一氧化碳与二氧化碳转化催化剂
co低温变换催化剂

co低温变换催化剂
CO低温变换催化剂是一种用于将一氧化碳(CO)转化为二氧化碳(CO2)的化学催化剂。
这种催化剂通常在低温条件下工作,通常在150-300摄氏度范围内。
CO低温变换催化剂被广泛应用于工业领域,特别是在石油化工、化学制品生产和环境保护等领域。
CO低温变换催化剂通常是由过渡金属氧化物或其复合物组成的。
常见的催化剂材料包括铜、镍、钴等。
这些催化剂材料具有高度的活性和选择性,可以有效地将CO氧化为CO2。
CO低温变换催化剂的工作原理是通过吸附、解离和重新组合分子中的化学键来实现CO到CO2的转化。
首先,CO分子被吸附到催化剂表面上的活性位点上,然后发生解离,生成活性的碳和氧原子。
最后,碳和氧原子重新组合,形成CO2分子。
CO低温变换催化剂的性能受多种因素影响,包括催化剂的组成、结构、表面积和反应条件等。
通过调控这些因素,可以优化催化剂的活性和选择性,提高CO低温变换的效率。
总结起来,CO低温变换催化剂是一种用于将CO转化为CO2的催化剂,常用于工业领域。
它的工作原理是通过吸附、解离和重新组合化
学键来实现CO到CO2的转化。
催化剂的性能受多种因素的影响,可以通过优化催化剂的组成和结构等来提高催化效率。
co催化氧化催化剂

CO催化氧化催化剂1. 简介CO催化氧化催化剂是一种用于将一氧化碳(CO)转化为二氧化碳(CO2)的催化剂。
CO是一种无色、无味的气体,由于其强大的亲和力和稳定性,容易积聚并对人体造成危害。
因此,开发出高效的CO催化氧化催化剂对于环境保护和人类健康至关重要。
2. CO的危害CO是一种有毒气体,其对人体健康有严重影响。
当人体吸入一定浓度的CO时,它会与血红蛋白结合形成一种稳定的化合物——碳氧血红蛋白,这会导致血液无法有效地携带氧气,引发一系列严重的健康问题,包括中毒、窒息甚至死亡。
此外,CO还是一种温室气体,它可以吸收地球表面的红外辐射,导致地球的温度升高,加剧全球变暖的问题。
因此,减少CO排放对于人类健康和环境保护具有重要意义。
3. CO催化氧化催化剂的原理CO催化氧化催化剂通过催化氧化反应将CO转化为CO2。
这种催化反应需要在一定的温度和压力条件下进行。
催化剂是一种能够加速化学反应速率的物质。
CO催化氧化催化剂通常采用过渡金属,如铜(Cu)、钯(Pd)和铂(Pt)等制备而成。
这些过渡金属具有良好的催化活性,能够促进CO的氧化反应。
CO催化氧化催化剂的工作原理可以简单描述为以下几个步骤:1.吸附:CO分子在催化剂表面吸附,形成吸附态的CO分子。
2.活化:吸附态的CO分子与催化剂表面的氧(O)原子发生反应,形成CO2分子。
3.解吸:CO2分子从催化剂表面解吸,释放出来。
催化剂的活性和选择性取决于其表面结构和组成。
通过调控催化剂的结构和组成,可以提高CO催化氧化催化剂的催化活性和选择性。
4. CO催化氧化催化剂的应用CO催化氧化催化剂在多个领域有广泛的应用。
4.1 汽车尾气净化汽车尾气中含有大量的CO,尤其是燃烧不完全的发动机排放的尾气。
使用CO催化氧化催化剂可以将CO转化为CO2,从而减少CO的排放量,降低对环境和人体健康的危害。
4.2 工业废气处理工业生产中产生的废气中也常常含有CO。
将CO催化氧化催化剂应用于工业废气处理过程中,可以有效地将CO转化为CO2,减少对环境的污染。
电催化还原二氧化碳制一氧化碳催化剂研究进展

化工进展Chemical Industry and Engineering Progress2022年第41卷第4期电催化还原二氧化碳制一氧化碳催化剂研究进展张少阳1,商阳阳1,赵瑞花1,2,赵丹丹1,郭天宇3,4,杜建平1,4,李晋平1,4(1太原理工大学化学化工学院,山西太原030024;2山西昆明烟草有限责任公司,山西太原030024;3太原理工大学环境科学与工程学院,山西晋中030600;4气体能源高效清洁利用山西省重点实验室,山西太原030024)摘要:电催化还原CO 2作为缓解能源危机和全球变暖的有效途径已成为催化领域的研究热点。
然而,不同反应途径的氧化还原电位较为接近,使产物的选择性成为电催化还原CO 2所需解决的主要问题。
迄今为止,在水性电解质中可实现CO 2选择性地转化为一氧化碳(CO )和甲酸(HCOOH )。
本文简述了电催化还原CO 2制CO 的机理,包括CO 2吸附过程、二电子转移过程和CO 脱附过程。
从贵金属的晶面设计、形貌调控和表面功能化对反应活性和产物选择性的影响,铁卟啉、钴酞菁和镍三嗪在还原CO 2为CO 反应中的电子转移途径,非金属碳基材料中杂原子和碳基质间的耦合效应等方面,重点介绍了近年来贵金属催化剂、过渡金属络合物催化剂和非金属碳基材料催化剂的研究进展,总结了各类催化剂的优缺点。
指出在三类电催化还原CO 2制CO 的催化剂中,非金属碳材料具有较高的CO 法拉第效率,尤其是非金属碳材料成本较低、制备简单、结构易调控,在电催化还原中具有潜在的应用优势,是有望实现商业化应用的新型催化剂的候选材料之一。
关键词:二氧化碳;电化学;还原;一氧化碳;催化剂中图分类号:O643.36文献标志码:A文章编号:1000-6613(2022)04-1848-10Research progress on catalysts for electrocatalytic reduction of carbondioxide to carbon monoxideZHANG Shaoyang 1,SHANG Yangyang 1,ZHAO Ruihua 1,2,ZHAO Dandan 1,GUO Tianyu 3,4,DU Jianping 1,4,LI Jinping 1,4(1College of Chemistry and Chemical Engineering,Taiyuan University of Technology,Taiyuan 030024,Shanxi,China;2Shanxi Kunming Tobacco Limited Liability Company,Taiyuan 030024,Shanxi,China;3College of Environmental Science and Engineering,Taiyuan University of Technology,Jinzhong 030600,Shanxi,China;4Shanxi Key Laboratory of GasEnergy Efficient and Clean Utilization,Taiyuan 030024,Shanxi,China)Abstract:Electrocatalytic reduction of CO 2to alleviate the energy crisis and global warming has become a research hotspot in catalysis.However,due to the close oxidation-reduction potentials of different reaction pathways,the product selectivity of electrocatalytic reduction of CO 2is not high and should be improved.So far,carbon monoxide (CO)and formic acid (HCOOH)can be obtained with high-selectivity in aqueous electrolytes.The mechanism of electrocatalytic reduction of CO 2to CO is described in a three-step process of CO 2adsorption,two-electron transfer and CO desorption.The recent research progress of noble metal catalysts,transition metal complex catalysts and non-metallic carbon-based materials is综述与专论DOI :10.16085/j.issn.1000-6613.2021-0804收稿日期:2021-04-16;修改稿日期:2021-06-27。
烧结烟气co催化氧化技术

烧结烟气co催化氧化技术烧结烟气CO催化氧化技术是一种常用的减排技术,用于控制烧结过程中产生的一氧化碳(CO)排放。
本文将一步一步回答这个主题,从介绍该技术的原理、催化剂选择、反应条件优化以及应用案例等方面展开讨论。
第一部分:原理介绍烧结过程中产生的一氧化碳是主要的有害气体之一,其排放超标不仅对环境造成危害,也对人体健康产生负面影响。
烧结烟气CO催化氧化技术通过用催化剂催化氧化一氧化碳,将其转化为无害的二氧化碳(CO2),从而达到减少有害气体排放的目的。
第二部分:催化剂选择选择合适的催化剂是烧结烟气CO催化氧化技术的关键。
常用的催化剂包括贵金属(如铂、钯等)催化剂和过渡金属催化剂(如铁、铬等)。
贵金属催化剂的催化活性高,但成本较高;过渡金属催化剂成本相对较低,但催化活性稍低。
在选择催化剂时,需综合考虑催化活性、成本以及催化剂的稳定性等因素。
第三部分:反应条件优化为了提高烧结烟气CO催化氧化技术的效果,反应条件的优化非常重要。
首先,温度是一个重要的因素。
适宜的反应温度能够提高催化剂的活性,一般在200-400摄氏度之间。
其次,氧气浓度也是关键因素之一。
较高的氧气浓度有助于促进催化反应的进行。
此外,烧结烟气的流量和催化剂的载体也会对反应产生影响,需要根据具体情况进行调整。
第四部分:应用案例烧结烟气CO催化氧化技术已在众多烧结工业领域得到应用。
例如,某钢铁公司在其烧结机中采用了该技术,成功降低了烧结烟气中CO的排放浓度。
在此应用中,他们选择了以铁为基础的催化剂,并在适宜的温度和氧气浓度条件下进行催化反应。
通过实时监测和调控,他们实现了烧结烟气中CO排放量的有效控制,并达到了相关环保标准。
结论:烧结烟气CO催化氧化技术可以有效控制烧结过程中产生的有害气体排放。
在应用该技术时,我们需要选择合适的催化剂,并根据具体情况优化反应条件。
通过合理的技术调整和操作,我们可以实现烧结烟气CO排放的减少,以保护环境和人类健康。
各种催化剂及其催化作用

各种催化剂及其催化作用催化剂是在化学反应中加速反应速率但本身并不参与反应的物质。
通过提供一个能量有效的反应途径,催化剂可以降低活化能,从而促进反应的进行。
催化剂在各个行业都有广泛的应用,包括化学、能源、环境和医药等领域。
下面是一些常见催化剂及其催化作用的例子。
1.酶催化剂:酶是生物催化剂的代表。
酶在生物体内促进化学反应的进行,如消化食物、合成物质等。
酶催化剂具有高效、高选择性、低能量消耗等优点。
2.转金属催化剂:金属催化剂广泛应用于有机合成反应中。
例如,钯催化剂常用于氢化反应、交叉缩合反应等。
金属催化剂可以提供有效的活化位点,加速反应的进行。
3.齐特尔催化剂:齐特尔催化剂常用于聚合反应中。
例如,钛齐特尔催化剂被广泛用于聚合丙烯、乙烯等。
4.五氧化二钒催化剂:五氧化二钒催化剂可用于氮氧化物的催化还原。
五氧化二钒可将氮氧化物(如NOx)还原为氮气和水。
5.铂催化剂:铂催化剂常用于汽车尾气处理中。
它可以将一氧化碳(CO)和氮氧化物(NO)转化为无害的二氧化碳和氮气。
6.锂催化剂:锂催化剂可用于有机合成中的各种反应,如还原、氧化等。
锂催化剂在有机合成中具有高效、高选择性和环境友好的特点。
7.过渡金属催化剂:过渡金属催化剂广泛应用于有机合成和不对称合成中。
它们可以催化诸多反应,如氧化反应、还原反应、偶联反应等。
8.碱催化剂:碱催化剂可用于酯化、烷基化等反应。
对于许多有机反应,碱催化可大大提高反应速率。
9.氧化剂催化剂:氧化剂催化剂可用于氧化反应,如醇的氧化、烃的氧化等。
例如,二氧化锰常用作氧化剂。
10.鲍耳催化剂:鲍耳催化剂可用于烯烃的水化反应。
鲍耳催化剂可以将烯烃转化为醇。
除了以上提到的催化剂,还有很多其他种类的催化剂被广泛应用于各个领域。
催化剂的运用不仅可以提高化学反应的速率和产率,还可以使反应更加环保和节能。
催化剂的发展和应用在加速科学和工业的进步中起到了至关重要的作用。
二氧化碳去杂质一氧化碳方法

二氧化碳去杂质一氧化碳方法一氧化碳是温室气体之一,为了缓解全球变暖,减少碳排放量,我们需要开发出有效的去杂质一氧化碳的方法。
本文将介绍了二氧化碳去杂质一氧化碳的方法,以及它的优点和低碳发展的意义。
1. 二氧化碳去杂质一氧化碳的方法二氧化碳去杂质一氧化碳的方法是利用催化剂来将二氧化碳分解成氧和一氧化碳的反应,可以有效的减少一氧化碳的排放。
目前,二氧化碳去杂质一氧化碳的方法有四种,分别为催化燃烧法、光催化法、高温分解法和电催化法。
其中,催化燃烧法是将一氧化碳和氧气经过特殊催化剂的催化作用,在较低的温度下分解成二氧化碳和水,从而达到减少排放的目的。
光催化法通过向二氧化碳中加入特殊光吸积剂,利用太阳能或LED紫外光照射,使一氧化碳被催化剂吸收,实现减少排放的效果。
高温分解法是将一氧化碳和氧气,通过高温分解的方法,使二氧化碳被催化剂分解,从而达到减少排放的目的。
最后,电催化法是利用特殊催化剂和电解质,将二氧化碳分解为氧和一氧化碳。
2. 二氧化碳去杂质一氧化碳的优点(1)它可以在低温下实现,节省了能量。
它不需要高温、高压或污染物来实现二氧化碳分解。
(2)它是低成本的。
二氧化碳去杂质一氧化碳的方法可以大大降低成本,更有效的降低碳排放量。
(3)它是环保友好的。
二氧化碳去杂质一氧化碳的方法可以有效的减少碳排放,从而改善环境质量。
3. 低碳发展的意义二氧化碳去杂质一氧化碳的方法可以帮助我们更好的减少一氧化碳的排放,它可以有效的保护环境,减少对大气的污染,缓解全球变暖,减少温室气体的排放,保护生态环境。
另外,由于二氧化碳去杂质一氧化碳方法的出现,可以大大提高能源利用效率,实现资源的有效利用,实现低碳发展。
最后,低碳发展不仅有利于保护环境,而且也有助于经济发展和提高人民福祉。
综上所述,二氧化碳去杂质一氧化碳的方法可以有效的减少一氧化碳的排放,进而保护环境,实现低碳发展,促进经济发展和提高人民福祉。
二氧化碳和碳反应原理是

二氧化碳和碳反应原理是
二氧化碳和碳反应的原理是通过高温和催化剂的作用,使二氧化碳分解成碳和氧气。
该反应可由以下反应方程式表示:
CO2 -> CO + 1/2O2
在该反应中,一份二氧化碳分解成一个份一氧化碳和半份氧气。
这个过程需要提供足够的能量,通常通过高温条件来实现。
催化剂的存在可以降低反应的活化能,促进反应的进行。
该反应具有一定的实际应用价值,其中一个重要的应用是二氧化碳的还原,即将二氧化碳转化为有机物。
这对于减少温室气体排放、实现碳循环利用非常重要。
此外,该反应还可用于制备其他碳基化合物,如一氧化碳。
总之,二氧化碳和碳反应的原理是通过高温和催化剂的作用,将二氧化碳分解为一氧化碳和氧气。
这一反应对于减少温室气体排放和实现碳循环利用具有重要意义。
二氧化碳电催化还原

一种选择性、高效的电催化剂用于还原二氧化碳摘要:使用一种选择性且高效的方式将二氧化碳转化为有用的化学品,对于可再生和可持续能源研究来说仍是一项重大挑战。
银是一种很有前途的电催化剂,因为它在常温下就能有选择性的将二氧化碳转化为一氧化碳。
然而,传统的多晶银电催化剂则需要较大的过电位。
这里我们开发了一种高选择性的纳米多孔银电催化剂,它能够使用电化学方法将二氧化碳转化为一氧化碳,其转化效率高达92%,在中等过电位<0.5v条件下,其活性为多晶银催化剂的3000倍。
与多晶银催化剂相比,纳米多孔银电催化剂具有非常高的活性,与其有非常大的电化学反应表面积(约大150倍)和本身内在高活性(约高20倍)相关。
纳米多孔银的内在高活性可能是因为弯曲内表面上的中间体CO2-更稳定,其活性位点需要的电压比预期更小,以克服活化能垒所需的驱动反应。
减少由于化石燃料的燃烧产生的温室气体二氧化碳对人类社会至关重要的1-3。
理想情况下,人们倾向于将发电厂,炼油厂和石化厂产生的二氧化碳通过可再生能源利用转化为燃料或其他化学品4-6。
这种理想的解决方案有着重大的技术挑战,因为二氧化碳是一个完全氧化的热力学稳定的分子7-8。
有必要寻找一种较高效率和选择性的合适的催化剂以降低成本9。
在过去的二十年里,电催化还原二氧化碳的方法备受关注,因为所需的电力可从低成本的可再生能源如风能、太阳能和波浪中获取10-14。
研究人员已经发现了能够在水电解质中利用电化学方法减少CO2的几种潜在的催化剂15-20。
例如, Hori等7已经表明,在一个电压约为-0.7V(versus RHE)条件下,多晶金电催化剂可以提供的电流密度为5.0mA/cm-2,一氧化碳的效率为87%。
然而,而多晶铜的选择性差,需要的电压接近-1.0V(versus RHE)才能到同样的电流密度(即二氧化碳的还原反应速率)。
由于金稀少并且昂贵,所以其不适用于大规模应用。
通过催化剂制造和产品分离来减少成本,寻找具有高选择性含量丰富的催化剂,并用于二氧化碳的减排过程显得尤为重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一氧化碳和二氧化碳转化催化剂一、一氧化碳转化催化剂随着石油资源的不断消耗、能源问题的日益加剧,研究和开发新的能源体系迫在眉睫。
由天然气或煤气化生产合成气(CO+H 2 ),合成气再催化转化合成低碳醇等清洁燃料成为国内外能源化工领域的研究热点。
由合成气选择催化合成低碳混合醇是当前C1化学领域十分活跃的研究课题之一。
CO加氢合成低碳醇反应过程通常伴随着甲醇、烃类和CO 2等副产物的生成,高选择性和高活性并具有优良稳定性的催化剂的设计与开发是低碳醇合成技术的关键。
目前研究相对比较集中的催化剂体系主要有改性的甲醇合成催化剂、Cu-Co 基以及MoS 2 基催化剂体系等。
催化剂研究的重点在于探索活性中心的最佳匹配、构效关系及合成低碳醇的选择性规律等方面,旨在提高低碳醇合成过程的单程转化率、C 2+ OH 选择性和醇产率等。
1改性甲醇合成催化剂对甲醇合成催化剂Zn-Cr、Cu-Zn 通过添加碱金属助剂改性可获得低碳混合醇。
其中改性的Zn-Cr 催化剂操作条件苛刻,要求在高温(350~450 ℃)、高压(12~16 MPa)下进行,具有最大异丁醇选择性。
而改进的Cu-Zn 则为低温低压下碱金属促进的甲醇合成催化剂,对合成气转化具有较高的转化率。
关于改性的Zn-Cr 催化剂,主要是K 或Cs 促进的Zn/Cr 尖晶石结构催化剂,碱金属K、Cs 的添加,尤其是Cs 助剂可显著提高目标产物的生成速率。
催化剂的研究通常发生在气固相间,通过对超临界流体中Zn-Cr-K 催化剂上合成气制低碳醇的研究,发现超临界相的存在有利于提高CO 转化率,促进碳链增长,提高C 2+OH含量,且催化剂对生成醇的选择性随反应温度的变化缓慢。
碱金属的添加也可促使Cu-Zn甲醇合成催化剂上生成低碳醇,其中Cs 是最好的助剂,Rb 和K 次之,但K 价格相对便宜,通常被用作Cu-Zn 催化剂的助剂。
另外,Al 2O 3或Cr 2 O3被用作结构助剂以增加催化剂比表面积和防止烧结。
对含Cr 的Cu-Zn催化剂研究表明,Cr 含量显著影响催化剂活性和选择性,当Cr 含量较低时,催化剂上可获得最优的低碳醇产率,作为结构助剂,使催化剂具有较大的比表面积、抑制Cu 颗粒的烧结,使催化剂具有优良的稳定性。
研究发现,助剂Cs 的质量分数对Cu/ZnO/Al 2 O 3 催化剂上合成低碳醇的性能影响显著。
2、Cu-Co 体系催化剂Cu-Co 体系催化剂又称改性的F-T 合成催化剂。
催化剂的主要物相为Cu-Co尖晶石相,在合成气反应介质中,Cu-Co 尖晶石相被消耗,产生高度分开的Cu-Co簇,是醇形成的活性位。
通过对共沉淀法和灼烧法制备的Cu-Co 尖晶石化合物的对比研究发现,共沉淀法制得的催化剂具有较高的催化活性与选择性。
超声辅助的反相共沉淀法制备的Cu-Co 基催化剂具有较小的颗粒尺寸、较大的比表面积、活性组分高度分散等,可有效提高合成低碳醇的催化性能。
随着对制备工艺研究的深入,等离子体和高能球磨等非常规技术也被应用于Cu-Co 基催化剂的制备。
等离子体技术作为一种有效的分子活化和表面改性手段,可产生大量非平衡高能活化物种,使活性组分高度分散且在表面富集,并产生晶格缺陷等效应,提高反应的转化率和目标产物的选择性。
3、MoS 2 基催化剂MoS 2 基催化剂因具有独特的耐硫性,较高的活性和醇选择性以及寿命长等优点,被认为是最具有应用前景的合成低碳醇催化体系之一。
传统硫化钼催化剂对CO 加氢合成低碳醇的反应活性和C 2+ OH选择性均较低,过渡金属尤其是Fe、Co、Ni 的加入,因具有较强的加氢能力和促进碳链增长的能力,可提高催化剂活性和C 2+ OH 选择性。
以Co 作为第二组分添加少量K 助剂的担载型Mo-Co-K 催化剂的研究较多,其中还原态Co 是碳链形成必不可少的组分,且随Co 含量的增大C 2+ OH 选择性增加。
贵金属Rh 作为MoS 2 基催化剂的助剂时,可催化反应物分子CO 的解离、插入和加氢等。
MoS 2 基催化剂上低碳醇形成的活性和选择性还受载体的显著影响。
通过研究发现活性炭为载体时,催化剂具有较高的活性.CO 选择催化加氢合成低碳混合醇是煤炭资源洁净利用的重要途径之一,低碳醇作为燃料和汽油添加剂对国家能源战略具有十分重要的意义。
4、CO甲烷化催化剂为开发性能较优的合成气甲烷化催化剂,采用固相混合法制备了20%Ni/Al 2 O 3 催化剂,通过H 2 程序升温还原(H 2 -TPR)和X 射线衍射(XRD)表征发现,简单固相混合法制备的催化剂具有较好的分散性和还原性能。
在CO 甲烷化反应体系中随着温度、压力和进料比的增大,催化剂稳定性增强;空速增大,催化剂稳定性降低。
催化剂由于表面沉积无定形胶质碳(Cβ)而失活,升高温度和压力会使催化剂表面活性碳物种(Cα)向更稳定的蠕虫状碳(C v)和石墨型碳(C c )沉积,从而催化剂稳定性增强。
5、CO气相催化合成草酸二乙酯催化剂利用颗粒强度实验机,对CO 气相催化氧化偶联制草酸二乙酯催化剂的载体和催化剂强度进行测试。
结果表明,随焙烧温度的升高,载体和催化剂的破碎强度明显提高,不同类型的Al 2 O 3 ,其强度差别较大。
由不同方式得到的α-Al 2 O 3 的强度也不相同。
断裂强度随焙烧温度的升高变化不大。
焙烧温度越高,催化剂强度比载体强度增加得越多。
催化剂强度随助催化剂含量增加而增大,但不随活性组分负载量发生明显变化。
经1000 h 实验,催化剂的强度没有变化, 符合工业生产的强度要求。
6、CO 歧化制备纳米碳纤维催化剂Fe催化剂上CO歧化制备纳米碳纤维(CNFs)过程中起到一定的催化作用。
随着还原时间和温度的增加,催化剂的相态不同,粒径也从20~30 nm增加到500~2 000 nm。
催化剂的相态和粒径对CNFs的生长速率、产率和形貌结构有显著影响。
还原处理后催化剂初始粒径较大时,催化剂在生长过程中发生多次分裂过程,生成的CNFs直径不均匀;催化剂初始粒径较小时,催化剂上大量积碳而快速失活。
催化剂中同时存在Fe 3 O 4 和Fe时,制备的CNFs弯曲和团聚较为严重。
600 ℃还原20 min的催化剂上可获得产率较高、躯干较直且直径较为均匀的CNFs。
7、合成气直接制二甲醚的Cu基双功能催化剂采用共沉淀沉积法制备了一系列CuO /ZnO /Zr O 2 /M nO 2 / HZSM - 5比例不同的二甲醚合成催化剂, 并在固定床高压流动反应装置上, 以自制的含氮合成气(V(H 2 )∶V(CO) =2. 13)为原料考察了催化剂制备条件和组分比例对催化剂性能的影响. 结果表明, 当共沉淀温度在75℃、pH值在10左右, n(CuO)∶n(ZnO)∶n(Z r O 2 )∶n(M nO 2 ) =1∶1∶0.5∶0.01、m(M nO 2 -(CuO-ZnO - Z r O 2 )∶m(HZSM - 5) =3∶1时, 催化剂的活性和选择性最好, 在反应压力为4.0MPa, 原料空速为1 000 h - 1 , 反应温度为250 ℃时, CO转化率达到87.81%, 二甲醚收率达到65.07%. TPR、XRD、XPS等测试结果表明, 在M nO 2 -(CuO -ZnO - Zr O 2 ) / HZSM - 5催化剂中, ZnO能提高CuO 组分的分散度, 使活性中心增加, 并与M nO 2 协同作用, 促进电子传递, 增强了催化剂的活性和选择性.二、CO2转化催化剂二氧化碳是排放量最大的人为温室气体,也是尚待开发利用的碳资源。
解决二氧化碳问题迫在眉睫。
二氧化碳储存或填埋成本过高,且对环境可能产生潜在危害,世界各国越来越多地关注二氧化碳化学利用,与二氧化碳化学利用相关的学术论文发表数量逐年快速递增,相关的学术会议也逐年递增。
CO 2化学利用对碳资源利用、化解产能过剩、完善相关产业链有重要意义,CO 2 转化催化剂研究因此受到广泛关注。
1、基于强抗积碳的CO 2 重整镍基催化剂在早期的研究中,贵金属(Pt、Pd、Rh、Ru 和Ir)因其较高的活性和稳定性常常作为催化剂的活性组分,然而由于其成本昂贵,不易工业化,因此,价格低廉的贱金属Ni 作为贵金属的替代品,逐渐成为研究热点。
大量研究表明,催化剂抗积碳性能力直接影响了催化剂的催化活性。
具有载氧性的载体负载活性金属Ni后,载体表面形成氧空位,可以促进CO 2 活化解离,生成CO 和O,生成的表面O 更容易与CH 4 反应;添加助剂可调整Ni 基催化剂表面酸碱性,增强金属与载体相互作用,提高活性组分的分散度,调变金属原子的电子密度,从而增强催化剂抗积碳性能。
稀土金属助剂可促进CO 2 的吸附和解离,从而促进表面O 的生成,生成的表面O更易于与CH4 反应;减小催化剂上Ni 粒子的尺寸,提高催化剂活性组分的分散度,增强载体的碱性和储氧能力以及增强Ni 金属与载体间的相互作用,都能显著提高催化剂的抗积碳性能。
2、在CO 2 甲烷化反应中等离子体还原催化剂等离子体还原催化剂具有较小的活性组分粒径、较高的活性组分分散度以及较高的表面碱性,这些特性有利于催化剂活性位对CO 2 的化学吸附,使其在甲烷化反应中表现出较好的低温活性.3、CH 4 /CO 2 重整反应中Ni- Co 双金属催化剂CH 4 /CO 2 重整反应是近年来备受关注的一个反应。
因为这个反应不仅消除了两种能够产生温室效应的气体,而且利用这两种气体以1∶1 的反应能够生成1∶1 的合成气,该合成气可以直接进行F- T反应。
Ni- Co 双金属催化剂在该反应中起到良好的催化作用。
4、二氧化碳和环氧丙烷共聚催化剂CO2与环氧丙烷反应制备环状碳酸酯是CO 2资源化的重要方式之一。
环状碳酸酯是重要的工业原料,可广泛应用于纺织、印染、电池等方面,同时也是性能优良的溶剂和有机合成中间体。
CO2 与环氧烷合成环状碳酸酯的关键在于如何活化热力学性质比较稳定的CO 2 ,因此选择合适的催化剂很重要。
以Co、Zn、Fe金属为中心的新型金属Salen (醛和氨缩聚可以生成一种碱类, 因为是Hugo Schiff发现的,因此一般称之为席夫碱.如果有两个相同的醛分子和一个二胺分子缩聚,生成的螯合席夫碱(Sali-cylaldehydoethylenediamine),一般简称Salen:)配合物,在较温和的反应条件下对二氧化碳与环氧丙烷等脂环族环氧化物共聚起催化作用。