案不唯一. 如3m =,1n =4.(海淀3)若抛物线212y x =的焦点为F ,点P 在此抛物线上且横坐标为3,则||PF 等于 (A )4 (B )6(C )8(D )10答案 B5(海淀12)已知双曲线E 的一条渐近线方程为y x =,且焦距大于4,则双曲线E 的标准方程可以为_______.(写出一个即可)答案22144x y -=6.(昌平7)已知点P 是双曲线22:14y C x -=的一条渐近线(0)y kx k =>上一点,F 是双曲线C 的右焦点,若△OPF 的面积为5,则点P 的横.坐标为(A ) (B (C )± (D )答案 A7.(昌平13)已知点M 在抛物线24y x =上,若以点M 为圆心的圆与x 轴和其准线l 都相切,则点M 到其顶点O的距离为__ .8.(密云5).已知双曲线221(0)x y a a-=>的一条渐近线方程为20x y +=,则其离心率为答案A9.(密云7)已知圆22:(1)2C x y +-=,若点P 在圆C 上,并且点P 到直线y x =的距离为2,则满足条件的点P 的个数为A .1B .2C .3D .4 答案C10.(东城4)双曲线222:1y C x b-=的渐近线与直线1x =交于,A B 两点,且4AB =,那么双曲线C 的离心率为(A) (B) (C)2 答案B11.(丰台6)已知抛物线M :)0(22>=p py x 的焦点与双曲线13:22=-x y N 的一个焦点重合,则=p(A (B )2(C )(D )4答案D12.(丰台13)双曲线)0,0(1:2222>>=-b a by a x M 的离心率为3,则其渐近线方程为 .答案y =13. (房山4)若双曲线22221x y a b-=(0,0)a b >>的一条渐近线经过点,则该双曲线的离心率为(A (B(C )2 (D 答案C14. (房山12)若直线3x =与圆2220x y x a +--=相切,则a = . 答案 315.(房山13)已知抛物线C:22y x=的焦点为F,点M在抛物线C上,||1MF=,则点M的横坐标是,△MOF(O为坐标原点)的面积为.答案12;1416. (朝阳4)圆心在直线0-=x y上且与y轴相切于点(0,1)的圆的方程是(A)22(1)(1)1-+-=x y(B)22(1)(1)1+++=x y(C)22(1)(1)2-+-=x y(D)22(1)(1)2+++=x y答案A17. (朝阳5)直线l过抛物线22=y x的焦点F,且l与该抛物线交于不同的两点11(,)A x y,22(,)B x y.若123+=x x,则弦AB的长是(A)4(B)5(C)6(D)8答案A18. (朝阳14)已知双曲线C的焦点为1(0,2)F,2(0,2)F-,实轴长为2,则双曲线C的离心率是________;若点Q 是双曲线C的渐近线上一点,且12FQ F Q⊥,则12QF F△的面积为________.答案2;2319.(西城20)答案解:(Ⅰ)由题意,得1b=,3ca=. ………………2分又因为222a b c=+,………………3分所以2a=,3c=.故椭圆E的方程为2214xy+=. ………………5分(Ⅱ)(2,0)A-,(2,0)B.设0000(,)(0)D x y x y≠,则2214xy+=. ………………6分所以直线CD的方程为011yy xx-=+,………………7分令0y =,得点P 的坐标为0(,0)1x y -. ……………… 8分 设(,)Q Q Q x y ,由4OP OQ ⋅=u u u r u u u r ,得004(1)Qy x x -=(显然2Q x ≠). …… 9分 直线AD 的方程为00(2)2y y x x =++, ……………… 10分 将Q x 代入,得00000(442)(2)Q y y x y x x -+=+,即00000004(1)(442)(,)(2)y y y x Q x x x --++. ……………… 11分故直线BQ 的斜率存在,且000000(442)2(2)(442)Q BQ Q y y y x k x x y x -+==-+-- …… 12分200002000022424y y x y x x y y -+=--- 20000200002214242y y x y y x y y -+==---. ………… 13分 又因为直线BC 的斜率12BC k =-,所以BC BQ k k =,即,,C B Q 三点共线. ……………… 14分20.(海淀19)已知椭圆2222:1x y W a b+=(0)a b >>过(0,1),(0,1)A B -.(Ⅰ)求椭圆W 的方程;(Ⅱ)过点A 的直线l 与椭圆W 的另一个交点为C ,直线l 交直线2y =于点M ,记直线BC ,BM 的斜率分别为1k ,2k ,求12k k 的值.答案解:(Ⅰ)由题意,2221.b ca abc =⎧⎪⎪=⎨⎪⎪=+⎩,解得2,1.a b =⎧⎨=⎩所以椭圆W 的方程为2214x y +=.(Ⅱ)由题意,直线l 不与坐标轴垂直.设直线l 的方程为:1y kx =+(0k ≠). 由221,4 4.y kx x y =+⎧⎨+=⎩得22(41)80k x kx ++=. 设11(,)C x y ,因为10x ≠,所以12841kx k -=+. 得21122814114141k k y kx k k k --=+=⋅+=++.即222814(,)4141k k C k k --++. 又因为(0,1)B -,所以22121411418441k k k k k k -++==--+. 由1,2.y kx y =+⎧⎨=⎩得1,2.x k y ⎧=⎪⎨⎪=⎩ 所以点M 的坐标为1(,2)k.所以22131k k k+==. 所以1213344k k k k ⋅=-⋅=-.21.(昌平19)(本小题15分)已知椭圆:M 22221(0)x y a b a b+=>>,椭圆M 与y 轴交于,A B 两点(A 在下方),且||4AB =.过点(0,1)G 的直线l 与椭圆M 交于,C D 两点(不与A 重合). (Ⅰ)求椭圆M 的方程;(Ⅱ)证明:直线AC 的斜率与直线AD 的斜率乘积为定值. 答案解:(Ⅰ)由题意得222524,,c a b a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩解得2,1.a b c ⎧=⎪=⎨⎪=⎩ …………….3分即椭圆的方程为22154x y +=. …………….5分 (Ⅱ)法一由题意,直线l 的斜率存在. 当0k =时,直线l 的方程为1y =.代入椭圆方程有2x =±.则(22C D -.所以22AC AD k k ====所以12.5AC AD k k ⋅==- …………….8分当0k ≠时,则直线l 的方程为1y kx =+.由221,154y kx x y =+⎧⎪⎨+=⎪⎩,得22(45)10150k x kx ++-=. …………….9分设11(,)C x y ,22(,)D x y , 则1212221015,4545k x x x x k k+=-=-++. …………10分 又(0,2)A -, 所以112AC y k x +=,222AD y k x +=. …………….11分 因为1212121222(3)(3)AC AD y y kx kx k k x x x x ++++⋅==g 21212123()9k x x k x x x x +++=212123()9k x x k x x ++=+222222103()93036451245.1515545kk k k k k k k-+-+++=+=+=---+ 即直线AC 的斜率与直线AD 的斜率乘积为定值. …………….15分 法二设直线l 的斜率为k ,则直线l 的方程为1y kx =+. …………….6分由221,154y kx x y =+⎧⎪⎨+=⎪⎩,得22(45)10150k x kx ++-=. …………….7分设11(,)C x y ,22(,)D x y , 则1212221015,4545k x x x x k k +=-=-++. …………….9分 又(0,2)A -,所以112AC y k x +=,222AD y k x +=. …………….11分 因为1212121222(3)(3)AC AD y y kx kx k k x x x x ++++⋅==g 21212123()9k x x k x x x x +++=212123()9k x x k x x ++=+222222103()93036451245.1515545kk k k k k k k -+-+++=+=+=---+即直线AC 的斜率与直线AD 的斜率乘积为定值. …………….15分22.(密云19)已知椭圆:过点(1,2P ,设它的左、右焦点分别为,,左顶点为,上顶点为.(Ⅰ)求椭圆C 的标准方程和离心率;(Ⅱ)过点6(,0)5Q -作不与轴垂直的直线交椭圆于,(异于点)两点,试判断的大小是否为定值,并说明理由. 答案(Ⅰ)解:根据题意得22222131,42,.a b c a b c ⎧+=⎪⎪=⎪=+⎪⎩解得2,1,a b c ⎧=⎪=⎨⎪=⎩所以椭圆C 的方程为2214x y +=,离心率е=(Ⅱ)解:方法一因为直线不与轴垂直,所以直线的斜率不为设直线的方程为:65x ty =-, 联立方程226,51.4x ty x y ⎧=-⎪⎪⎨⎪+=⎪⎩化简得2212(4)0525t y ty +--=.显然点6(,0)5Q -在椭圆C 的内部,所以0∆>.设11(,)M x y ,22(,)N x y ,则122125(4)t y y t +=+,1226425(4)y y t =-+. 又因为(2,0)A -,所以11(2,)AM x y =+u u u u r ,22(2,)AN x y =+u u u r.所以1212(2)(2)AM AN x x y y =+++u u u u r u u u rg12122121222266(2)(2)55416(1)()5256441216(1)()25(4)55(4)25ty tx y y t y y t y y t t t t t =-+-++=++++=+⨯-+⨯+++=0 所以AM AN ⊥u u u u r u u u r ,即o90MAN ∠=是定值.方法二(1)当直线垂直于x 轴时 解得M 与N 的坐标为64(,)55-±.由点(2,0)A -,易证o90MAN ∠=. (2)当直线斜率存在时设直线的方程为:6(),0.5y k x k =+≠,联立方程226(),51.4y k x x y ⎧=+⎪⎪⎨⎪+=⎪⎩化简得2222484(3625)(14)0525k k x k x -+++=. 显然点6(,0)5Q -在椭圆C 的内部,所以0∆>.设11(,)M x y ,22(,)N x y ,则2122485(14)k x x k +=-+,21224(3625)25(14)k x x k -=+.又因为(2,0)A -,所以11(2,)AM x y =+u u u u r ,22(2,)AN x y =+u u u r.所以1212(2)(2)AM AN x x y y =+++u u u u r u u u rg12122221212222222266(2)(2)()()55636(1)(2)()45254(3625)64836(1)(2)425(14)55(14)25x x k x k x k k x x k x x k k k k k k k =+++++=++++++--=+⨯++⨯++++=0所以AM AN ⊥u u u u r u u u r ,即o90MAN ∠=是定值.23.(东城19)已知椭圆2222:1(0)x y C a b a b +=>>的一个顶点坐标为(0,1)A -,离心率为23.(Ⅰ)求椭圆C 的方程;(Ⅱ)若直线(1)(0)y k x k =-≠与椭圆C 交于不同的两点P ,Q ,线段PQ 的中点为M ,点(1,0)B ,求证:点M 不在以AB 为直径的圆上. 答案(Ⅰ)解:由题意可知⎪⎪⎩⎪⎪⎨⎧===+,1,23,222b a ca cb 解得⎪⎩⎪⎨⎧===,3,1,2c b a所以椭圆C 的方程为1422=+y x .………………………………4分 (Ⅱ)证明:设11(,)P x y ,22(,)Q x y ,),(00y x M .由221,4(1),x y y k x ⎧+=⎪⎨⎪=-⎩得2222(4+1)8440k x k x k -+-= , 所以22222(8)4(41)(44)4816k k k k ∆=--⨯+-=+. 所以当k 为任何实数时,都有0∆>.所以2122841k x x k +=+,2122444+1k x x k -=. 因为线段PQ 的中点为M ,所以212024241x x k x k +==+,002(1)41-=-=+k y k x k , 因为(1,0)B ,所以00(,1)AM x y =+uuu r ,00(1,)BM x y =-uuu r.所以2200000000(1)(1)=AM BM x x y y x x y y ⋅=-++-++uuu r uuu r 2222222244=()()41414141k k k k k k k k ---++++++322243=41k k k k ---+() 222(431)=41k k k k -+++()22237[4()]816=41k k k -+++().又因为0k ≠,2374()0816k ++>,所以0AM BM ⋅≠uuu r uuu r,所以点M 不在以AB 为直径的圆上.………………………………14分24.(丰台20)已知椭圆2222:1(0)x y C a b a b +=>>经过(10)A ,,(0)B b ,两点.O 为坐标原点,且△AOB 的面积为4. 过点(01)P ,且斜率为(0)k k >的直线l 与椭圆C 有两个不同的交点M N ,,且直线AM ,AN 分别与y 轴交于点S ,T .(Ⅰ)求椭圆C 的方程;(Ⅱ)求直线l 的斜率k 的取值范围;(Ⅲ)设PS PO PT PO λμ==u u r u u u r u u u r u u u r,,求λμ+的取值范围. 答案解:(Ⅰ)因为椭圆2222:1x y C ab+=经过点(10)A ,,所以21a =解得1a =. 由△AOB4可知,124ab =,解得2b =,所以椭圆C 的方程为2221x y +=. ………3分(Ⅱ) 设直线l 的方程为1y kx =+,1122()()M x y N x y ,,,.联立22211x y y kx +==+⎧⎨⎩,消y 整理可得:22(21)410k x kx +++=.因为直线与椭圆有两个不同的交点, 所以22164(21)0k k ∆=-+>,解得212k >.因为0k >,所以k的取值范围是)2+∞. ………7分(Ⅲ)因为(10)(01)A P ,,,1122()()M x y N x y ,,,, 所以直线AM 的方程是:11(1)1y y x x =--.令0x =,解得111y y x -=-.所以点S 的坐标为11(0)1y x --,.同理可得:点T 的坐标为22(0)1y x --,. 所以11(01)1y PS x -=--u u r ,,22(01)1y PT x -=--u u u r ,,(01)PO =-u u u r,. 由,,μλ== 可得:12121111y y x x λμ---=--=---,, 所以111111111y kx x x λ+=+=+--. 同理22111kx x μ+=+-.由(Ⅱ)得121222412121kx x x x k k +=-=++,, 所以 121211211kx kx x x λμ+++=++--()121212122(1)()221kx x k x x x x x x +-+-=+-++22222222142(1)()22121214()121212442(21)21421(1) 2(1)121k k k k k k k k k k k k k k k k k ⋅+---++=+--+++-+-+=++++-+=++=-++g所以λμ+的范围是2). ………14分25. (房山19)已知椭圆C 的两个顶点分别为(2,0)A -,(2,0)B ,焦点在x 轴上,离心率为12. (Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,点P 在椭圆C 上,点Q 和点P 关于x 轴对称,直线AP 与直线BQ 交于点M ,求证: P ,M 两点的横坐标之积等于4,并求OM 的取值范围.答案(Ⅰ)设椭圆C 的方程为22221(0)x y a b a b +=>>.依题意,2a =,12c a =. 得1c =,2223b a c =-=.所以,椭圆C 的方程为22143x y +=. (Ⅱ)依题意,可设(,)P m n (22m -<<且0m ≠),则(,)Q m n -.点P 在椭圆C 上,则22143m n +=, AP 的斜率为12n k m =+,直线AP 方程为(2)2n y x m =++, BQ 的斜率为12n k m -=-,直线BQ 的方程为(2)2n y x m -=--. 设(,)M x y ,由(2)2(2)2n y x m n y x m ⎧=+⎪⎪+⎨-⎪=-⎪-⎩得42x m n y m ⎧=⎪⎪⎨⎪=⎪⎩,所以M 的坐标为42(,)n m m . 所以P ,M 的横坐标之积等于44m m ⋅=. OM ==== 由204m <<, 所以,OM 的取值范围是()2,+∞.26. (朝阳19)已知椭圆C :22221(0)+=>>x y a b a b,且椭圆C经过点. (Ⅰ)求椭圆C 的方程;(Ⅱ)已知过点(4,0)P 的直线l 与椭圆C 交于不同的两点A ,B ,与直线1=x 交于点Q ,设λ=u u u r u u u r AP PB ,μ=u u u r u u u r AQ QB (λ,)μ∈R ,求证:λμ+为定值.答案(19)(本小题14分)解:(Ⅰ)由题意可知222222,121,⎧=+⎪⎪⎪+=⎨⎪⎪=⎪⎩a b c ab c a得22=b ,24=a . 所以椭圆C 的方程为22142+=x y .……………5分 (Ⅱ)由题意可知,直线l 的斜率存在,设直线l 的方程为(4)=-y k x .由(4),10=-⎧⎨-=⎩y k x x 得1,3.=⎧⎨=-⎩x y k 所以(1,3)-Q k . 由22(4),24=-⎧⎨+=⎩y k x x y 得222(4)4+-=x kx k . 整理得2222(12)16(324)0+-+-=k x k x k .由2222(16)4(12)(324)0∆=--+->k k k,得66<<k . 设直线l 与椭圆C 的交点11(,)A x y ,22(,)B x y ,则21221612+=+k x x k ,212232412-=+k x x k . 因为λ=u u u r u u u r AP PB ,μ=u u u r u u u r AQ QB 且11(4,)=--u u u r AP x y ,22(4,)=-u u u r PB x y ,11(1,3)=---u u u r AQ x k y ,22(1,3)=-+u u u r QB x y k , 所以111212222241(4)(1)(1)(4)41(4)(1)λμ----+--+=+=----x x x x x x x x x x 1212225()28(4)(1)+--=--x x x x x x . 因为22121222163245()285281212-+--=⨯-⨯-++k k x x x x k k 22228064881612-+--=+k k k k0=, 所以0λμ+=.……………14分27.(顺义4)抛物线2=4y x 上的点与其焦点的最短距离为(A )4 (B )2 (C )1 (D )12答案 C28. (顺义14)若直线:l y x a =+将圆22:1C x y +=的圆周分成长度之比为1:3的两段弧,则实数a 的所有可能取值是____________.答案 1a =±29. (15)曲线C 是平面内到定点3(0)2F ,和定直线3:2l x =-的距离之和等于5的点的轨迹,给出下列三个结论: ①曲线C 关于y 轴对称;②若点(,)P x y 在曲线C 上,则y 满足4y ≤;③若点(,)P x y 在曲线C 上,则15PF ≤≤;其中,正确结论的序号是_____________.答案 ②③30(顺义20)(本小题14分) 已知椭圆2222:1(0)+=>>x y C a b a b的焦距和长半轴长都为2.过椭圆C 的右焦点F 作斜率为(0)k k ≠的直线l 与椭圆C 相交于,P Q 两点.(I )求椭圆C 的方程;(II )设点A 是椭圆C 的左顶点,直线,AP AQ 分别与直线4x =相交于点,M N .求证:以MN 为直径的圆恒过点F .解:(I )由题意得222222c a a b c =⎧⎪=⎨⎪=+⎩解得2,1a b c === ---------------------3分 故椭圆C 的方程为22143x y +=. -------------------5分 (II )(1,0)F ,(2,0)A -,直线l 的方程为(1)y k x =-. ------------------6分 由22(1)3412y k x x y =-⎧⎨+=⎩ 得2222(34)84120k x k x k +-+-=. 直线l 过椭圆C 的焦点,显然直线l 椭圆C 相交.设11(,)P x y ,22(,)Q x y ,则2122834k x x k +=+,212241234k x x k -⋅=+ --------------8分 直线AP 的方程为11(2)2y y x x =++,令4x =,得1162M y y x =+; 即116(4,)2y M x + 同理:226(4,)2y N x + --------------10分 ∴116(3,)2y FM x =+u u u u r ,226(3,)2y FN x =+u u u r 又1212369(2)(2)y y FM FN x x ⋅=+++u u u u r u u u r -------------------11分 =121236(1)(1)9(2)(2)k x k x x x -⋅-+++=[]21212121236()192()4k x x x x x x x x -++++++ =222222222412836(1)343494121643434k k k k k k k k k --++++-++++ =22229363493634k k k k -⋅+++ =990-=∴以MN 为直径的圆恒过点F . ----------------14分。

2020年北京市各区初三数学二模试题分类汇编-不等式(组)几综汇编

2020年北京市各区初三数学二模试题分类汇编-不等式(组)几综汇编

2020数学二模几何综合题汇编2020年几何综合题主要涉及的考点:1、在特殊图形(等腰/等边三角形、直角三角形、正方形、菱形)的背景下,根据题目意思补全图形(旋转、轴对称、角平分线、垂直平分线、特殊角的画法)2、利用三角形或四边形内角和或外角定理对判定两角相等或者进行角度的计算3、两条线段的数量关系:(1)已知两条线段的数量关系,然后去证明(2)先判断两条线段的数量关系,然后再证明。

一般是相等的关系或者是放在含有特殊角的直角三角形中得到的数量关系4、三条线段的数量关系:用等式表示出三条线段的数量关系,然后证明。

通过截长补短的方法构造全等三角形,将三条线段或者等长线段放在一个特殊三角形中。

学生需掌握的基本知识点:1、旋转、轴对称、角平分线、垂直平分线、特殊角的画法2、特殊图形(等腰/等边三角形、直角三角形、等腰直角三角形、正方形、菱形)的基本性质3、图形变换(旋转、轴对称)的性质4、全等三角形和相似三角形的判定与性质5、解直角三角形(特殊角的三角函数、勾股定理)推荐题目:1、西城:以正方形为背景,在熟练掌握正方形的性质下,不仅考查了对于角度相等的证明,还考察了两条线段的数量关系的判断与证明。

2、平谷:考查了旋转变换的画法与性质和简单的角度计算,在第三问证明线段相等时有给出几种想法引导学生思考,让学生有抓手。

3、房山:这道题中涉及到从特殊到一般的研究方法,而且一般情况下的探究也给出了几种方法进行引导。

东城27. 如图,在Rt △ABC 中,∠ABC =90°,将CA 绕点C 顺时针旋转45°得到CP ,点A 关于直线CP 的对称点为D ,连接AD 交直线CP 于点E ,连接CD . (1)根据题意补全图形; (2)判断△ACD 的形状并证明;(3)连接BE ,用等式表示线段AB ,BC ,BE 之间的数量关系,并证明. 温馨提示:在解决第(3)问的过程中,如果你遇到困难,可以参考下面几种解法的主要思路.解法1的主要思路:延长BC 至点F ,使CF =AB ,连接EF ,可证△ABE ≌△CEF ,再证△BEF 是等腰直角 三角形.解法2的主要思路:过点A 作AM ⊥BE 于点M ,可证△ABM 是等腰直角三角形,再证△ABC ∽△AME . 解法3的主要思路:过点A 作AM ⊥BE 于点M ,过点C 作CN ⊥BE 于点N ,设BN =a ,EN =b ,用含a 或b 的式子表示出AB ,BC . 海淀27.如图1,等边三角形ABC 中,D 为BC 边上一点,满足BD CD <, 连接AD , 以点A 为中心,将射线AD 顺时针...旋转60°,与△ABC 的外角平分线BM 交于点E . (1)依题意补全图1; (2)求证:AD =AE ;(3)若点B 关于直线AD 的对称点为F ,连接CF .① 求证:AE ∥CF ;② 若BE CF AB +=成立,直接写出∠BAD 的度数为__________°.AB CAB CM备用图图 1M燕山27.已知菱形ABCD 中,∠A =60°,点E 为边AD 上一个动点(不与点A ,D 重合),点F 在边DC 上,且AE =DF ,将线段DF 绕着点D 逆时针旋转120°得线段DG ,连接GF ,BF ,EF .(1) 依题意补全图形;(2) 求证:△BEF 为等边三角形;(3) 用等式表示线段BG ,GF ,CF 的数量关系,并证明.CBADE27.已知:MN 是经过点A 的一条直线,点C 是直线MN 左侧的一个动点,且满足60°<∠CAN <120°,连接AC ,将线段AC 绕点C 顺时针旋转60°,得到线段CD ,在直线MN 上取一点B ,使∠DBN=60°.(1)若点C 位置如图1所示.① 依据题意补全图1; ② 求证:∠CDB=∠MAC ;(2)连接BC ,写出一个BC 的值,使得对于任意一点C ,总有AB+BD=3,并证明. 平谷备用图图127.已知:在△ABC 中,∠ABC =90°,AB=BC ,点D 为线段BC 上一动点(点D 不与点B 、C 重合),点B 关于直线AD 的对称点为E ,作射线DE ,过点C 作BC 的垂线,交射线DE 于点F ,连接AE .(1)依题意补全图形;(2)AE 与DF 的位置关系是 ;(3)连接AF ,小昊通过观察、实验,提出猜想:发现点D 在运动变化的过程中,∠DAF 的度数始终保持不变,小昊 把这个猜想与同学们进行了交流,经过测量,小昊猜想 ∠DAF = °,通过讨论,形成了证明该猜想的两种 想法:想法1:过点A 作AG ⊥CF 于点G ,构造正方形ABCG ,然后可证△AFG ≌△AFE ……想法2:过点B 作BG ∥AF ,交直线FC 于点G ,构造□ABGF ,然后可证△AFE ≌△BGC ……请你参考上面的想法,帮助小昊完成证明(一种方法即可).B27. 在正方形ABCD 中,E 是CD 边上一点(CE >DE ),AE ,BD 交于点F .(1)如图1,过点F 作GH ⊥AE ,分别交边AD ,BC 于点G ,H .求证:∠EAB =∠GHC ;(2)AE 的垂直平分线分别与AD , AE , BD 交于点P ,M ,N ,连接CN .① 依题意补全图形;② 用等式表示线段AE 与CN 之间的数量关系,并证明.图1 备用图 房山27.点C 为线段AB 上一点,以AC 为斜边作等腰ADC Rt Δ,连接BD ,在ABD Δ外侧,以BD 为斜边作等腰Rt BED △,连接EC . (1)如图1,当30DBA =︒∠时:① 求证:AC BD =;② 判断线段EC 与EB 的数量关系,并证明;AFDCEBG HAFDCEBAC图1(2)如图2,当°45<∠<°0DBA时,EC与EB的数量关系是否保持不变?对于以上问题,小牧同学通过观察、实验,形成了解决该问题的几种思路:想法1:尝试将点D为旋转中心. 过点D作线段BD的垂线,交BE延长线于点G,连接CG;通过证明三角形ADBΔ≌CDGΔ全等解决以上问题;想法2:尝试将点D为旋转中心. 过点D作线段AB的垂线,垂足为点G,连接EG.通过证明ADBΔ∽GDEΔ解决以上问题;想法3:尝试利用四点共圆. 过点D作AB垂线段DF,连接EF,通过证明D、F、B、E四点共圆,利用圆的相关知识解决以上问题.请你参考上面的想法,证明EC=EB(一种方法即可)图2 EA。

2020年北京市东城区中考数学二模试卷 (解析版)

2020年北京市东城区中考数学二模试卷一、选择题(共8小题).1.在实数|﹣3.14|,﹣3,﹣,π中,最小的数是()A.﹣B.﹣3C.|﹣3.14|D.π2.如图,在平面直角坐标系xOy中,已知点A(2,1),点B(3,﹣1).平移线段AB,使点A落在点A1(﹣2,2)处,则点B的对应点B1的坐标为()A.(﹣1,﹣1)B.(﹣1,0)C.(1,0)D.(3,0)3.判断命题“如果n<1,那么n2﹣1<0”是假命题,只需举出一个反例.反例中的n可以为()A.﹣2B.﹣C.0D.4.若点A(1,y1),B(2,y2)在抛物线y=a(x+1)2+2(a<0)上,则下列结论正确的是()A.2>y1>y2B.2>y2>y1C.y1>y2>2D.y2>y1>25.如图,小明从A处出发沿北偏东40°方向行走至B处,又从B处沿南偏东70°方向行走至C处.则∠ABC等于()A.130°B.120°C.110°D.100°6.把边长分别为1和2的两个正方形按如图的方式放置.则图中阴影部分的面积为()A.B.C.D.7.如图,已知正五边形ABCDE内接于⊙O,连结BD,则∠ABD的度数是()A.60°B.70°C.72°D.144°8.五名学生投篮球,每人投10次,统计他们每人投中的次数.得到五个数据,并对数据进行整理和分析,给出如表信息:平均数中位数众数m67则下列选项正确的是()A.可能会有学生投中了8次B.五个数据之和的最大值可能为30C.五个数据之和的最小值可能为20D.平均数m一定满足4.2≤m≤5.8二、填空题(本题共16分,每小题2分)9.分解因式:3a3﹣6a2+3a=.10.在“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲同学成绩的方差是15,乙同学成绩的方差是3,由此推断甲、乙两人中成绩稳定的是.11.若点(a,10)在直线y=3x+1上.则a的值等于.12.在平面直角坐标系中,△ABO三个顶点的坐标分别为A(﹣2,4),B(﹣4,0),O (0,0).以原点O为位似中心,把这个三角形缩小为原来的,得到△CDO,则点A 的对应点C的坐标是.13.已知圆锥的母线长为5cm,侧面积为15πcm2,则这个圆锥的底面圆半径为cm.14.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,若BC=6cm,AC =5cm,则△ACE的周长为cm.15.如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则sin∠BAC的值为.16.某快餐店外卖促销,佳佳和点点想点外卖,每单需支付送餐费5元,每种餐食外卖价格如表:餐食种类价格(单位:元)汉堡套餐40鸡翅16鸡块15冰激凌14蔬菜沙拉9促销活动:(1)汉堡套餐5折优惠,每单仅限一套;(2)全部商品(包括打折套餐)满20元减4元.满40元减10元,满60元减15元,满80元减20元.佳佳想要汉堡套餐、鸡翅、冰激凌、蔬菜沙拉各一份;点点想要汉堡套餐、鸡块、冰激凌各一份,若他们把想要的都买全,最少要花元(含送餐费).三、解答题(本题共68分,第17一22题,每小题5分,第23-26题,每小题5分,第27一28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.下面是“作一个45°角”的尺规作图过程.已知:平面内一点A.求作:∠A,使得∠A=45°.作法:如图,①作射线AB;②在射线AB上取一点O,以O为圆心,OA长为半径作圆,与射线AB相交于点C;③分别以A,C为圆心,大于AC长为半径作弧,两弧交于点D,作射线OD交⊙O于点E;④作射线AE.则∠EAB即为所求作的角.(1)使用直尺和圆规.补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AD=CD,AO=CO,∴∠AOE=∠=°.∴∠EAB=°.()(填推理的依据)18.解不等式﹣>﹣3,并把它的解集在数轴上表示出来.19.已知a﹣2b=0.求代数式1﹣(+)÷的值.20.如图,在△ABC中.以点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°,求∠DAC的度数.21.在菱形ABCD中,对角线AC、BD相交于点O,E为AB的中点,连接OE并延长到点F,使EF=EO,连接AF,BF.(1)求证:四边形AOBF是矩形;(2)若AD=5,sin∠AFO=,求AC的长.22.在平面直角坐标系xOy中,反比例函数y=(k≠0,x>0)的图象经过点A(1,﹣4),直线y=﹣2x+m与x轴交于点B(1,0).(1)求k,m的值;(2)已知点P(n,﹣2n)(n>0),过点P作平行于x轴的直线,交直线y=﹣2x+m 于点C,过点P作平行于y轴的直线交反比例函数y=(k≠0.x>0)的图象于点D,当PD=2PC时,结合函数的图象,求出n的值.23.教育未来指数是为了评估教育系统在培养学生如何应对快速多变的未来社会方面所呈现的效果.现对教育未来指数得分前35名的国家和地区的有关数据进行收集、整理、描述和分析后,给出了部分信息.a.教育未来指数得分的频数分布直方图(数据分成7组:20≤x<30,30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤t≤90);b.教育未来指数得分在60≤x<70这一组的是:61.2 62.8 64.6 65.2 67.2 67.3 67.5 68.5c.35个国家和地区的人均国内生产总值和教育未来指数得分情况统计图如图:d.中国和中国香港的教育未来指数得分分别为32.9和68.5.(以上数据来源于《国际统计年鉴(2018)》和国际在线网)根据以上信息,回答下列问题:(1)中国香港的教育未来指数得分排名世界第;(2)在35个国家和地区的人均国内生产总值和教育未来指数得分情况统计图中,包括中国香港在内的少数几个国家和地区所对应的点位于虚线l的上方,请在图中用“〇”画出代表中国香港的点;(3)在教育未来指数得分比中国高的国家和地区中,人均国内生产总值的最大值约为万美元;(结果保留一位小数)(4)下列推断合理的是.(只填序号即可)①相较于点A,C所代表的国家和地区,中国的教育未来指数得分还有一定差距,“十三五”规划提出“教育优先发展,教育强则国家强”的任务,进一步提高国家教育水平;②相较于点B,C所代表的国家和地区,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.24.如图,在△ABC中,AB=6cm,P是AB上的动点,D是BC延长线上的定点,连接DP交AC于点Q.小明根据学习丽数的经验.对线段AP,DP,DQ的长度之间的关系进行了探究.下面是小明的探究过程,请补充完整:(1)对于点P在AB上的不同位置,画图、测量,得到了线段AP,DP,DQ的长度(单位:cm)的几组值,如表:位置1位置2位置3位置4位置5位置6位置7 AP0.00 1.00 2.00 3.00 4.00 5.00 6.00DP 4.99 4.56 4.33 4.32 4.53 4.95 5.51DQ 4.99 3.95 3.31 2.95 2.80 2.79 2.86在AP,DP,DQ的长度这三个量中,确定的长度是自变量,的长度和的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当AP=(DP+DQ)时,AP的长度约为cm.25.如图,△ABC内接于⊙O,AB为直径,作OD⊥AB交AC于点D,延长BC,OD交于点F,过点C作⊙O的切线CE,交OF于点E.(1)求证:EC=ED;(2)如果OA=4,EF=3,求弦AC的长.26.在平面直角坐标系xOy中,点A的坐标为(0,4),点B的坐标为(6,4).抛物线y=x2﹣5x+a﹣2的顶点为C.(1)若抛物线经过点B时,求顶点C的坐标;(2)若抛物线与线段AB恰有一个公共点,结合函数图象,求a的取值范围;(3)若满足不等式x2﹣5x+a﹣2≤0的x的最大值为3.直接写出实数a的值.27.在△ABC中,AB=AC,∠BAC=α,点D是△ABC外一点,点D与点C在直线AB 的异侧,且点D,A,C不共线,连接AD,BD,CD.(1)如图1,当α=60°.∠ADB=30°时,画出图形,直接写出AD,BD,CD之间的数量关系;(2)当α=90°,∠ADB=45°时,利用图2,继续探究AD,BD,CD之间的数量关系并证明;(提示:尝试运用图形变换,将要研究的有关线段尽可能转移到一个三角形中)(3)当∠ADB=时,进一步探究AD,BD,CD之间的数量关系,并用含α的等式直接表示出它们之间的关系.28.对于平面直角坐标系:xOy内任意一点P.过P点作PM⊥x轴于点M,PN⊥y轴于点N,连接MN,则称MN的长度为点P的垂点距离,记为h.特别地,点P与原点重合时,垂点距离为0.(1)点A(2,0),B(4,4),C(﹣2,)的垂点距离分别为,,.(2)点P在以Q(,1)为圆心,半径为3的⊙Q上运动,求出点P的垂点距离h的取值范围;(3)点T为直线l:y=x+6位于第二象限内的一点,对于点T的垂点距离h的每个值有且仅有一个点T与之对应,求点T的横坐标t的取值范围.参考答案一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.在实数|﹣3.14|,﹣3,﹣,π中,最小的数是()A.﹣B.﹣3C.|﹣3.14|D.π【分析】根据绝对值的大小进行比较即可,两负数比较大小,绝对值大的反而小.解:∵||=<|﹣3|=3∴﹣>(﹣3)C、D项为正数,A、B项为负数,正数大于负数,故选:B.2.如图,在平面直角坐标系xOy中,已知点A(2,1),点B(3,﹣1).平移线段AB,使点A落在点A1(﹣2,2)处,则点B的对应点B1的坐标为()A.(﹣1,﹣1)B.(﹣1,0)C.(1,0)D.(3,0)【分析】利用平移变换的性质画出图形解决问题即可.解:如图,B1(﹣1,0),故选:B.3.判断命题“如果n<1,那么n2﹣1<0”是假命题,只需举出一个反例.反例中的n可以为()A.﹣2B.﹣C.0D.【分析】反例中的n满足n<1,使n2﹣1≥0,从而对各选项进行判断.解:当n=﹣2时,满足n<1,但n2﹣1=3>0,所以判断命题“如果n<1,那么n2﹣1<0”是假命题,举出n=﹣2.故选:A.4.若点A(1,y1),B(2,y2)在抛物线y=a(x+1)2+2(a<0)上,则下列结论正确的是()A.2>y1>y2B.2>y2>y1C.y1>y2>2D.y2>y1>2【分析】先求出抛物线的对称轴方程,然后根据二次函数的性质,通过比较A、B点到对称轴的距离大小可得到y1,y2的大小关系.解:抛物线y=a(x+1)2+2(a<0)的对称轴为直线x=﹣1,而A(1,y1)到直线x=﹣1的距离比点B(2,y2)到直线x=﹣1的距离小,所以2>y1>y2.故选:A.5.如图,小明从A处出发沿北偏东40°方向行走至B处,又从B处沿南偏东70°方向行走至C处.则∠ABC等于()A.130°B.120°C.110°D.100°【分析】根据方向角的定义求出∠EBC,再根据平行线的性质求出∠ABE即可得出答案.解:如图:∵小明从A处沿北偏东40°方向行走至点B处,又从点B处沿南偏东70°方向行走至点C处,∴∠DAB=40°,∠CBE=70°,∵向北方向线是平行的,即AD∥BE,∴∠ABE=∠DAB=40°,∴∠ABC=∠ABE+∠EBC=40°+70°=110°.故选:C.6.把边长分别为1和2的两个正方形按如图的方式放置.则图中阴影部分的面积为()A.B.C.D.【分析】如图,易证△ABC∽△FEC,可设BC=x,只需求出BC即可.解:如图,设BC=x,则CE=1﹣x,∵两个正方形,∴AB∥EF,∴△ABC∽△FEC,∴,即,解得x=,∴阴影部分面积为:S△ABC=×1=,故选:D.7.如图,已知正五边形ABCDE内接于⊙O,连结BD,则∠ABD的度数是()A.60°B.70°C.72°D.144°【分析】根据多边形内角和定理、正五边形的性质求出∠ABC、CD=CB,根据等腰三角形的性质求出∠CBD,计算即可.解:∵五边形ABCDE为正五边形,∴∠ABC=∠C==108°,∵CD=CB,∴∠CBD==36°,∴∠ABD=∠ABC﹣∠CBD=72°,故选:C.8.五名学生投篮球,每人投10次,统计他们每人投中的次数.得到五个数据,并对数据进行整理和分析,给出如表信息:平均数中位数众数m67则下列选项正确的是()A.可能会有学生投中了8次B.五个数据之和的最大值可能为30C.五个数据之和的最小值可能为20D.平均数m一定满足4.2≤m≤5.8【分析】根据题意可得最大的三个数的和是6+7+7=20,再根据这五个数据的平均数是m,求出另外2个数的和为5m﹣20,据此即可求解.解:∵中位数是6,唯一众数是7,∴最大的三个数的和是:6+7+7=20,∵这五个数据的平均数是m,∴另外2个数的和是5m﹣20,∴不可能会有学生投中了8次;五个数据之和的最大值可能为20+5+4=29,不可能为30;五个数据之和的最小值可能为20+0+1=21,不可能为20;∵29÷5=5.8,21÷5=4.2,∴平均数m一定满足4.2≤m≤5.8.故选:D.二、填空题(本题共16分,每小题2分)9.分解因式:3a3﹣6a2+3a=3a(a﹣1)2.【分析】先提取公因式3a,再根据完全平方公式进行二次分解.完全平方公式:a2﹣2ab+b2=(a﹣b)2.解:3a3﹣6a2+3a=3a(a2﹣2a+1)=3a(a﹣1)2.故答案为:3a(a﹣1)2.10.在“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲同学成绩的方差是15,乙同学成绩的方差是3,由此推断甲、乙两人中成绩稳定的是乙.【分析】直接利用方差的意义进行判断.解:∵甲、乙两位同学的平均分都是90分,甲同学成绩的方差是15,乙同学成绩的方差是3,∴同学成绩的方差大于乙同学成绩的方差,∴乙的成绩稳定.故答案为乙.11.若点(a,10)在直线y=3x+1上.则a的值等于3.【分析】因为点(a,10)在直线y=3x+1上,所以把x=a,y=10分别代入直线y=3x+1里即可求得a的值.解:∵点(a,10)在直线y=3x+1上,∴x=a,y=10满足方程y=3x+1,∴10=3a+1,解得,a=3,故答案为:3.12.在平面直角坐标系中,△ABO三个顶点的坐标分别为A(﹣2,4),B(﹣4,0),O(0,0).以原点O为位似中心,把这个三角形缩小为原来的,得到△CDO,则点A 的对应点C的坐标是(﹣1,2)或(1,﹣2).【分析】根据位似变换的性质、坐标与图形性质计算.解:以原点O为位似中心,把这个三角形缩小为原来的,点A的坐标为(﹣2,4),∴点C的坐标为(﹣2×,4×)或(2×,﹣4×),即(﹣1,2)或(1,﹣2),故答案为:(﹣1,2)或(1,﹣2).13.已知圆锥的母线长为5cm,侧面积为15πcm2,则这个圆锥的底面圆半径为3cm.【分析】根据圆锥的侧面积和圆锥的母线长求得圆锥的弧长,利用圆锥的侧面展开扇形的弧长等于圆锥的底面周长求得圆锥的底面半径即可.解:∵圆锥的母线长是5cm,侧面积是15πcm2,∴圆锥的侧面展开扇形的弧长为:l===6π,∵锥的侧面展开扇形的弧长等于圆锥的底面周长,∴r===3cm,故答案为:3.14.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,若BC=6cm,AC =5cm,则△ACE的周长为11cm.【分析】根据ED垂直平分AB,可以得到EA=EC,然后即可得到EA+EC的长等于BC 的长,从而可以求得△AEC的周长.解:∵ED垂直平分AB,∴EA=EB,∵BC=6cm,AC=5cm,∴EB+EC=6cm,∴EA+EC=6cm,∴EA+EC+AC=6+5=11cm,即△ACE的周长是11cm,故答案为:11.15.如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则sin∠BAC的值为.【分析】过点C作CD⊥AB于点D,则在Rt△ADC中,先由勾股定理得出AC的长,再按照正弦函数的定义计算即可.解:如图,过点C作CD⊥AB于点D,则∠ADC=90°,由勾股定理得:AC==5,∴sin∠BAC==.故答案为:.16.某快餐店外卖促销,佳佳和点点想点外卖,每单需支付送餐费5元,每种餐食外卖价格如表:餐食种类价格(单位:元)汉堡套餐40鸡翅16鸡块15冰激凌14蔬菜沙拉9促销活动:(1)汉堡套餐5折优惠,每单仅限一套;(2)全部商品(包括打折套餐)满20元减4元.满40元减10元,满60元减15元,满80元减20元.佳佳想要汉堡套餐、鸡翅、冰激凌、蔬菜沙拉各一份;点点想要汉堡套餐、鸡块、冰激凌各一份,若他们把想要的都买全,最少要花98元(含送餐费).【分析】根据题意和表格中的数据,可以计算出佳佳和点点的最少花费情况,然后相加,即可得到他们把想要的都买全,最少要花多少.解:由题意可得,佳佳买全需要的物品需要花费:40×0.5+16+14+9=59(元),佳佳参加促狭活动的花费为:59﹣10+5=54(元),点点买全需要的物品需要花费:40×0.5+15+14=49(元),点点参加促销活动的花费为:49﹣10+5=44(元),若他们把想要的都买全,最少要花54+44=98(元),故答案为:98.三、解答题(本题共68分,第17一22题,每小题5分,第23-26题,每小题5分,第27一28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.下面是“作一个45°角”的尺规作图过程.已知:平面内一点A.求作:∠A,使得∠A=45°.作法:如图,①作射线AB;②在射线AB上取一点O,以O为圆心,OA长为半径作圆,与射线AB相交于点C;③分别以A,C为圆心,大于AC长为半径作弧,两弧交于点D,作射线OD交⊙O于点E;④作射线AE.则∠EAB即为所求作的角.(1)使用直尺和圆规.补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AD=CD,AO=CO,∴∠AOE=∠COE=90°.∴∠EAB=45°.(一条弧所对的圆周角是它所对圆心角的一半)(填推理的依据)【分析】(1)在射线AB上取一点O,以O为圆心,OA长为半径作圆,与射线AB相交于点C;分别以A,C为圆心,大于AC长为半径作弧,两弧交于点D,作射线OD 交⊙O于点E;作射线AE,则∠EAB即为所求作的角.(2)依据AD=CD,AO=CO,即可得到∠AOE=∠COE=90°,再根据一条弧所对的圆周角是它所对圆心角的一半,即可得到∠EAB=45°.解:(1)如图所示,(2)证明:∵AD=CD,AO=CO,∴∠AOE=∠COE=90°,∴∠EAB=45°(一条弧所对的圆周角是它所对圆心角的一半).故答案为:COE;90;45;一条弧所对的圆周角是它所对圆心角的一半.18.解不等式﹣>﹣3,并把它的解集在数轴上表示出来.【分析】不等式去分母,去括号,移项合并,把x系数化为1,求出解集,表示在数轴上即可.解:去分母得:2x﹣4﹣5x﹣20>﹣30,移项合并得:﹣3x>﹣6,解得:x<2,19.已知a﹣2b=0.求代数式1﹣(+)÷的值.【分析】直接将括号里面通分运算进而利用分式的混合运算法则计算,再把a=2b代入求出答案.解:原式=1﹣[+]•=1﹣•=1﹣=,当a﹣2b=0时,即a=2b,原式==.20.如图,在△ABC中.以点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°,求∠DAC的度数.【分析】根据题意和等腰三角形的性质,可以求得∠BAD和∠BDA的度数,再根据三角形外角和内角的关系,即可求得∠DAC的度数.解:如图,∵∠B=40°,∠C=36°,∴∠BAC=180°﹣∠B﹣∠C=104°,由作图可知:BA=BD,∴∠BAD=∠BDA=(180°﹣∠B)÷2=70°,∴∠DAC=∠BAC﹣∠BAD=34°.21.在菱形ABCD中,对角线AC、BD相交于点O,E为AB的中点,连接OE并延长到点F,使EF=EO,连接AF,BF.(1)求证:四边形AOBF是矩形;(2)若AD=5,sin∠AFO=,求AC的长.【分析】(1)根据有一个角是90度的平行四边形是矩形即可证明四边形AOBF是矩形;(2)根据矩形和菱形的性质可得OF=5,∠FAO=90°,再根据锐角三角函数即可求出AC的长.解:(1)证明:∵点E为AB的中点,EF=EO,∴四边形AOBF是平行四边形,又∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOB=90°,∴四边形AOBF是矩形;(2)∵四边形AOBF是矩形,∴AB=OF,∠FAO=90°,又∵四边形ABCD是菱形,∴AB=AD=5,∴OF=5,在Rt△AFO中,OF=5,∵sin∠AFO=,∴OA=3,∴AC=6.22.在平面直角坐标系xOy中,反比例函数y=(k≠0,x>0)的图象经过点A(1,﹣4),直线y=﹣2x+m与x轴交于点B(1,0).(1)求k,m的值;(2)已知点P(n,﹣2n)(n>0),过点P作平行于x轴的直线,交直线y=﹣2x+m 于点C,过点P作平行于y轴的直线交反比例函数y=(k≠0.x>0)的图象于点D,当PD=2PC时,结合函数的图象,求出n的值.【分析】(1)先把A点坐标代入y=中可得到k的值,然后把B点坐标代入y=﹣2x+m 中可求出m的值;(2)反比例函数解析式为y=﹣(x>0),一次函数解析式为y=﹣2x+2,如图,先利用n表示出C(n+1,﹣2n),D(n,﹣),则PC=1,PD=|﹣2n+|,从而得到|﹣2n+|=2,然后解绝对值方程求出n即可.解:(1)把A(1,﹣4)代入y=得k=1×(﹣4)=﹣4;把B(1,0)代入y=﹣2x+m得﹣2+m=0,解得m=2;(2)反比例函数解析式为y=﹣(x>0),一次函数解析式为y=﹣2x+2,如图,当y=﹣2n时,﹣2x+2=﹣2n,解得x=n+1,则C(n+1,﹣2n),∴PC=n+1﹣n=1,当y=﹣2n时,y=﹣=,∴D(n,﹣),∴PD=|﹣2n+|,∵PD=2PC,∴|﹣2n+|=2,当﹣2n+=2时,解得n1=﹣2(舍去),n2=1,当﹣2n+=﹣2时,解得n1=﹣1(舍去),n2=2,综上所述,当PD=2PC时,n=1或n=2.23.教育未来指数是为了评估教育系统在培养学生如何应对快速多变的未来社会方面所呈现的效果.现对教育未来指数得分前35名的国家和地区的有关数据进行收集、整理、描述和分析后,给出了部分信息.a.教育未来指数得分的频数分布直方图(数据分成7组:20≤x<30,30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤t≤90);b.教育未来指数得分在60≤x<70这一组的是:61.2 62.8 64.6 65.2 67.2 67.3 67.5 68.5c.35个国家和地区的人均国内生产总值和教育未来指数得分情况统计图如图:d.中国和中国香港的教育未来指数得分分别为32.9和68.5.(以上数据来源于《国际统计年鉴(2018)》和国际在线网)根据以上信息,回答下列问题:(1)中国香港的教育未来指数得分排名世界第14;(2)在35个国家和地区的人均国内生产总值和教育未来指数得分情况统计图中,包括中国香港在内的少数几个国家和地区所对应的点位于虚线l的上方,请在图中用“〇”画出代表中国香港的点;(3)在教育未来指数得分比中国高的国家和地区中,人均国内生产总值的最大值约为6.3万美元;(结果保留一位小数)(4)下列推断合理的是①②.(只填序号即可)①相较于点A,C所代表的国家和地区,中国的教育未来指数得分还有一定差距,“十三五”规划提出“教育优先发展,教育强则国家强”的任务,进一步提高国家教育水平;②相较于点B,C所代表的国家和地区,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.【分析】(1)根据教育未来指数得分的频数分布直方图在70≤x<80,80≤t≤90的频数分别是8和5,再根据中国香港的教育未来指数得分是68.5.可得排名是第14;(2)根据中国香港的教育未来指数得分是68.5,即可在35个国家和地区的人均国内生产总值和教育未来指数得分情况统计图中,用“〇”画出代表中国香港的点;(3)观察35个国家和地区的人均国内生产总值和教育未来指数得分情况统计图可得,人均国内生产总值的最大值;(4)根据题意可得下列推断都合理.解:(1)根据分析可知:因为5+8=13,13+1=14.所以中国香港的教育未来指数得分排名世界第14;故答案为:14;(2)如图,用“〇”画出了代表中国香港的点,(3)观察35个国家和地区的人均国内生产总值和教育未来指数得分情况可知:在教育未来指数得分比中国高的国家和地区中,人均国内生产总值的最大值约为6.3万美元;故答案为:6.3;(4)下列推断合理的是①②.故答案为:①②.24.如图,在△ABC中,AB=6cm,P是AB上的动点,D是BC延长线上的定点,连接DP交AC于点Q.小明根据学习丽数的经验.对线段AP,DP,DQ的长度之间的关系进行了探究.下面是小明的探究过程,请补充完整:(1)对于点P在AB上的不同位置,画图、测量,得到了线段AP,DP,DQ的长度(单位:cm)的几组值,如表:位置1位置2位置3位置4位置5位置6位置7 AP0.00 1.00 2.00 3.00 4.00 5.00 6.00DP 4.99 4.56 4.33 4.32 4.53 4.95 5.51DQ 4.99 3.95 3.31 2.95 2.80 2.79 2.86在AP,DP,DQ的长度这三个量中,确定AP的长度是自变量,DP的长度和DQ 的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当AP=(DP+DQ)时,AP的长度约为 3.63cm.【分析】(1)根据变量的定义即可求解;(2)依据表格中的数据描点、连线即可得;(3)代入计算画图象可得结论.解:(1)在AP,DP,DQ的长度这三个量中,确定AP的长度是自变量,DP的长度和DQ的长度都是这个自变量的函数;故答案为:AP,DP,DQ;(2)如图1,依据表格中的数据描点、连线,(3)设y1=(DP+DQ),y2=AP,根据(2)中表的数据得:如图2所示:由图象得:y1=y2时,AP的长度约为3.63cm.(答案不唯一);故答案为:3.63.25.如图,△ABC内接于⊙O,AB为直径,作OD⊥AB交AC于点D,延长BC,OD交于点F,过点C作⊙O的切线CE,交OF于点E.(1)求证:EC=ED;(2)如果OA=4,EF=3,求弦AC的长.【分析】(1)连接OC,由切线的性质可证得∠ACE+∠A=90°,又∠CDE+∠A=90°,可得∠CDE=∠ACE,则结论得证;(2)先根据勾股定理求出OE,OD,AD的长,证明Rt△AOD∽Rt△ACB,得出比例线段即可求出AC的长.【解答】(1)证明:连接OC,∵CE与⊙O相切,为C是⊙O的半径,∴OC⊥CE,∴∠OCA+∠ACE=90°,∵OA=OC,∴∠A=∠OCA,∴∠ACE+∠A=90°,∵OD⊥AB,∴∠ODA+∠A=90°,∵∠ODA=∠CDE,∴∠CDE+∠A=90°,∴∠CDE=∠ACE,∴EC=ED;(2)解:∵AB为⊙O的直径,∴∠ACB=90°,在Rt△DCF中,∠DCE+∠ECF=90°,∠DCE=∠CDE,∴∠CDE+∠ECF=90°,∵∠CDE+∠F=90°,∴∠ECF=∠F,∴EC=EF,∵EF=3,∴EC=DE=3,∴OE==5,∴OD=OE﹣DE=2,在Rt△OAD中,AD==2,在Rt△AOD和Rt△ACB中,∵∠A=∠A,∠ACB=∠AOD,∴Rt△AOD∽Rt△ACB,∴,即,∴AC=.26.在平面直角坐标系xOy中,点A的坐标为(0,4),点B的坐标为(6,4).抛物线y=x2﹣5x+a﹣2的顶点为C.(1)若抛物线经过点B时,求顶点C的坐标;(2)若抛物线与线段AB恰有一个公共点,结合函数图象,求a的取值范围;(3)若满足不等式x2﹣5x+a﹣2≤0的x的最大值为3.直接写出实数a的值.【分析】(1)将点B坐标代入解析式可求a的值,由顶点坐标可求点C坐标;(2)分顶点C在线段AB下方和线段AB上两种情况讨论,由图象列出不等式组可求解;(3)由题意可得当x=3时,y=0,即可求解.解:(1)由题意可得:4=36﹣5×6+a﹣2,∴a=0,∴抛物线的解析式为:y=x2﹣5x﹣2,∴顶点C坐标为(,﹣),(2)如图,当顶点C在线段AB下方时,由题意可得:,解得:0≤a<6;当顶点C在AB时,当x=时,y=4,∴,∴a=,综上所述:当0≤a<6或时,抛物线与线段AB恰有一个公共点;(3)由题意可得当x=3时,y=0,即9﹣15+a﹣2=0,∴a=8.27.在△ABC中,AB=AC,∠BAC=α,点D是△ABC外一点,点D与点C在直线AB 的异侧,且点D,A,C不共线,连接AD,BD,CD.(1)如图1,当α=60°.∠ADB=30°时,画出图形,直接写出AD,BD,CD之间的数量关系;(2)当α=90°,∠ADB=45°时,利用图2,继续探究AD,BD,CD之间的数量关系并证明;(提示:尝试运用图形变换,将要研究的有关线段尽可能转移到一个三角形中)(3)当∠ADB=时,进一步探究AD,BD,CD之间的数量关系,并用含α的等式直接表示出它们之间的关系.【分析】(1)先判断出∠BDE=90°,再根据勾股定理得出BD2+DE2=BE2,即BD2+AD2=BE2,再判断出△ABE≌△ACD(SAS),得出BE=CD,即可得出结论;(2)同(1)方法得出DE2+BD2=BE2,进而得出2AD2+BD2=BE2,同(1)的方法判断出BE=CD,即可得出结论;(3)同(1)的方法得出DE2+BD2=BE2,再判断出DF=2AD•sin,即可得出结论.解:(1)AD2+BD2=CD2,理由:如图1,过AD为边在AD上侧作等边三角形ADE,连接BE,则AD=DE=AE,∠DAE=∠ADE=60°,∵∠ADB=30°,∴∠BDE=∠DBA+∠ADE=90°,在Rt△BDE中,根据勾股定理得,BD2+DE2=BE2,∴BD2+AD2=BE2,∵∠DAE=∠BAC=60°,∴∠BAE=∠CAD,∵AB=AC,∴△ABE≌△ACD(SAS),∴BE=CD,∴AD2+BD2=CD2;(2)如图2,过点A作AE⊥AD,且AE=AD,连接BE,DE,∴∠ADE=45°,∵∠BDA=45°,∴∠BDE=90°,根据勾股定理得,DE2+BD2=BE2,∵DE2=2AD2,∴2AD2+BD2=BE2,∵∠DAE=∠BAC=90°,∴∠BAE=∠CAD,∵AB=AC,∴△ABE≌△ACD(SAS),∴BE=CD,∴2AD2+BD2=CD2;(3)如图3,将线段AD绕点A顺时针旋转α得到AE,连接DE,BE,∴∠ADE=(180°﹣∠DAE)=90°﹣α,∵∠ADB=α,∴∠BDE=90°,根据勾股定理得,DE2+BD2=BE2,∵∠DAE=∠BAC=α,∴∠BAE=∠CAD,∵AB=AC,∴△ABE≌△ACD(SAS),∴BE=CD,∴DE2+BD2=CD2,过点A作AF⊥DE于F,则DE=2DF,∴∠DAF=90°﹣∠ADE=α,在Rt△ADF中,sin∠DAF=,∴DF=AD•sin∠DAF=AD•sin,∴DE=2DF=2AD•sin,即:(2AD•sin)2+BD2=CD2.28.对于平面直角坐标系:xOy内任意一点P.过P点作PM⊥x轴于点M,PN⊥y轴于点N,连接MN,则称MN的长度为点P的垂点距离,记为h.特别地,点P与原点重合时,垂点距离为0.(1)点A(2,0),B(4,4),C(﹣2,)的垂点距离分别为2,4,.(2)点P在以Q(,1)为圆心,半径为3的⊙Q上运动,求出点P的垂点距离h 的取值范围;(3)点T为直线l:y=x+6位于第二象限内的一点,对于点T的垂点距离h的每个值有且仅有一个点T与之对应,求点T的横坐标t的取值范围.【分析】(1)先判断出MN=OB,即可用两点间的距离公式求解;(2)先判断出h=OP,再判断出OQ+PQ≤OP≤OQ+PQ,即可得出结论;(3)先求出点A,B坐标,进而求出OA=OB,再找出分界点,利用锐角三角函数求解即可得出结论.解:(1)如图1,点A(2,0)的垂点距离为OA=2,连接OB,过点B作BN⊥x轴于M,作BN⊥y轴于N,∴∠BNO=∠BMO=90°,∵∠MON=90°,∴∠MON=∠BMN=∠BNO=90°,∴四边形OMNB是矩形,∴MN=OB,∴点B(4,4)的垂点距离为MN=OB==4,同理:点C的垂点距离为=,故答案为:2,4,;(2)如图2,过点P作PM⊥x轴于M,PN⊥y轴于N,连接OP,由(1)知,点P的垂点距离h=OP,∵点Q的坐标为(,1),∴OQ=2,∵PQ﹣OQ≤OP≤OQ+PQ,∴3﹣2≤OP≤3+2,∴1≤OP≤5,∴1≤h≤5;(3)如图3,设直线l与x轴,y轴的交点为A,B,针对于直线y=x+6,令x=0,则y=6,∴B(0,6),∴OB=6,令y=0,则x+6=0,∴x=﹣2,∴A(﹣2,0),∴OA=2,在Rt△AOB中,tan∠OAB==,∴∠OAB=60°,过点O作OM⊥l于M,∴AM=OA•sin∠OAB=2•sin60°=,过点M,N分别作x轴的垂线,垂足分别为C,D,同理:AC=,即OC=,∵OA=ON,∠BAO=60°,∴△AON是等边三角形,∴OD=OA=,∴t=﹣或﹣≤t<0.。

15.代几综合:2020年北京市各区初三数学二模试题分类整理(学生版)

202006初三数学二模试题整理:代几综合(新定义)(学生版)一、以圆(弧)为背景的新定义压轴题1.(2020海淀二模28)在平面内,对于给定的△ABC,如果存在一个半圆或优弧与△ABC 的两边相切,且该弧上的所有点都在△ABC的内部或边上,则称这样的弧为△ABC的内切弧.当内切弧的半径为最大时,称该内切弧为△ABC的完美内切弧.(注:弧的半径指该弧所在圆的半径)在平面直角坐标系xOy中,A(8,0),B(0,6).(1)如图1,在弧G1,弧G2,弧G3中,是△OAB的内切弧的是;(2)如图2,若弧G为△OAB的内切弧,且弧G与边AB,OB相切,求弧G的半径的最大值;(3)如图3,动点M(m,3),连接OM,AM.①直接写出△OAM的完美内切弧半径的最大值;②记①中得到的半径最大时的完美内切弧为弧T.点P为弧T上的一个动点,过点P作x轴的垂线,分别交x轴和直线AB于点D,E,点F为线段PE的中点,直接写出线段DF长度的取值范围.图 2图 3备用图图 12.(2020房山二模28)过三角形的任意两个顶点画一条弧,若弧上的所有点都在该三角形 的内部或边上,则称该弧为三角形的“形内弧”.(1)如图,在等腰Rt ABC △中,90A =︒∠,2AB AC ==.①在下图中画出一条Rt ABC △的形内弧;②在Rt ABC △中,其形内弧的长度最长为____________.(2)在平面直角坐标系中,点()2,0D -,()2,0E ,()0,1F ,点M 为DEF △形内 弧所在圆的圆心. 求点M 纵坐标M y 的取值范围;(3)在平面直角坐标系中,点(2,M ,点G 为x 轴上一点. 点P 为OMG △最长 形内弧所在圆的圆心,求点P 纵坐标P y 的取值范围.ABC3.(2020丰台一模28)过直线外一点且与这条直线相切的圆称为这个点和这条直线的点线圆,特别地,半径最小..的点线圆称为这个点和这条直线的最小点线圆.在平面直角坐标系xOy中,点P(0,2).(1)已知点A(0,1),B(1,1),C(2,2),分别以A,B为圆心,1为半径作⊙A,⊙B,以C为圆心,2为半径作⊙C,其中是点P与x轴的点线圆的是;(2)记点P和x轴的点线圆为⊙D,如果⊙D与直线y3无公共点,求⊙D的半径的r取值范围;(3)直接写出点P和直线y=kx(k≠0)的最小点线圆的圆心的横坐标t的取值范围.二、与“点”有关的新定义4.(2020西城一模28)对于平面直角坐标系xOy 中的定点P 和图形F ,给出如下定义:若在图形F 上存在一点N ,使得点Q ,点P 关于直线ON 对称,则称点Q 是点P 关于图形F 的定向对称点. (1)如图,(10),A ,(11),B ,(02),P ,① 点P 关于点B 的定向对称点的坐标是 ;② 在点(02)C -,,(1D -,,(21)E -,中, 是点P 关于线段AB 的定向对称点.(2)直线3l y x b =+:分别与x 轴,y 轴交于点G ,H ,⊙M 是以点(20),M 为圆心,(0)>r r 为半径的圆.① 当1=r 时,若⊙M 上存在点K ,使得它关于线段GH 的定向对称点在线段GH 上,求b 的取值范围;② 对于0>b ,当3=r 时,若线段GH 上存在点J ,使得它关于⊙M 的定向对称点 在⊙M 上,直接写出b 的取值范围.5.(2020顺义二模28)已知:如图,⊙O的半径为r,在射线OM上任取一点P(不与点O重合),如果射线OM上的点P',满足OP·OP'=r2,则称点P'为点P关于⊙O的反演点.在平面直角坐标系xOy中,已知⊙O的半径为2.(1)已知点A (4,0),求点A关于⊙O的反演点A'的坐标;(2)若点B关于⊙O的反演点B'恰好为直线y=与直线x=4的交点,求点B的坐标;(3)若点C为直线y=上一动点,且点C关于⊙O的反演点C'在⊙O的内部,求点C的横坐标m的范围;(4)若点D为直线x=4上一动点,直接写出点D关于⊙O的反演点D'的横坐标t的范围.6.(2020燕山二模28)对于平面直角坐标系xOy 中的点P 和图形G ,给出如下定义:若图形G 上存在两个 点A ,B ,使得△PAB 是边长为2的等边三角形,则称点P 是图形G 的一个“和谐点”. 已知直线l:0)y n n =+≥(与x 轴交于点M ,与y 轴交于点N ,⊙O 的半径为r .(1) 若n =0,在点1P (2,0),2P (0,,3P (4,1)中,直线l 的和谐点是 ;(2) 若r =2,⊙O 上恰好存在2个直线l 的和谐点,求n 的取值范围; (3) 若n =MN 上存在⊙O 的和谐点,直接写出r 的取值范围.7.(2020密云二模28)在平面直角坐标系xOy 中,点A 的坐标为(x 1,y 1),点B 的坐标为(x 2,y 2),且x 1x 2,y 1=y 2. 给出如下定义:若平面上存在一点P ,使△APB 是以线段AB 为斜边的直角三角形,则称点P 为点A 、点B 的“直角点”. (1)已知点A 的坐标为(1,0).① 若点B 的坐标为(5,0),在点P 1(4,3)、P 2(3,-2)和P 3(2)中, 是点A 、点B 的“直角点”的是 ;② 点B 在x轴的正半轴上,且AB = ,当直线y=-x+b 上存在点A 、点B 的“直 角点”时,求b 的取值范围;(2)⊙O 的半径为r ,点D (1,4)为点E (0,2)、点F (m ,n )的“直角点”,若使得 △DEF 与⊙O 有交点,直接写出半径r 的取值范围.228.(2020平谷二模28)如图1,点P是平面内任意一点,点A,B是⊙C上不重合的两个点,连结P A,PB.当∠APB=60°时,我们称点P为⊙C的“关于AB的关联点”.(1)如图2C上时,点P是⊙C的“”时,画出一个满足条件的∠APB,并直接写出∠ACB的度数;(2)在平面直角坐标系中,点()1,3M,点M关于y轴的对称点为点N.①以点O为圆心,OM为半径画⊙O,在y轴上存在一点P,使点P为⊙O“关于MN的关联点”,直接写出点P的坐标;②点D(m,0)是x轴上一动点,当⊙D的半径为1时,线段MN上至少存在一个点是⊙D的“关于某两个点的关联点”,求m的取值范围.图1 图2三、与“距离”有关的新定义9.(2020东城二模28)对于平面直角坐标系xOy内任意一点P,过P点作PM⊥x轴于点M,PN⊥y轴于点N,连接MN,则称MN的长度为点P的垂点距离,记为h.特别地,点P与原点重合时,垂点距离为0.(1)点A(2,0),B(4,4),C(-2,√2)的垂点距离分别为_______,________,________;(2)点P在以Q(√3,1)为圆心,半径为3的⊙M上运动,直接写出点P的垂点距离h的取值范围;(3)点T为直线l:y=√3x+6位于第二象限内的一点,对于点T的垂点距离h的每个值有且仅有一个点T与之对应,求点T的横坐标t的取值范围.10.(2020朝阳二模28)对于平面直角坐标系xOy中的点P和图形M,给出如下定义:Q为图形M上任意一点,如果P,Q两点间的距离有最大值,那么称这个最大值为点P与图形M间的开距离,记作d(P,M).+(b≠0)与x轴交于点A,与y轴交于点B,⊙O的半径为1.已知直线y x b(1)若b=2,①求d(B,⊙O)的值;②若点C在直线AB上,求d(C,⊙O)的最小值;(2)以点A为中心,将线段AB顺时针旋转120°得到AD,点E在线段AB,AD组成的图形上,若对于任意点E,总有2≤d(E,⊙O)<6,直接写出b的取值范围.。

中考数学26题汇编练习及答案

x 的请回答:(1) 当k =1时,使得原等式成立的x 的个数为 _______; (2) 当0<k <1时,使得原等式成立的x 的个数为_______; (3) 当k >1时,使得原等式成立的x 的个数为 _______. 参考小明思考问题的方法,解决问题:关于x 的不等式只有一个整数解,求的取值范围.26.(1)小明遇到下面一道题:如图1,在四边形ABCD 中,AD ∥BC ,∠ABC =90º,∠ACB =30º,BE ⊥AC 于点E ,且.如果AB =1,求CD 边的长.小明在解题过程中发现,图1中,△CDE 与△ 相似,CD 的长度等于,线段CD 与线段 的长度相等;他进一步思考:如果(是锐角),其他条件不变,那么CD 的长度可以表示为CD = ;(用含的式子表示) (2)受以上解答过程的启发,小明设计了如下的画图题:)240 ()x a a x+-<>0a =CDE ACB ∠∠ACB α∠=αα在Rt △OMN 中,∠MON =90º,OM <ON ,OQ ⊥MN 于点Q ,直线l 经过点M ,且l ∥ON .请在直线l 上找出点P 的位置,使得.请写出你的画图步骤,并在答题卡上完成相应的画图过程.(画出一个即可,保留画图痕迹,不要求证明)26 .阅读材料如图1,若点P 是⊙O 外的一点,线段PO 交⊙O 于点A,则PA 长是点P 与⊙O 上各点之间的最短距离.图1 图2 证明:延长PO 交⊙O 于点B ,显然PB>PA .如图2,在⊙O 上任取一点C (与点A ,B 不重合),连结PC ,OC .∴PA 长是点P 与⊙O 上各点之间的最短距离.NPQ ONM ∠=∠,,,,PO PC OC PO PA OA OA OC PA PC <+=+=∴<且由此可以得到真命题:圆外一点与圆上各点之间的最短距离是这点到圆心的距离与半径的差.请用上述真命题解决下列问题.(1)如图3,在Rt △ABC 中,∠ACB =90°,AC =BC =2,以BC 为直径的半圆交AB 于D ,P 是上的一个动点,连接AP ,则AP长的最小值是 .图3(2)如图4,在边长为2的菱形中,∠=60°,是边的中点,点是边上一动点,将△沿所在的直线翻折得到△,连接,①求线段A ’M 的长度; ②求线段长的最小值.26.问题背景:在△ABC 中,AB ,BC ,AC 三边的长分别为,,,求这个三角形的面积.小军同学在解答这道题时,先建立了一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC (即△ABC 三个顶点都在小正方形的顶点处),如图1所示.这样不需要求出△ABC 的高,借用网格就能计算出它的面积.ABCD A M AD N AB AMN MN MN A 'C A 'C A '53217图4图1 图2 (1)请你直接写出△ABC 的面积________; 26.阅读下面材料:小玲遇到这样一个问题:如图1,在等腰三角形中,,,,于点,求的长.图图3小玲发现:分别以,为对称轴,分别作出△,△的轴对称图形,点的对称点分别为,,延长,交于点,得到正方形,根据勾股定理和正方形的性质就能求出的长.(如图2)请回答:的长为,的长为; 参考小玲思考问题的方法,解决问题:如图3,在平面直角坐标系中,点,,点是△的外角的角平分线和的交点,求点的坐标.CBAABC AC AB =︒=∠45BAC 22=BC BC AD ⊥D AD AB AC ABD ACD D E F EB FC G AEGF AD BG AD xOy ()0,3A ()4,0B P OAB AP BP P xyPBA O G EFDDABBACC图1 图226.阅读下面材料:小凯遇到这样一个问题:如图1,在四边形ABCD 中,对角线AC 、BD 相交于点O ,AC =4,BD =6,∠AOB =30°,求四边形ABCD 的面积.小凯发现,分别过点A 、C 作直线BD 的垂线,垂足分别为点E 、F ,设AO 为m ,通过计算△ABD 与△BCD 的面积和使问题得到解决(如图2).请回答:(1)△ABD 的面积为 (用含m 的式子表示). (2)求四边形ABCD 的面积.参考小凯思考问题的方法,解决问题:如图3,在四边形ABCD 中,对角线AC 、BD 相交于 点O ,AC =a ,BD =b ,∠AOB =(0°<<90°),则四边形ABCD 的面积为 (用含a 、b 、的式子表示).26.【阅读学习】 刘老师提出这样一个问题:已知α为锐角,且tan α=,求sin2α的值.小娟是这样解决的:如图1,在⊙O 中,AB 是直径,点C 在⊙O 上,∠BAC =α,所以∠ACB =90°,tan α= = .易得∠BOC =2α.设BC =x ,则AC =3x ,则AB .作CD ⊥AB 于D ,求出CD = (用含x 的式子表示),可求得sin2α== . 【问题解决】已知,如图2,点M 、N 、P 为圆O 上的三点,且∠P =β,tan β =,求sin2β的值.ααα13BCAC1310CDOC12图1图2图326. 如图,在平面直角坐标系xOy 中,矩形ABCD 各边都平行于坐标轴,且A (-2,2),C(3,-2).对矩形ABCD 及其内部的点进行如下操作:把每个点的横坐标乘以a ,纵坐标乘以b ,将得到的点再向右平移k ()个单位,得到矩形及其内部的点(分别与ABCD 对应).E (2,1)经过上述操作后的对应点记为. (1)若a =2,b =-3,k =2,则点D 的坐标为 ,点的坐标为 ; (2)若(1,4),(6,-4),求点的坐标.26.阅读下面的材料:小明遇到一个问题:如图1,在□ABCD 中,点E 是边BC 的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G . 如果,求的值. 他的做法是:过点E 作EH ∥AB 交BG 于点H ,那么可以得到△BAF ∽△HEF . 请回答:(1)AB 和EH 之间的数量关系是 ,CG 和EH 之间的数量关系是 ,的值为 . (2)参考小明思考问题的方法,解决问题:如图2,在四边形ABCD 中,DC ∥AB ,点E 是BC 延长线上一点,AE 和BD 相交于点F .如图1图20k >''''A B C D ''''A B C D 'E 'D 'A 'C 'E 3AF EF =CDCGCDCG果,,求的值.图1 图226.在平面内,将一个图形以任意点为旋转中心,逆时针...旋转一个角度,得到图形,再以为中心将图形放大或缩小得到图形,使图形与图形对应线段的比为,并且图形上的任一点,它的对应点在线段或其延长线上;我们把这种图形变换叫做旋转相似变换,记为,其中点叫做旋转相似中心,叫做旋转角,叫做相似比. 如图1中的线段便是由线段经过得到的.(1)如图2,将△ABC 经过☆ 后得到△,则横线上“☆”应填下列四个点、、、中的点 .(2)如图3,△ADE 是△ABC 经过得到的,, 则这个图形变换可以表示为.2AB CD =23BC BE =AFEFHG F ECDBAFECB A D G O θ'G O 'G ''G ''G G k G P ''P 'OP ()O θ,k O θk''OA OA ()302︒O ,()901,︒'''A B C ()00O ,()01D ,()0E ,-1()12C ,()A θ,k 90︒=EAB ∠12cos EAC =∠(),A 图2y x-111B'A'C'ED B ACO图3E DABC图130°A'A''OA26.如图1,在□ABCD 中,点E 是BC 边上的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G ,若AB =6,,求DG 的长.小米的发现,过点E 作交BG 于点H (如图2),经过推理和计算能够使问题得到解决.则DG = .如图3,四边形ABCD 中,AD ∥BC ,点E 是射线DM 上的一点,连接BE 和AC 相交于点F ,若,,求的值(用含3AF EF =EH AB ∥BC aAD =CD bCE =BFEF,a b 图1GF E BCAD图2HGF E BCAD图3M A D26.如图①,P 为△ABC 内一点,连接PA 、PB 、PC ,在△PAB 、△PBC 和△PAC 中,如果存在一个三角形与△ABC 相似,那么就称P 为△ABC 的自相似点.(1)如图②,已知Rt △ABC 中,∠ACB =90°,∠ACB >∠A ,CD 是AB 上的中线,过点B 作BE ⊥CD ,垂足为E ,试说明E 是△ABC 的自相似点.(2)如图③,在△ABC 中,∠A <∠B <∠C .①利用尺规作出△ABC 的自相似点P (不写出作法,保留作图痕迹);②如果△ABC 的内心P 是该三角形的自相似点,请直接写出该三角形三个内角的度数.BBC ADPE①②ACBC③A答案26. (本小题满分5分)解:(1)当k=1时,使1 ;…………………………………….(2)当0<k<1时,2 ;…………………………………………(3)当k>1时,使1 .…..解决问题:将不等式240 (x a ax+-<研究函数与函数的图象的交点. ∵函数的图象经过点A (1,4),B (2,2), 函数的图象经过点C (1,1),D (2,4), 若函数经过点A (1,4),则, ……………………………………………………4分结合图象可知,当时,关于x 的不等式只有一个整数解.也就是当时,关于x 的不等式只有一个整数解. ……………………5分26.解:(1)CAD ,BC . …………………………………………………………… 3分.……………………………………………………………………………4分 (2)方法1:如图8,以点N 为圆心,ON 为半径作圆,交直线l 于点,,则点,为符合题意的点.……………………………………………… 5分 方法2:如图9,过点N 画NO 的垂线,画NQ 的垂直平分线,直线与交于点R ,以点R 为圆心,RN 为半径作圆,交直线l 于点,,则点,为符合题意的点. ……………………………………… 5分2(0)y x a a =+>4y x=4y x=2y x =2(0)y x a a =+>3a =03a <<24(0)x a a x+<>03a <<240 ()x a a x+-<>01tan α1P 2P 1P 2P 1m 2m 1m 2m 1P 2P 1P 2P 1.2分②由①知,点A ’在以点M 为圆心,1为半径的圆上……4分 连接CM 交圆M 于点A ’,过点M 向CD 的延长线作垂线,垂足为点H.26. 解:(1)△ABC 的面积是4.5;…….2分(2)如右图: …….4分△MNP 的面积是7. …….5分26.解:的长为,的长为;…………………2分如图,过点分别作轴于点,轴于点,于点…………………3分∵和是△的外角的角平分线 ∴, ∴∴四边形是正方形,,…………4分∴ ∵, ∴',=1.3AMN A MN A M AM ∴=沿MN 所在的直线翻折得到’分2222t 123sin .2t 35722'715R MHD DH DM COS HDM MH DM HDM R CHM MH CH A C =⋅∠==⋅∠=⎛⎫⎛⎫+=+= ⎪⎪ ⎪⎝⎭⎝⎭∴=-在中,,在中,CM=,分BG 2AD 22+P x PC ⊥C y PD ⊥D AB PE ⊥E AP BP OAB CAP EAP ∠=∠EBP DBP ∠=∠PD PE PC ==OCPD AE AC =BE BD =DO PD CP OC ===()0,3A ()4,0B 5=AB MPNxyECD PBA O∴∴,∴∴……………………5分26. 解:(1);……………………………………………………………………………1分(2)由题意可知∠AEO =90°.∵ AO = m ,∠AOB =30°, ∴AE =.∴S △ABD =. 同理,CF =.∴S △BCD =.…………………………………………………2分 ∴S 四边形ABCD = S △ABD +S △BCD .…………………………………………………3分 解决问题:.………………………………………………………………5分 26.解:. ……………………………………………………………………… 1分Sin2α==. ……………………………………………………………………… 2分 如图,连接,并延长交⊙O 于,连接MQ ,MO ,作于. 在⊙O 中,∠NMQ =90°. ∵ ∠Q=∠P =β,OM=ON,∴ ∠MON=2∠Q=2β. ………………………………………… 3分∵ tan β=, ∴ 设MN =k ,则MQ =2k ,∴ NQ =.12=++=+BO AB OA OD OC 6==OD OC 6==PD CP ()6,6P 32m 12m m AE BD 2321=⋅1(4)2m m CF BD 23621-=⋅6=αsin 21⋅ab 10103xCD =CD OC53NO Q NO MH ⊥H 21k MQ MN 522=+H βP MO∴ OM=NQ=. ∵ , ∴ .∴MH=. ………………………………………………………………………………… 4分 在中,sin2β=sin ∠MON =. …………………………………… 5分 26. 解: (1)D (3,2),(8,-6),..................................................................................2分 (2)依题可列:则a =1,k =3,2b =4,b =2,.........................................................4分(a ,b ,k 求出一个给1分)∵点E (2,1), ∴......................................................................................................5分26.(本小题满分5分)解:(1)AB =3EH ,CG =2EH ,.………………………………………………3分 (2)如图,过点E 作EH ∥AB 交BD 的延长线于点H .∴ EH ∥AB ∥CD . ∵ EH ∥CD ,21k 25MH NQ MQ MN S NMQ ⋅=⋅=∆2121MH k k k ⋅=⋅52k 552MHORt ∆5425552==kkOM MH 'D 21,3 6.a k a k -+=⎧⎨+=⎩'E (5,2)32HF E CB AD∴, ∴ CD =EH . 又∵,∴ AB =2CD =EH . ∵ EH ∥AB ,∴ △ABF ∽△EHF . ∴.……………………………………5分 26.(1) ………………………………………………………………………………2分 (2)………………………………………………………5分26.答案:DG =2; (2)如图(画图正确,正确标出点E 、F ) (3)过E 作EG ∥AD ,延长CA 交于点G ∴△CAD ∽△CGE .∴. ∵,∴. ∴.……………………………………………………4 ∵AD ∥BC , ∴BC ∥EG . ∴△GEF ∽△CBF .23CD BC EH BE ==232AB CD =434433AF AB EH EH EF EH ===E 60,k︒AD CDGE CE=CD bCE =ADb GE=AD bEG =∴. ∵, ∴.∴ (5)26.解:⑴在Rt △ABC 中,∠ACB =90°,CD 是AB 上的中线,∴, ∴CD =BD .∴∠BCE =∠ABC .……………………………….(1分) ∵BE ⊥CD , ∴∠BEC =90°,∴∠BEC =∠ACB .……………………………….(2分) ∴△BCE ∽△ABC .∴E 是△ABC 的自相似点.………………………….(3分)⑵①作图略.(方法不唯一)……………………….(5分)②连接PB 、PC .∵P 为△ABC 的内心, ∴,. ∵P 为△ABC 的自相似点, ∴△BCP ∽△ABC .∴∠PBC =∠A ,∠BCP =∠ABC =2∠PBC =2∠A , ∠ACB =2∠BCP =4∠A . ∵∠A +∠ABC +∠ACB =180°. ∴∠A +2∠A +4∠A =180°.BC BFEG EF=BC aAD =BC abEG =BFab EF=12CD AB =12PBC ABC ∠=∠12PCB ACB ∠=∠∴. ∴该三角形三个内角的度数分别为、、.…………….(6分)1807A ∠=180736077207。

2022北京中考数学二模分类汇编《代数综合》含答案解析

2022年北京中考数学分类汇编——代数综合1.(2022•海淀区二模)在平面直角坐标系xOy中,点(m﹣2,y1),(m,y2),(2﹣m,y3)在抛物线y=x2﹣2ax+1上,其中m≠1且m≠2.(1)直接写出该抛物线的对称轴的表达式(用含a的式子表示);(2)当m=0时,若y1=y3,比较y1与y2的大小关系,并说明理由;(3)若存在大于1的实数m,使y1>y2>y3,求a的取值范围.2.(2022•西城区二模)在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过点(0,﹣2),(2,﹣2).(1)直接写出c的值和此抛物线的对称轴;(2)若此抛物线与直线y=﹣6没有公共点,求a的取值范围;(3)点(t,y1),(t+1,y2)在此抛物线上,且当﹣2≤t≤4时,都有|y2﹣y1|<.直接写出a的取值范围.3.(2022•东城区二模)在平面直角坐标系xOy中,抛物线y=ax2+bx+1(a≠0)的对称轴是直线x=3.(1)直接写出抛物线与y轴的交点坐标;(2)求抛物线的顶点坐标(用含a的式子表示);(3)若抛物线与x轴相交于A,B两点,且AB≤4,求a的取值范围.4.(2022•朝阳区二模)在平面直角坐标系xOy中,已知抛物线y=x2+(a+2)x+2a.(1)求抛物线的对称轴(用含a的式子表示);(2)若点(﹣1,y1),(a,y2),(1,y3)在抛物线上,且y1<y2<y3,求a的取值范围.5.(2022•丰台区二模)在平面直角坐标系xOy中,已知抛物线y=x2﹣2ax﹣3.(1)求该抛物线的对称轴(用含a的式子表示);(2)A(x1,y1),B(x2,y2)为该抛物线上的两点,若x1=1﹣2a,x2=a+1,且y1>y2,求a的取值范围.6.(2022•石景山区二模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=﹣x的图象平移得到,且经过点(1,1).(1)求这个一次函数的表达式;(2)当x>﹣1时,对于x的每一个值,函数y=mx﹣1(m≠0)的值小于一次函数y=kx+b的值,直接写出m的取值范围.(1)用含a的代数式表示b;(2)若该函数的图象与x轴的一个交点为(﹣1,0),求二次函数的解析式;(3)当a<0时该函数图象上的任意两点P(x1,y1)、Q(x2,y2),若满足x1=﹣2,y1>y2,求x2的取值范围.8.(2022•顺义区二模)在平面直角坐标系xOy中,已知抛物线y=x2+mx+n.(1)当m=﹣3时,①求抛物线的对称轴;②若点A(1,y1),B(x2,y2)都在抛物线上,且y2<y1,求x2的取值范围;(2)已知点P(﹣1,1),将点P向右平移3个单位长度,得到点Q.当n=2时,若抛物线与线段PQ恰有一个公共点,结合函数图象,求m的取值范围.(1)求二次函数y1=x2+mx的表达式;(2)已知关于x的二次函数y2=﹣x2+2x,一次函数y3=kx+b(k≠0),在实数范围内,对于x的同一个值,这三个函数所对应的函数值y1≥y3≥y2均成立.①求b的值;②直接写出k的值.10.(2022•昌平区二模)在平面直角坐标系xOy中,已知抛物线y=ax2+bx﹣1(a>0).(1)若抛物线过点(4,﹣1).①求抛物线的对称轴;②当﹣1<x<0时,图象在x轴的下方,当5<x<6时,图象在x轴的上方,在平面直角坐标系中画出符合条件的图象,求出这个抛物线的表达式;(2)若(﹣4,y1),(﹣2,y2),(1,y3)为抛物线上的三点且y3>y1>y2,设抛物线的对称轴为直线x=t,直接写出t的取值范围.11.(2022•门头沟区二模)在平面直角坐标系xOy中,已知抛物线y=mx2﹣2mx+m﹣4(m ≠0).(1)求此抛物线的对称轴;(2)当m=1时,求抛物线的表达式;(3)如果将(2)中的抛物线在x轴下方的部分沿x轴向上翻折,得到的图象与剩余的图象组成新图形M.①直接写直线y=x+1与图形M公共点的个数;②当直线y=k(x+2)﹣1(k≠0)与图形M有两个公共点时,直接写出k的取值范围.12.(2022•房山区二模)在平面直角坐标系xOy中,点A(2,﹣1)在二次函数y=x2﹣(2m+1)x+m的图象上.(1)直接写出这个二次函数的解析式;(2)当n≤x≤1时,函数值y的取值范围是﹣1≤y≤4﹣n,求n的值;(3)将此二次函数图象平移,使平移后的图象经过原点O.设平移后的图象对应的函数表达式为y=a(x﹣h)2+k,当x<2时,y随x的增大而减小,求k的取值范围.13.(2022•平谷区二模)在平面直角坐标系xOy中,点(﹣1,y1)、(1,y2)、(3,y3)是抛物线y=x2+bx+1上三个点.(1)直接写出抛物线与y轴的交点坐标;(2)当y1=y3时,求b的值;(3)当y3>y1>1>y2时,求b的取值范围.2022年北京中考数学分类汇编——代数综合参考答案与试题解析1.(2022•海淀区二模)在平面直角坐标系xOy中,点(m﹣2,y1),(m,y2),(2﹣m,y3)在抛物线y=x2﹣2ax+1上,其中m≠1且m≠2.(1)直接写出该抛物线的对称轴的表达式(用含a的式子表示);(2)当m=0时,若y1=y3,比较y1与y2的大小关系,并说明理由;(3)若存在大于1的实数m,使y1>y2>y3,求a的取值范围.【分析】(1)由对称轴为直线x=﹣求解.(2)由抛物线的对称性及m=0可得抛物线关于y轴对称,从而可得a的值,进而求解.(3)分别将(m﹣2,y1),(m,y2),(2﹣m,y3),解不等式组.【解答】解:(1)∵y=x2﹣2ax+1,∴抛物线对称轴为直线x=﹣=a.(2)∵m=0,y1=y3,∴(﹣2,y1),(2,y3)关于抛物线对称轴对称,∴抛物线关于y轴对称,即a=0,∴y=x2+1,∴抛物线开口向上,顶点坐标为(0,1),∴y2=1为函数最小值,∴y1>y2.(3)将(m﹣2,y1),(m,y2),(2﹣m,y3)代入y=x2﹣2ax+1得y1=m2﹣4m﹣2am+4a+5,y2=m2﹣2am+1,y3=m2﹣4m+2am﹣4a+5,∵y1>y2>y3,∴m2﹣4m﹣2am+4a+5>m2﹣2am+1>m2﹣4m+2am﹣4a+5,解得m﹣1<a<1,∵m>1,∴0<a<1.【点评】本题考查二次函数的综合应用,解题关键是掌握二次函数与方程及不等式的关系,掌握二次函数图象与系数的关系.2.(2022•西城区二模)在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过点(0,﹣2),(2,﹣2).(1)直接写出c的值和此抛物线的对称轴;(2)若此抛物线与直线y=﹣6没有公共点,求a的取值范围;(3)点(t,y1),(t+1,y2)在此抛物线上,且当﹣2≤t≤4时,都有|y2﹣y1|<.直接写出a的取值范围.【分析】(1)运用待定系数法即可求得答案;(2)把y=﹣6代入y=ax2﹣2ax﹣2,整理得:ax2﹣2ax+4=0,根据抛物线与直线y=﹣6没有公共点,利用一元二次方程根的判别式即可求得答案;(3)根据题意得:y1=at2﹣2at﹣2,y2=a(t+1)2﹣2a(t+1)﹣2=at2﹣a﹣2,|y2﹣y1|=|(at2﹣a﹣2)﹣(at2﹣2at﹣2)|=|a(2t﹣1)|,由于当﹣2≤t≤4时,都有|y2﹣y1|<,可得﹣<at<+,当a<0时,+<t<﹣,可得<a<0;当a>0时,﹣<t<+,可得0<a<.【解答】解:(1)∵抛物线y=ax2+bx+c经过点(0,﹣2),(2,﹣2),∴,解得:,∴抛物线解析式为y=ax2﹣2ax﹣2,∴抛物线对称轴为直线x=﹣=1,故c的值为﹣2,抛物线的对称轴为直线x=1;(2)把y=﹣6代入y=ax2﹣2ax﹣2,得:ax2﹣2ax﹣2=﹣6,整理得:ax2﹣2ax+4=0,∵抛物线与直线y=﹣6没有公共点,∴Δ=(﹣2a)2﹣4a×4<0,即a(a﹣4)<0,∵a≠0,∴当a<0时,a﹣4>0,即a>4,此时,无解;当a>0时,a﹣4<0,即a<4,∴0<a<4,综上所述,a的取值范围为0<a<4;(3)∵点(t,y1),(t+1,y2)在此抛物线上,∴y1=at2﹣2at﹣2,y2=a(t+1)2﹣2a(t+1)﹣2=at2﹣a﹣2,∴|y2﹣y1|=|(at2﹣a﹣2)﹣(at2﹣2at﹣2)|=|a(2t﹣1)|,∵当﹣2≤t≤4时,都有|y2﹣y1|<,∴﹣<a(2t﹣1)<,∴﹣<at<+,∵a≠0,∴当a<0时,+<t<﹣,∴,解得:<a<0;当a>0时,﹣<t<+,∴,解得:0<a<;综上所述,a的取值范围是<a<0或0<a<.【点评】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,能对a进行分类讨论,运用分类讨论思想是解题的关键.3.(2022•东城区二模)在平面直角坐标系xOy中,抛物线y=ax2+bx+1(a≠0)的对称轴是直线x=3.(1)直接写出抛物线与y轴的交点坐标;(2)求抛物线的顶点坐标(用含a的式子表示);(3)若抛物线与x轴相交于A,B两点,且AB≤4,求a的取值范围.【分析】(1)根据y轴上点的坐标特征,即可求出答案;(2)根据抛物线的对称轴为直线x=3,求出b=﹣6a,进而得出抛物线解析式,最后将x=3代入抛物线解析式求出顶点坐标的纵坐标,即可得出结论;(3)①当a<0时,抛物线开口向下,不妨设点A在点B的左侧,由(1)知,抛物线y=ax2+bx+1与y轴的交点为(0,1),进而判断出x A<0,x B>6,得出AB=|x B﹣x A|>6,判断出此种情况不符合题意,②当a>0时,抛物线的开口向上,判断出在x轴上关于抛物线的对称轴x=3对称且距离为4的两点的坐标为(1,0),(5,0),再由当x=1时,得出a﹣6a+1≥0,求出a≤,=﹣9a+1<0,即可得出答案.再根据y顶点【解答】解:(1)针对于抛物线y=ax2+bx+1,令x=0,则y=1,∴抛物线与y轴的交点坐标为(0,1);(2)∵抛物线y=ax2+bx+1(a≠0)的对称轴是直线x=3,∴﹣=3,∴b=﹣6a,∴抛物线的解析式为y=ax2﹣6ax+1,当x=3时,y=9a﹣18a+1=﹣9a+1,∴抛物线的顶点坐标为(3,﹣9a+1);(3)①当a<0时,抛物线开口向下,不妨设点A在点B的左侧,由(1)知,抛物线y=ax2+bx+1与y轴的交点为(0,1),∵抛物线y=ax2+bx+1的对称轴为直线x=3,∴x A<0,x B>6,∴AB=|x B﹣x A|>6,∵AB≤4,∴此种情况不符合题意,②当a>0时,抛物线的开口向上,由(2)知,抛物线的解析式为y=ax2﹣6ax+1,在x轴上关于抛物线的对称轴x=3对称且距离为4的两点的坐标为(1,0),(5,0),∵AB≤4,∴当x=1时,y=ax2﹣6ax+1=a﹣6a+1≥0,∴a≤,∵抛物线与x轴有两个交点,=﹣9a+1<0,∴y顶点∴a>,∴<a≤.【点评】此题主要考查了二次函数的图象和性质,顶点坐标的求法,掌握二次函数的性质是解本题的关键.4.(2022•朝阳区二模)在平面直角坐标系xOy中,已知抛物线y=x2+(a+2)x+2a.(1)求抛物线的对称轴(用含a的式子表示);(2)若点(﹣1,y1),(a,y2),(1,y3)在抛物线上,且y1<y2<y3,求a的取值范围.【分析】(1)由抛物线的对称轴公式即可得出答案;(2)由二次函数的性质与不等式求解即可.【解答】解:(1)∵抛物线y=x2+(a+2)x+2a,∴抛物线的对称轴为直线x=﹣=﹣﹣1,即直线x=﹣﹣1;(2)y=x2+(a+2)x+2a,整理得:y=(x+2)(x+a),当x=﹣1时,y1=(﹣1+2)(﹣1+a)=a﹣1,当x=a时,y2=(a+2)(a+a)=2a2+4a,当x=1时,y3=(1+2)(1+a)=3a+3,∵y1<y2,∴a﹣1<2a2+4a,解得:a>﹣或a<﹣1,∵y2<y3,∴2a2+4a<3a+3,解得:﹣<a<1,∵y1<y2<y3,∴﹣<a<﹣1或﹣<a<1,∴a的取值范围为:﹣<a<﹣1或﹣<a<1.【点评】本题考查了二次函数图象上点的坐标特征、二次函数的性质以及对称轴、不等式等知识,熟练掌握图象上点的坐标特征和二次函数的性质是解题的关键.5.(2022•丰台区二模)在平面直角坐标系xOy中,已知抛物线y=x2﹣2ax﹣3.(1)求该抛物线的对称轴(用含a的式子表示);(2)A(x1,y1),B(x2,y2)为该抛物线上的两点,若x1=1﹣2a,x2=a+1,且y1>y2,求a的取值范围.【分析】(1)根据抛物线对称轴公式:x=﹣,即可得到答案;(2)分三种情况讨论,得到关于a的不等式,解不等式即可.【解答】解:(1)∵抛物线y=x2﹣2ax﹣3,∴该抛物线的对称轴为直线x=﹣=a;(2)①当a<x2<x1时,y1>y2,则a+1<1﹣2a,即a<0;②当x1﹣a>a﹣x2时,y1>y2,则1﹣2a﹣a>a﹣(a+1),即a<;③当x1﹣a<a﹣x2时,y1>y2,则1﹣2a﹣a<a﹣(a+1),即a>,综上,a<0或a>.【点评】本题考查二次函数的性质,二次函数上的点的特征,熟练掌握对称轴公式以及分类讨论思想的运用是解本题的关键;确定a的范围是本题的难点.6.(2022•石景山区二模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=﹣x的图象平移得到,且经过点(1,1).(1)求这个一次函数的表达式;(2)当x>﹣1时,对于x的每一个值,函数y=mx﹣1(m≠0)的值小于一次函数y=kx+b的值,直接写出m的取值范围.【分析】(1)先根据直线平移时k的值不变得出k=﹣1,再将点(1,1)代入y=﹣x+b,求出b的值,即可得到一次函数的解析式;(2)求得函数y=﹣x+2在x=﹣1时的函数值为3,根据点(﹣1,3)结合图象即可求得.【解答】解:(1)∵一次函数y=kx+b的图象由函数y=﹣x的图象平移得到,∴k=﹣1,又∵一次函数y=﹣x+b的图象过点(1,1),∴﹣1+b=1.∴b=2,∴这个一次函数的表达式为y=﹣x+2;(2)当x=﹣1时,y=﹣x+2=3,把点(﹣1,3)代入y=mx﹣1,得m=﹣4,∵当x>﹣1时,对于x的每一个值,函数y=mx﹣1(m≠0)的值小于一次函数y=﹣x+2的值,∴﹣4≤m≤﹣1.【点评】本题考查了一次函数图象与几何变换,一次函数与系数的关系,数形结合是解题的关键.7.(2022•密云区二模)已知二次函数y=ax2+bx+2的图象经过点(1,2).(1)用含a的代数式表示b;(2)若该函数的图象与x轴的一个交点为(﹣1,0),求二次函数的解析式;(3)当a<0时该函数图象上的任意两点P(x1,y1)、Q(x2,y2),若满足x1=﹣2,y1>y2,求x2的取值范围.【分析】(1)将点(1,2)代入二次函数y=ax2+bx+2可得答案;(2)由(1)得,y=ax2﹣ax+2,再将(﹣1,0)代入y=ax2﹣ax+2,即可解决问题;(3)由(1)得,b=﹣a,则二次函数y=ax2+bx+2的对称轴为直线x=﹣,再分当x<或x>,分别可得答案.【解答】解:(1)将点(1,2)代入二次函数y=ax2+bx+2得,a+b+2=2,∴b=﹣a;(2)由(1)得,y=ax2﹣ax+2,再将(﹣1,0)代入y=ax2﹣ax+2得,a+a+2=0,∴a=﹣1,∴b=1,∴二次函数的解析式为y=﹣x2+x+2;(3)由(1)得,b=﹣a,∴二次函数y=ax2+bx+2的对称轴为直线x=﹣,∵a<0,∴当x<时,y随x的增大而增大,∵x1=﹣2,y1>y2,∴x2<﹣2,当x>时,y随x的增大而减小,∵P(﹣2,y1)关于直线x=的对称点坐标为(3,y1),∴x2>3,综上:x2<﹣2或x2>3.【点评】本题是二次函数综合题,主要考查了二次函数的性质,函数图象上点的坐标的特征,熟练掌握二次函数的增减性是解题的关键.8.(2022•顺义区二模)在平面直角坐标系xOy中,已知抛物线y=x2+mx+n.(1)当m=﹣3时,①求抛物线的对称轴;②若点A(1,y1),B(x2,y2)都在抛物线上,且y2<y1,求x2的取值范围;(2)已知点P(﹣1,1),将点P向右平移3个单位长度,得到点Q.当n=2时,若抛物线与线段PQ恰有一个公共点,结合函数图象,求m的取值范围.【分析】(1)①先将m=﹣3代入抛物线的解析式,并利用对称轴公式可得结论;②抛物线开口向上,根据离对称轴距离越远,函数值越大可列不等式解答;(2)根据平移的性质可得Q的坐标,把n=2代入抛物线的解析式,分三种情况:抛物线过点P,顶点在PQ上,过点Q结合图象可解答.【解答】解:(1)①当m=﹣3时,y=x2﹣3x+n,对称轴是:直线x=﹣=;②∵抛物线的对称轴是直线x=,且开口向上,则点与对称轴的距离越大函数值越大,∵点A(1,y1),B(x2,y2)都在抛物线上,且y2<y1,∴|x2﹣|<|﹣1|,∴1<x2<2;(2)∵点P(﹣1,1),将点P向右平移3个单位长度,得到点Q,∴Q(2,1),∵n=2,∴y=x2+mx+2,当抛物线经过点P(﹣1,1)时,1=1﹣m+2,∴m=2,当抛物线的顶点在PQ上时,x=﹣,y=﹣+2,则y=1,即﹣+2=1,解得:m1=2,m2=﹣2,当抛物线经过点Q时,4+2m+2=1,解得:m=﹣,此时与抛物线有2个交点,则当m<﹣时,符合题意,综上所述,结合函数图象,得m≥2或m<﹣或m=﹣2.【点评】本题属于二次函数综合题,考查了二次函数的性质,对称轴公式,函数的增减性等知识,解题的关键是学会用分类讨论的思想思考问题,正确作出图形是解决问题的关键.9.(2022•大兴区二模)关于x的二次函数y1=x2+mx的图象过点(﹣2,0).(1)求二次函数y1=x2+mx的表达式;(2)已知关于x的二次函数y2=﹣x2+2x,一次函数y3=kx+b(k≠0),在实数范围内,对于x的同一个值,这三个函数所对应的函数值y1≥y3≥y2均成立.①求b的值;②直接写出k的值.【分析】(1)将点(﹣2,0)代入y1=x2+mx,即可得出m的值;(2)根据图象y1与y2仅交于(0,0),故图象y3=kx+b过(0,0),从而得出b的值;②根据y1与y3只有一个交点得x2+2x=kx,整理得,x2+(2﹣k)x=0,根据Δ=0,可得答案.【解答】解:(1)将点(﹣2,0)代入y1=x2+mx得,0=(﹣2)2﹣2m,解得m=2,∴二次函数的表达式为y1=x2+2x;(2)①∵y1=x2+2x和y2=﹣x2+2x,令y1=y2,∴x2+2x=﹣x2+2x,∴x=0,∴图象y1与y2仅交于(0,0),∵对于x的同一个值,这三个函数所对应的函数值y1≥y3≥y2均成立,∴y1﹣y3≥0,y3﹣y2≥0,∴x=0时,y1=y2=y3=0,∴y3=kx+b过(0,0),∴b=0,②由①知,y3=kx,联立方程组,∴x2+2x=kx,整理得,x2+(2﹣k)x=0,∵两图象只有一个交点,∴Δ=(2﹣k)2=0,∴k=2.【点评】本题是二次函数综合题,主要考查了函数图象上点的坐标的特征,函数与方程的关系,利用数形结合思想确定直线过原点是解题的关键.10.(2022•昌平区二模)在平面直角坐标系xOy中,已知抛物线y=ax2+bx﹣1(a>0).(1)若抛物线过点(4,﹣1).①求抛物线的对称轴;②当﹣1<x<0时,图象在x轴的下方,当5<x<6时,图象在x轴的上方,在平面直角坐标系中画出符合条件的图象,求出这个抛物线的表达式;(2)若(﹣4,y1),(﹣2,y2),(1,y3)为抛物线上的三点且y3>y1>y2,设抛物线的对称轴为直线x=t,直接写出t的取值范围.【分析】(1)①把(4,﹣1)代入解析式,确定b=﹣4a,再把b=﹣4a代入对称轴公式计算即可;②根据对称轴为直线x=2,且2﹣(﹣1)=5﹣2,判定抛物线经过(﹣1,0)和(5,0),代入解析式确定a,b的值即可;(2)根据x=﹣=t,得到b=﹣2at,从而解析式变形为y=ax2﹣2atx﹣1(a>0),把(﹣4,y1),(﹣2,y2),(1,y3)分别代入解析式,根据y3>y1>y2,列出不等式组,解不等式组即可.【解答】解:(1)①若抛物线过点(4,﹣1),∴﹣1=16a+4b﹣1,∴b=﹣4a,∴对称轴为x=﹣=﹣=2;②∵当﹣1<x<0时,图象在x轴的下方,当5<x<6时,图象在x轴的上方,抛物线的对称轴为直线x=2,且2﹣(﹣1)=5﹣2,∴抛物线必过点(﹣1,0)和(5,0).∴把(5,0),(﹣1,0)代入y=ax2+bx﹣1(a>0)得:,解得,抛物线的表达式为,如图所示:(2)∵x=﹣=t,∴b=﹣2at,∴解析式变形为y=ax2﹣2atx﹣1(a>0),把(﹣4,y1),(﹣2,y2),(1,y3)的坐标分别代入解析式,得:y3=a﹣2at﹣1,y1=16a+8at﹣1,y2=4a+4at﹣1,∵y3>y1>y2,∴,解得:,∴t的取值范围是﹣3<t<﹣.【点评】本题考查了待定系数法,抛物线的对称性,二次函数与不等式的综合,熟练掌握待定系数法,对称性,与不等式的关系是解题的关键.11.(2022•门头沟区二模)在平面直角坐标系xOy中,已知抛物线y=mx2﹣2mx+m﹣4(m ≠0).(1)求此抛物线的对称轴;(2)当m=1时,求抛物线的表达式;(3)如果将(2)中的抛物线在x轴下方的部分沿x轴向上翻折,得到的图象与剩余的图象组成新图形M.①直接写直线y=x+1与图形M公共点的个数;②当直线y=k(x+2)﹣1(k≠0)与图形M有两个公共点时,直接写出k的取值范围.【分析】(1)利用对称轴公式求解即可;(2)把m=1代入即可;(3)翻折图象,出画图形,直接①②写出结论即可.【解答】解:(1)对称轴为直线x==;(2)m=1时,抛物线的解析式为y=x2﹣2x﹣3;(3)画出y=x2﹣2x﹣3的图象,把x轴下方的部分沿x轴向上翻折,得到图象M,如图,①y=x+1与图形M公共点的个数是3个;②k>2,或.当直线y=k(x+2)﹣1(k≠0)与y=x2﹣2x﹣3的图象相切时,k(x+2)﹣1=x2﹣2x ﹣3,∴k1=2﹣6,k2=﹣2﹣6,∴k>2或或k<﹣2﹣6.【点评】本题考查的是二次函数的综合题,画出正确的图形,利用数形结合是解题的关键.12.(2022•房山区二模)在平面直角坐标系xOy中,点A(2,﹣1)在二次函数y=x2﹣(2m+1)x+m的图象上.(1)直接写出这个二次函数的解析式;(2)当n≤x≤1时,函数值y的取值范围是﹣1≤y≤4﹣n,求n的值;(3)将此二次函数图象平移,使平移后的图象经过原点O.设平移后的图象对应的函数表达式为y=a(x﹣h)2+k,当x<2时,y随x的增大而减小,求k的取值范围.【分析】(1)将点A(2,﹣1)代入二次函数解析式中即可求解;(2)找出抛物线的对称轴为x=,根据二次函数的性质结合“当n≤x≤1时,函数值y的取值范围是﹣1≤y≤4﹣n”,即可得出关于n的一元二次方程,解之即可得出n的值;(3)根据平移的性质可得出a=1,由二次函数的性质可得出h≥2,再将(0,0)代入二次函数解析式中可得出k=﹣h2,进而即可得出k的取值范围.【解答】解:(1)∵点A(2,﹣1)在二次函数y=x2﹣(2m+1)x+m的图象上,∴﹣1=4﹣2(2m+1)+m,解得m=1,∴二次函数的解析式为y=x2﹣3x+1;(2)∵y=x2﹣3x+1,∴抛物线的对称轴为直线x=,∴当x<时,y随x的增大而减小,当x=1时,y=x2﹣3x+1=﹣1,当x=n时,y=x2﹣3x+1=n2﹣3n+1,∵当n≤x≤1时,函数值y的取值范围是﹣1≤y≤4﹣n,∴n2﹣3n+1=4﹣n,解得n1=﹣1,n2=3,∵n≤x≤1,∴n的值为﹣1;(3)根据平移的性质可知,a=1,∵当x<2时,y随x的增大而减小,∴h≥2.∵平移后的图象经过原点O,∴0=(0﹣h)2+k,即k=﹣h2,∴k≤﹣4.【点评】本题考查了二次函数与几何变换、二次函数图象上点的坐标特征以及二次函数的性质,解题的关键是(1)根据待定系数法找出m的值;(2)根据二次函数的单调性找出关于n的一元二次方程;(3)利用二次函数图象上点的坐标特征找出k=﹣h2.13.(2022•平谷区二模)在平面直角坐标系xOy中,点(﹣1,y1)、(1,y2)、(3,y3)是抛物线y=x2+bx+1上三个点.(1)直接写出抛物线与y轴的交点坐标;(2)当y1=y3时,求b的值;(3)当y3>y1>1>y2时,求b的取值范围.【分析】(1)根据y轴上点的坐标特征计算即可;(2)根据抛物线的对称轴是直线x=﹣计算;(3)根据抛物线的对称性、二次函数图象上点的坐标特征列出不等式,解不等式得到答案.【解答】解:(1)对于y=x2+bx+1,当x=0时,y=1,则抛物线与y轴的交点坐标为(0,1);(2)当y1=y3时,抛物线的对称轴为x=1,∴﹣=1,解得:b=﹣2;(3)当y3>y1时,对称轴在x=1的左侧,即﹣<1,解得:b>﹣2,当1>y2时,1>1+b+1,解得:b<﹣1,∴当y3>y1>1>y2时,﹣2<b<﹣1.【点评】本题考查的是二次函数的性质、二次函数图象上点的坐标特征,正确理解抛物线的对称性以及二次函数的性质是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【2020 东城二模】
2020年北京中考 二模26代数综合
【2020 西城二模】
2020年北京中考 二模26代数综合
【2020 海淀二模】
2020年北京中考 二模26代数综合
【2020 朝阳二模】
2020年北京中考 二模26代数综合
26.在平面直角坐标系 xOy 中,抛物线 y = ax2 + a2x + c 与 y 轴交于点(0,2). (1)求 c 的值; (2)当 a=2 时,求抛物线顶点的坐标; (3)已知点 A( 2,0),B(1,0),若抛物线 y = ax2 + a2x + c 与线段 AB 有两个公共点, 结合函数图象,求 a 的取值范围.
1234x
y 4 3 2 1
–4 –3 –2 –1 O –1 –2 –3 –4
1234x
【2020 平谷二模】
2020年北京中考 二模26代数综合
26.在平面直角坐标系 xOy 中,抛物线 y=mx2-2mx-1(m>0)与 x 轴的交点为 A,B,与 y 轴交点 C.
(1)求抛物线的对称轴和点 C 坐标; (2)横、纵坐标都是整数的点叫做整点.抛物线在点 A,B 之间的部分与线段 AB 所围成 的区域为图形 W(不含边界).
【2020 燕山二模】
2020年北京中考 二模26代数综合
26.在平面直角坐标系 中,抛物线
与 x 轴交于点 A,B(A 在 B 的左侧).
(1) 求点 A,B 的坐标及抛物线的对称轴;
(2) 已知点 P(2,2),Q(2+2a,5a),若抛物线与线段 PQ 有公共点,请结合函数图象,求 a 的取值范围.
【2020 石景山二模】
2020年北京中考 二模26代数综合
【2020 门头沟二模】
2020年北京中考 二模26代数综合
26.在平面直角坐标系 xOy 中,抛物线 y x2 2ax a2 的顶点为 A,直线 y x 3与抛物线交于
点 B,C(点 B 在点 C 的左侧).
(1)求点 A 坐标;
1 2 3 4 5x
【2020 房山二模】
2020年北京中考 二模26代数综合
26.在平面直角坐标系中,已知抛物线 y = ax2 + 2ax + c 与 x 轴交于点 A , B ,且 AB =4, 抛物线与 y 轴交于点 C ,将点 C 向上移动 1 个单位得到点 D .
(1)求抛物线对称轴; (2)求点 D 纵坐标(用含有 a 的代数式表示);
(3)已知点 P(−4,4) ,若抛物线与线段 PD 只有一个公共点,求 a 的取值范围.
【2020 顺义二模】
2020年北京中考 二模26代数综合
26.在平面直角坐标系 xOy 中,已知抛物线 y = mx2 − 3(m −1) x + 2m −1(m 0) .
(1)当 m=3 时,求抛物线的顶点坐标; (2)已知点 A(1,2).试说明抛物线总经过点 A; (3)已知点 B(0,2),将点 B 向右平移 3 个单位长度,得到点 C,若抛物线与线段 BC 只有一个公共点,求 m 的取值范围.
①当 m=1 时,求图形 W 内的整点个数; ②若图形 W 内有 2 个整数点,求 m 的取值范围.
y 5 4 3 2 1
–5 –4 –3 –2 –1 O –1 –2 –3 –4 –5
1 2 3 4 5x
y 5 4 3 2 1
–5 –4 –3 –2 –1 O –1 –2 –3 –4 –5
1 2 3 4 5x
(2)横、纵坐标都是整数的点叫做整点.记线段 BC 及抛物线在 B,C 两点之间的部分围成的
封闭区域(不含边界)记为 W.
①当 a 0 时,结合函数图象,直接写出区域 W 内的整点个数;
②如果区域 W 内有 2 个整点,请求出 a 的取值范围.
y
6
5
4
3
2
1
–5 –4 –3 –2 –1 O
–1Байду номын сангаас
–2
【2020 丰台二模】
2020年北京中考 二模26代数综合
26. 在平面直角坐标系xOy中, 抛物线y = ax2 - 4ax + 3a 与y轴交于点A. (1)求点A的 坐标(用含a的式子表示); (2)求抛物线与x轴的交点坐标; (3)已知点P(a,O),Q(O,a-2)如 , 果抛物线与线段PQ恰有一个公共点结 , 合函数 图象求 , a的取值范围.
(1)求 k 的值和点 C 的坐标; (2)求抛物线 C1 的表达式及顶点 D 的坐标; (3)已知点 E 是点 D 关于原点的对称点,若抛物线 C2:y=ax2-2( a 0 )与线段 AE 恰有 一个公共点,结合函数的图象,求 a 的取值范围.
y 4 3 2 1
–4 –3 –2 –1 O –1 –2 –3 –4
【2020 密云二模】
2020年北京中考 二模26代数综合
26.在平面直角坐标系 xOy 中,抛物线 C1:y=x2+bx+c 与 x 轴交于 A、B 两点(点 A 在点 B 的左侧),与 y 轴交于点 C.点 B 的坐标为(3,0),将直线 y=kx 沿 y 轴向上平移 3 个单位 长度后,恰好经过 B、C 两点.
相关文档
最新文档