1.1正数和负数教案(第一课时) 人教版数学-最新教育文档
最新2024人教版七年级数学上册1.1 正数和负数--教案

1.1 正数和负数主要师生活动一、创设情境,导入新知观看下面的视频,体会数的产生过程.师生活动:老师点击视频让学生观看,体会数的产生过程.回忆自然数的研究过程,探讨我们该如何研究数.师生活动:老师引导学生根据自然数的研究过程,说出有理数接下来研究的过程.二、小组合作,探究概念和性质知识点一:正数和负数数的产生:点击红包封口查看你所扮演的角色,说说你会遇见哪些具有相反意义的量.第一个红包:某天天气预报截图:第二个红包:某新闻报道:第三个红包:某新闻报道:师生活动:学生上台点击红包,说出红包中所观察的数字.观察同学们提到的部分数,你能找到什么规律吗?预设:-3,-11.43,-9.7% 前面有符号6,3.97,16.0% 大于0师生活动:学生思考,师生共同归纳同,老师给出定义:正数:大于0 的数.负数:在正数前面加上符号“-”(负)的数.例如:7、3、6453、1549、1864.例如:-6、-9、-10、-585.8、-293.师追问:特殊的0 呢?练一练:1.请将下列各数进行分类.正数:____________________________;负数:____________________________.预设:正数:2024、1.8、+56、+73、0.1.负数:−12、-2.93、-0.5师生活动:师提问:所以特殊的0 是正数还是负数?学生观察分析得出:数0既不是正数,也不是负数.合作探究:在温度、盈利亏损、存入和支出的数中,0 有什么特殊含义,请分组思考并举例.小组回答:1. 0℃ 是一个确定的温度;2. 海拔0 m 表示海平面的平均高度;3. 0 是正数和负数的分界.知识点二:正数和负数的意义合作探究:思考:图1 是地理中的等高线图,图2 是手机中的部分收支款账单,其中的正数和负数的意义分别是什么? 你能再举一些用正数、负数表示具有相反意义的量的例子吗?图1 图2预设:图1:A 地高于海平面4600 米,B 地低于海平面100 米.图2:收入15 元,支出30 元.教师与学生一起回顾本节课所学的主要内容,梳理并完善知识思维导图.本课时内容是学生在小学学过的数的基础上,通过用简洁清楚的方式表示实际。
(完整版)新人教版七年级上册数学1.1正数和负数教案

1.1 正数和负数内容简介1.《正数和负数》是人教版义务教育教科书七年级数学第一章第一节.2.“正数与负数”是“有理数”一章的第一节课,引入负数是实际的需要,也是学好后续内容的需要.本节先回顾数的产生和发展,然后通过引言中温度、产量增长率、收支情况的实例,引出负数,进而给出正数与负数的描述性定义并进一步介绍正负数在实际生活中的应用.学情分析1.学生已经学过了正整数、正分数和零的知识,即正有理数及“0”的知识,还学过用字母表示数的知识,这些都是学习本节内容的基础.2.负数是一个比较抽象的概念,为了让学生能比较容易理解负数,要多采用从学生的生活实际出发,让学生理解由于知识面的不断扩大,引入负数的必要性.教学目标1.借助生活中的实例,感受引入负数的必要性,认识到数的产生和发展离不开生活和生产的需要.2.知道什么是正数和负数,并会用正、负数表示实际问题中的数量.3.理解数“0”表示的量的意义.4.体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法.5.通过本节课的学习,培养观察、想象、归纳与概括的能力.6.通过正负数的学习,渗透对立、统一的辩证思想.教学重点1.知道什么是正数和负数.2.理解数“0”表示的量的意义.教学难点理解负数、数“0”表示的量的意义.教学策略1.通过师生共同活动,创设问题情景,展示一些在实际生活中出现“负数”应用的图片,激发学生对新知识的兴趣,引入“负数”.2.通过学生主动学习和研讨,让学生自己完成对负数概念的引入.3.课前把学生分成几个学习小组,培养学生主动学习与合作学习的能力.教学资源1.教具:电脑、PPT课件(或相应图片)、投影仪.2.学具:地图册等.13.多媒体教室.教学时数2课时.2第1课时教学内容1.1 正数和负数.教学目标1.整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念.2.能区分两种相反意义的量,会用符号表示正数和负数.3.体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣.教学重点两种相反意义的量.教学难点正确区分两种相反意义的量.教学过程一、设置情境引入课题上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生活中仅有这些“以前学过的数”够用了吗?下面的例子仅供参考.师:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是XXX,身高1.76米,体重74.5千克,今年33岁.我们的班级是七(1)班,有50个同学,其中男同学有27个,占全班总人数的54%……问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?学生活动:思考,交流师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).问题2:在生活中,仅有整数和分数够用了吗?请同学们看教材(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流.(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数.二、分析问题探究新知问题3:前面带有“-”(负)号的新数我们应怎样命名它呢?为什么要引入负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?3建议教师以本章引言中的实例加以说明.这些问题都必须要求学生理解.教师可以用多媒体出示这些问题,然后师生交流.也可以让学生阅读本章引言中的实例,并思考上面的问题.明确:上述问题中,表示温度、产量增长率、收支情况时,既要用到数3,1.8%,3.5 等,还要用到数-3,-2.7%,-4.5,-1.2等,它们的实际意义分别是:零下3摄氏度,减少2.7%,支出4.5元,亏空1.2元.我们知道,像3,1.8%,3.5这样大于0的数叫做正数.像-3,-2.7%,-4.5,-1.2这样在正数前加符号“-”(负)号的数叫做负数.有时,为了明确表达意义,在正数前面也加上“+”(正)号.强调:用正、负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收入与支出;二是它们都是数量,而且是同类的量.三、举一反三思维拓展经过上面的讨论交流,学生对为什么要引入负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维.问题4:请同学们举出用正数和负数表示的例子.问题5:你是怎样理解“正整数”、“负整数”、“正分数”和“负分数”的呢?请举例说明.四、实例演练深化认识教科书第3页例题.例(1)一个月内,小明体重增加2 kg,小华体重减少1 kg,小强体重无变化,写出他们这个月的体重增长值.(2)某年,下列国家的商品进口总额比上年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%.解:(1)这个月小明体重增长2 kg. 小华体重增长-1 kg,小强体重增长0 kg.(2)六个国家这一年商品进出口总额的增长率是:美国-6.4%,德国 1.3%,法国-2.4%,英国-3.5%,意大利0.2%,中国7.5%.五、小结围绕下面两点,以师生共同交流的方式进行.1.由于实际问题中存在着相反意义的量,所以要引入负数,这样数的范围就扩大了.42.正数就是以前学过的0以外的数(或在其前面加“+”),负数就是在以前学过的0以外的数前面加“-”.本课作业:教科书第5页习题1.1第1,2,4,5题.本课评析密切联系生活实际,创设学习情境.本课是有理数的第一节课时.引入负数是数的范围的一次重要扩充,学生头脑中关于数的结构要做重大调整(其实是一次知识的顺应过程),而负数相对于以前的数,对学生来说显得更抽象,因此,这个概念并不是一下就能建立的.为了接受这个新的数,就必须对原有的数的结构进行整理.负数的产生主要是因为原有的数不够用了(不能正确简洁地表示数量),书本的例子或图片中出现的负数就是让学生去感受和体验这一点.使学生接受生活生产实际中确实存在着两种相反意义的量是本课的教学难点,所以在教学中可以多举几个这方面的例子,并且所举的例子又应该符合学生的年龄和思维特点.当学生接受了这个事实后,引入负数(为了区分这两种相反意义的量)就是顺理成章的事了.这个教学设计突出了数学与实际生活的紧密联系,使学生体会到数学的应用价值,体现了学生自主学习、合作交流的教学理念,书本中的图片和例子都是生活生产中常见的事实,学生容易接受,所以应该让学生自己看书、学习,并且鼓励学生讨论交流,教师作适当引导就可以了.第2课时教学内容1.1 正数和负数.教学目标1.通过对数“0”的意义的探讨,进一步理解正数和负数的概念.2.利用正负数正确表示相反意义的量(规定了指定方向变化的量).3.进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣.教学重点正确理解和表示向指定方向变化的量.教学难点深化对正负数概念的理解.教学过程一、知识回顾深化理解回顾:上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示.这就是说:数的范围扩大了(数有正数和负数之分).那么,有没有一种既不是正数5又不是负数的数呢?问题1:有没有一种既不是正数又不是负数的数呢?学生思考并讨论.(数0既不是正数又不是负数,是正数和负数的分界,是基准.这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考.) 例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示.那么某一天某地的最高温度是零上7℃,最低温度是零下5℃时,就应该表示为+7℃和-5℃,这里+7℃和-5℃就分别称为正数和负数.那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数。
七年级(人教版)集体备课教学设计:1.1《正数和负数》

七年级(人教版)集体备课教学设计:1.1《正数和负数》一. 教材分析《正数和负数》是七年级数学的第一节内容,主要介绍正数、负数以及它们的性质。
通过本节课的学习,学生能够理解正数和负数的含义,掌握它们的运算规则,并能够运用正数和负数解决实际问题。
二. 学情分析学生在进入七年级之前,已经学习了整数和分数,对数的概念有一定的了解。
但正数和负数是相对抽象的概念,需要通过实际例子让学生感知和理解。
此外,学生可能对负数的实际意义和应用存在困惑,需要通过生活情境进行引导和解释。
三. 教学目标1.了解正数和负数的定义及性质。
2.能够运用正数和负数解决实际问题。
3.培养学生的逻辑思维能力和团队协作能力。
四. 教学重难点1.正数和负数的定义及性质。
2.负数在实际问题中的应用。
五. 教学方法采用情境教学法、互动式教学法和小组合作法。
通过生活情境引入正数和负数的概念,引导学生主动探究和发现规律,通过小组合作解决问题,提高学生的参与度和积极性。
六. 教学准备1.教学PPT。
2.练习题。
3.教学素材(如人民币、温度计等)。
七. 教学过程导入(5分钟)利用人民币图片,让学生观察并说出人民币的单位,如“1元”、“2元”等。
引导学生思考:“如果是欠款,应该如何表示?”进而引出正数和负数的概念。
呈现(10分钟)1.讲解正数和负数的定义。
2.展示正数和负数的性质,如正数大于0,负数小于0,正数加负数等于0等。
操练(15分钟)1.让学生进行正数和负数的加减法运算。
2.引导学生发现运算规律,如正数加正数等于正数,负数加负数等于负数等。
巩固(10分钟)1.利用温度计图片,让学生举例说明正数和负数在实际生活中的应用。
2.让学生解决实际问题,如:“小明买了一本书,花费了20元,然后又卖掉了一件玩具,得到了30元,请问小明现在有多少钱?”拓展(10分钟)1.引导学生思考:“正数和负数还有哪些应用场景?”2.让学生举例说明,如股票、海拔等。
小结(5分钟)对本节课的内容进行总结,让学生复述正数和负数的定义及性质,以及它们在实际生活中的应用。
1.1正数和负数(第1课时)教案

1.1正数与负数的教案第1课时学习目标1.了解正数与负数是从实际需要中产生的.2.掌握正数、负数及0的意义,掌握正数、负数的表示方法.教学重点感受负数引入的重要性.教学难点掌握正数、负数及0的意义.教学过程一、旧知复习今天我们正式开始七年级数学的学习,我是你们的数学老师.下面我先做一个自我介绍,我叫xxx,今年31岁,身高1.59米,体重60.5千克.我在说一下我们班的情况,我们是七年级(6)班,共50个学生,其中女生有30个,占全班人数的60%……问1:老师刚才得那段话中出现了几个数?分别是哪些?6个数,分别是31,1.59,60.5,50,30,60%.问2:将这些数按以前学过的数的分类方法来分类.整数:31,50,30分数:1.59,60.5,60%以前学过的数主要有两大类,分别是整数和分数(小数).问3:在生活中仅有整数和分数够用吗?以前学过的数已经不够用了,有时候需要比0小的数.今天我们就来学习这类数.二、情景导入在日常生活中,经常遇到数的表示与数的运算的问题,阅读下列三个例题,思考并回答其中的问题.(1)2022年1月某天北京的温度为-3℃~3℃.“-3”的含义是什么?这一天北京的温差是多少?“-3”的含义是零下3摄氏度,这一天北京的温差是6℃.(2)某年,我国花生产量比上一年增长1.8%,油菜籽产量比上一年增长-2.7%,“增长-2.7%”表示什么意思?“增长-2.7%”表示减少2.7%.(3)夏新同学通过捡、卖废品,既保护了环境,又积攒了零花钱.下表是他某个月的部分收支情况,(单位:元)收支情况表 _年_月这里,“结余-1.2”是什么意思?结余“-1.2”表示亏空1.2元.三、新知讲解上述例子中出现的数“-3,3,1.8%,-2.7,3.5,8.5,-4.5,4.0,-5.2,-1.2”,分别属于什么数?3,1.8%,3.5,8.5,4.0是正数.-3,-2.7%,-4.5,-5.2,-1.2是负数.你能归纳出正数和负数的概念吗?1.正数和负数的定义像3,1.8%,3.5这样大于0的数叫做正数.像-3,-2.7%,-1.2这样在正数前面加上符号“-”(负)的数,叫做负数,-1.2读作“负1.2”.注意:有时为了明确表达意义,在正数前面也加“+”号,一个数前面的“+” “-”号叫做它的符号.正数前面的“+”号可省略不写,但负数前面的“-”号不能省略.一般的,正数的符号是“+”,负数的符号是“-”0 既不是正数也不是负数.2.现阶段学习的数的种类:正数负数 03.0只表示没有吗?引入正负数后,0不再简简单单的只表示“没有”. 它具有丰富的意义,还可以表示一个确定的量.如:1.空罐中的金币数量;2.温度中的0℃;3.海拔0m ;4.水库的标准水位;5.身高比较的基准;6.正数和负数的界点;四、典例精析1.指出下列各数的符号(口答)+7;-2.6;9+7的符号是“+”;-2.6的符号是“-”;9的符号是“+”.2.读下列各数,并指出其中哪些是正数,哪些是负数.(口答)31.283,0134--+-,,,,%正数是:+3,13%;31.28.4---负数是:,,五、针对练习1.指出下列各数的符号(口答)5;-3;3.75的符号是“+”;-3的符号是“-”;3.7的符号是“+”.2.读下列各数,并指出其中哪些是正数,哪些是负数.(口答)217,03--9,,,8.3,-3.14 9,8.3正数是:;217 3.143---负数是:,,3.下列关于“0”的说法正确的个数是( B )①0是正数和负数的分界点;②0只表示“什么也没有”;③0可以表示特定的意义,如0℃等;④0是正数;⑤0是自然数;⑥0是非负数A.3B.4C.5D.6注意:“非负数”就是“不是负数”,包括正数和0;“非正数”就是“不是正数”包括负数和0.六、课堂小结1.正数是比零大的数,正数前面加“-”号的数叫做负数.2.0 既不是正数也不是负数,它是正负数的分界.3.“非负数” 包括正数和0;“非正数” 包括负数和0.七、作业布置见精准作业八、板书设计。
1.1,正数与负数,教案

1.1,正数与负数,教案篇一:1.1正数和负数教学设计(第一课时)1.1正数和负数(一)一、教学目的1借助生活中的实例理解相反意义的量。
2能用符号表示生活中具有相反意义的量。
3 培养学生会独立考虑、合作交流的认识。
二、教学设计通过电脑动画出示某班举行知识竞赛的得分情况,让学生从计算竞赛得分的动态情境中,接触负数的概念,引出“不够减——得出负数”,再通过“议一议”进一步体会负数的意义,鼓舞学生本人寻找生活中的例子,并在寻务实例的过程中体会负数引人的必要性.老师选择学生熟悉的场景开展讨论,通过实例的讨论分析使学生认识到用正、负数能够表示具有相反意义的量.三、教学重点与难点1.理解“相反意义的量”是重点。
2.能灵敏运用正负数表示生活中具有相反意义的量是难点。
四、课时安排1课时五、教学方法讨论法、探究法、讲授法、观察法.六、教学思路(一)情景导学、提出征询题:通过电脑动画情节的观看,让学生理解新数.动画内容:评分标准是:答对一题加10分、答错一题扣10分,不答复得0分;每个队的根本分均为0分.四个代表队答题情况如下表:如此,我们就能够用带有“+”号与“-”号的数表示各队的得分情况.(二)自主学习、尝试处理:(1)学生阅读课本2页观察与考虑部分,学生独立完成导学卡的自主学习征询题.现实生活中,像如此的相反意义的量还有特别多.例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的.又如,某仓库昨天运进物资8吨,今天运出物资3 吨,“运进”和“运出”,其意义是相反的.(2)一写出与以下各量具有相反意义的量:1气温为零下11度.2向南走200米。
3甲地低于海平面300米4股票第一天涨0.66元.(三)讨论交流、合作处理:1如何用符号表示具有相反意义的量?2.再议一议.3做—做:用正数和负数表示一些意义相反的量.出例如1:(1)在知识竞赛中,假设用+10分表示加10分,那么扣20分如何样表示?(2)某人转动转盘,假设用+5表示沿逆时针方向转了5回,那么沿顺时针方向转了12圈如何样表示?(3)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克记作+0.02克,那么-0.03克表示什么?(四)展示评研、归纳提升:1.先想一想具有相反意义的量,然后老师提出:如何样区别相反意义的量才好呢? (五)稳定达标、扩展延伸:1用符号表示以下意义相反的量.(1)在知识竞赛中,假设用+10分表示加10分,那么扣20分如何样表示?(2)某人转动转盘,假设用+5表示沿逆时针方向转了5回,那么沿顺时针方向转了12圈如何样表示?(3)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克记作+0.02克,那么-0.03克表示什么?2课堂作业练习第2小题篇二:1.1《正数和负数》(新版)新人教版单元要点分析教学内容1.本单元结合学生的生活经历,列举了学生熟悉的用正、负数表示的实例,?从扩大运算的角度引入负数,然后再指出能够用正、负数表示现实生活中具有相反意义的量,使学生感遭到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联络.引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念. 2.通过如何样用数简明地表示一条东西走向的马路旁的树、?电线杆与汽车站的相对位置关系引入数轴.数轴是特别重要的数学工具,它能够把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,提示了数形之间的内在联络,从而表达出以下4个方面的作用:(1)数轴能反映出数形之间的对应关系.(2)数轴能反映数的性质.(3)数轴能解释数的某些概念,如相反数、绝对值、近似数.(4)数轴可使有理数大小的比拟形象化.3.关于相反数的概念,?从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的间隔相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分.4.正确理解绝对值的概念是难点.理解绝对值的两种意义,?一种是几何意义:一个数a 的绝对值确实是数轴上表示数a的点与原点的间隔;另一种是代数意义.绝对值的几何意义是以线段长度来表示一个数的绝对值的;而绝对值的代数意义那么是给出了求绝对值的法 ?a?那么,由绝对值的两种意义可知,有理数a?的绝对值可表示为:│a│=?0??a?(a?0)(a?0) (a?0)按照有理数的绝对值的两种意义,能够归纳出有理数的绝对值有如下性质:(1)任何有理数都有唯一的绝对值.(2)有理数的绝对值是一个非负数,即最小的绝对值是零.(3)两个互为相反数的绝对值相等,即│a│=│-a│.(4)任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a.(5)假设│a│=│b│,那么a=b,或a=-b或a=b=0.三维目的1.知识与技能(1)理解正数、负数的实际意义,会推断一个数是正数仍然负数.(2)掌握数轴的画法,能将已经明白数在数轴上表示出来,?能说出数轴上已经明白点所表示的解.(3)理解相反数、绝对值的几何意义和代数意义,?会求一个数的相反数和绝对值.(4)会利用数轴和绝对值比拟有理数的大小.2.过程与方法通过探究有理数运算法那么和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法.3.情感态度与价值观使学生感受数学知识与现实世界的联络,鼓舞学生探究规律,并在合作交流中完善标准语言.重、难点与关键1.重点:正确理解有理数、相反数、绝对值等概念;会用正、?负数表示具有相反意义的量,会求一个数的相反数和绝对值.2.难点:精确理解负数、绝对值等概念.3.关键:正确理解负数的意义和绝对值的意义.课时划分1.1 正数和负数2课时1.2 有理数5课时1.3 有理数的加减法4课时1.4 有理数的乘除法5课时1.5 有理数的乘方4课时数学活动1课时回忆与考虑1课时1.1正数和负数第一课时正数和负数(一)课本第2页至第4页.教学目的1.知识与技能能推断一个数是正数仍然负数,能用正数或负数表示生活中具有相反意义的量.2.过程与方法借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性. 3.情感态度与价值观培养学生积极考虑,合作交流的认识和才能.重、难点与关键1.重点:正确理解负数的意义,掌握推断一个数是正数仍然负数的方法.2.难点:正确理解负数的概念.3.关键:创设情境,充分利用学生四周熟悉的事物,?加深对负数意义的理解.教具预备投影仪.教学过程一、负数的引入我们明白,数是人们在实际生活和生活需要中产生,并不断扩大的.人们由记数、排序、产生数1,2,3,?;为了表示“没有物体”、“空位”引进了数“0”,?测量和分配有时不能得到整数的结果,为此产生了分数和小数.在生活、消费、科研中经常遇到数的表示与数的运算的征询题,例如课本第2?页至第3页中提到的四个征询题,这里出现的新数:-3,-2,-2.7%在前面的实际征询题中它们分别表示:零下3摄氏度,净输2球,减少2.7%.像-3,-2,-2.7%如此的数(即在往常学过的0以外的数前面加上负号“-”的数)叫做负数.而3,2,+2.7%在征询题中分别表示零上3摄氏度,净胜2球,增长2.7%,?它们与负数具有相反的意义,我们把如此的数(即往常学过的0?以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0.5,+11,?确实是3,2,0.5,,?一个33 数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号.中国古代用算筹(表示数的工具)进展计算,红色算筹表示正数,黑色算筹表示负数.数0既不是正数,也不是负数,但0是正数与负数的分界数.0能够表示没有,还能够表示一个确定的量,现在天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度.三、用正负数表示具有相反意义的量把0以外的数分为正数和负数,起源于表示两种相反意义的量.?正数和负数在许多方面被广泛地应用.在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度.例如:珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为-155m.记录账目时,通常用正数表示收入款额,负数表示支出款额.请学生解释课本中图1.1-2,图1.1-3中的正数和负数的含义.你能再举一些用正负数表示数量的实际例子吗?例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量.四、稳定练习课本第3页,练习1、2、3、4题.五、课堂小结为了表示现实生活中的具有相反意义的量,我们引进了负数.正数确实是我们过去学过的数(除0外),在正数前放上“-”号,确实是负数,?但不能说:“带正号的数是正数,带负号的数是负数”,在一个数前面添上负号,它表示的是原数意义相反的数.假设原数是一个负数,那么前面放上“-”号后所表示的数反而是正数了,另外应留意“0”既不是正数,也不是负数.六、作业布置1.课本第5页习题1.1复习稳定第1、2、3题.2.选用课时作业.第一课时作业设计一、填空题.1.假设向北走5米记作+5,那么向南走10米记作________.2.假设节约30千瓦·时电记作+30千瓦·时,那么浪费10千瓦·时电记作_____.3.假设-26.80表示亏损26.80元,那么+100元表示________.4.假设体重增加1.5千克记作+1.5千克,那么-0.5千克表示________.二、选择题.5.以下说法正确的选项().A.0是正数B.0是负数C.0是整数D.0不是自然数6.有六个数:-5,0,3 111,-0.3,+,-,?,其中正数的个数是().234A.1B.2C.3D.411,0,-6.3,,-?,以下说法完全正确的选项().2811 A.-7,-?是负整数B.5,0,是正数28 7.有六个数:-7,5C.-7,-6.3,-?是负数D.只有-6.3是负分数三、解答题.8.指出以下各数中哪些是正整数?哪些是负整数?哪些是正分数?哪些是负分数?0,-2,31391,-0.08,-,,-4,3.14,77,-103.27239.石英钟的产品说明书上写着“一昼夜误差小于±0.5秒”,?你对此如何样理解?10.假设把公元1997年记作+1997,那么-97表示什么?:篇三:1.1正数与负数讲义、教案例5 假设规定上升为正,那么水位上升-0.5m的意义是()A.水位上升0.5mB.水位下降0.5mC.水位没有变化D.水位下降-0.5m对点练习1.假设+30m表示向东走30m,那么向西走40m表示为()A.+40mB.-40m C.+30mD.-30m2.假设超出标准质量0.05g记作+0.05g,那么低于标准质量0.03g记作()3.某奶粉每袋标准质量为454g,在质量检测中,假设超过标准质量2g记作+2g,假设质量低于标准质量3g以上,那么这袋奶粉那么视为不合格产品,先抽取10袋样品进展质量检测,结果如下:袋号12345678910记作-203 -4 -3 -5 +4+4 -5 -3⑴这10袋奶粉中,有哪几袋不合格?⑵质量最多的是哪袋?实际质量是多少?⑶质量最小的是哪袋,实际质量是多少?课后练习一、根底训练1.假设气温上升3度记作+3度,下降5度记作-5度,那么以下各量分别表示什么?(1)+5度;(2)-6度;(3)0度.2.向东走-8米的意义是()A.向东走8米B.向西走8米C.向西走-8米D.以上都不对3.以下语句:(1)所有整数都是正数;(2)分数是有理数;(3)所有的正数都是整数;(4)在有理数中,除了负数确实是正数,其中正确的语句个数有()A.1个B.2个C.3个D.4个4.以下说法中,正确的选项()A.正整数、负整数统称整数B.正分数、负分数统称有理数C.零既能够是正整数,也能够是负分数D.所有的分数都是有理数5.以下各数中,哪些属于正数集、负数集、非负数集、整数集、分数集?-1,-3.14156,-6.某水库的平均水位为80米,在此根底上,假设水位变化时,把水位上升记为正数;水库治理员记录了3月~8月水位变化的情况(单位:米):-5,-4,0,+3,+6,+8.试征询这几个月的实际水位是多少米?二、递进演练1.(05年宜昌市·课改卷)假设收入15?元记作+?15?元,?那么支出20?元记作________元.2.(05年吉林省中考·课改卷)某食品包装袋上标有“净含量385±5”,?这包食品的合格净含量范围是______克~______克.3.以下说法正确的选项()A.正数和负数统称有理数B.0是整数但不是正数C.0是最小的数D.0是最小的正数4.以下不是具有相反意义的量是()A.前进5米和后退5米B.节约3吨和消费10吨C.身高增加2厘米和体重减少2千克D.超过5克和缺乏2克5.以下说法正确的选项()A.有理数是指整数、分数、零、正有理数、负有理数这五类B.一个有理数不是正数确实是负数C.一个有理数不是整数确实是分数D.以上说法都正确6.把以下各数:-3,4,-0.5,-1,-5%,-6.3,2006,-0.1,30000,200%,0,-0.01001 315,0.86,0.8,8.7,0,-,-7,分别填在相应的大括号里.36正有理数集合:{ };非负有理数集合:{};整数集合:{ };负分数集合:{ }.7.孔子出生于公元前551年,假设用-551年表示,那么李白出生于公元701年可表示为___________.。
1.1正数和负数(一)教案

1.1正数和负数(一)教案
一.创设情境激发好奇
欢迎同学们来到附中,成为初一年级的一名学生,从今
天开始,我将带领大家开始神奇的数学之旅。
在我们的这个教室中就有许多数学的应用,我们在一个长约为12米,宽8米的教室里,多数同学都是13岁,我们班54人,占全年级人数的8%,我们的讲台宽0.8米,高1.2米.
[问题1]:在老师刚才的描述中出现了你所熟悉的哪几类数字?你能将以前所学数字进行分类吗?(学生交流后回答)
以前我们学过的数,实际上主要有两类.分别是整数和分数(包括小数).
[问题2]:那么在实际生活中仅有整数和分数够用吗?你能举例说明吗?
二.观察对比探究新知
[问题3]:我们将前面带有-的数叫负数,那么为什么要引入负数?通常我们在日常生活中用正数和负数分别表示怎样的量呢?结合下面的短片我们去理解.(课件)
三.甄别应用拓展思维
[问题4]:请同学们举出用正数和负数表示的例子.
[问题5]:你怎样理解正整数负整数正分数负分数呢?
[巩固练习]
(教科书5页练习)
1.读下列各数,并指出其中哪些是正数,哪些是负数。
精心整理,仅供学习参考。
1.1 正数和负数(第一课时)教学设计 2024—2025学年人教版数学七年级上册
一、导入新课
1.情景引入 1
2.情景引入 2
3. 思考:根据实际生活的需要,人们引进了另一种数,你知道是什么数吗?
学生:(1) 预计明天白天某地的温度为- 3℃~3℃。
(2) 电梯楼层标数-1、-2
(2) 某年下列国家的商品进出口总额比上年的变化情况是:
美国减少 6.4%,德国增长 1.3%,法国减少 2.4%,英国减少 3.5%,
意大利增长 0.2%,中国增长 7.5%。
写出这些国家这一年商品进出口总额的增长率。
练习 1.
2010 年我国全年平均降水量比上年增加 108.7mm,2009 年比上年减少81.5mm,2008 年比上年增加 53.5mm,用正数和负数表示这三年我国全年平均降水量比上年的增长量。
练习 2.
如果把一个物体向右移动 1 m 记作移动+1m,那么这个物体又移动了-1m 是什么意思?如何描述这时物体的位置?
1.正数和负数的定义。
2.正数和负数的意义。
人教版:七年级数学-1.1《正数和负数》教案
1.1《正数和负数》教学设计方案
(第1课时)
教材分析:
一、教材所处的地位及作用:“1.1正数和负数”一节,是人教版七
年级上册第一章第一节的内容,本节内容主要是学习正
数、负数和零的定义、联系。
是本章有理数学习的基础。
二、教学目标
知识与技能:借助生活中的实例理解有理数的意义,会判断一个
数是正数还是负数,能应用正负数表示生活中具有
相反意义的量。
过程与方法:1.体会负数引入的必要性,感受有理数应用的广泛
性,并领悟数学知识来源于生活,体会数学知识
与现实世界的联系。
2.能结合具体情境出现并提出数学问题,并解释结
果的合理性。
情感态度与价值观:乐于接触社会环境中的数学信息,愿意谈论
数学话题,在数学活动中发挥积极作用。
三、教学重、难点
重点:体会负数引入的必要性和有理数应用的广泛性, 能应用正负数表示生活中的具有相反的意义的量。
难点:能应用正负数表示生活中的具有相反的意义的量,养成把
数学应用于生活实际问题的习惯。
教学方法:采用“现象──问题──目标”的教学方法,力求体现“主体参与、自主探索、合作交流、指导引探”的教学理念
教学过程
教师演示第一节首图片为主体的多媒体课件。
板书设计:
正数:像3、2、0.5这样大于0的数
数零:0既不正数,也不是负数
负数:像-3、-2、-0.5这样在正数前面加上负号“-”
的数
用正数和负数来表示相反意义的量
教学反思:。
人教版数学七年级上册教案《1.1正数与负数》第一课时说课稿
3.小游戏:设计一个简单的数轴游戏,让学生在游戏中体验正数与负数的相对位置关系,激发学生的学习兴趣。
(二)新知讲授
在新知讲授阶段,我将逐步呈现知识点,引导学生深入理解:
1.负数的定义:通过生活实例,让学生理解负数的实际意义,并给出负数的定义。
4.展示与评价:鼓励学生展示自己的学习成果,进行自评、互评,提高学生的自我认知和反思能力。
四、教学过程设计
(一)导入新课
为了快速吸引学生的注意力和兴趣,我将采用以下方式导入新课:
1.创设生活情境:通过展示天气预报中温度变化的情境,让学生感受到正数与负数在实际生活中的应用,从而引出本节课的主题——正数与负数。
我计划设计以下巩固练习或实践活动,以帮助学生巩固所学知识并提升应用能力:
1.个人练习:设计一些基本的正数与负数加减法题目,让学生独立完成,巩固运算规则。
2.小组讨论:给出一些实际情境,让学生小组讨论如何运用正数与负数解决问题,计数轴游戏,让学生在游戏中进一步巩固正数与负数的概念及运算规则。
2.对于负数的表示方法,学生可能会感到困惑,如负数的符号、负数在数轴上的位置等;
3.正数与负数的加减法运算,特别是异号加减运算,学生容易混淆运算规则。
(三)学习动机
为了激发学生的学习兴趣和动机,我将采取以下策略或活动:
1.创设生活情境,如温度、海拔等,让学生感受到数学知识在实际生活中的应用,从而提高学习兴趣;
在学习习惯上,学生之间的差异较大。部分学生具有良好的学习习惯,如认真听讲、主动提问、及时复习等;而部分学生则可能缺乏自律,学习依赖性强,需要教师不断引导和督促。
(二)学习障碍
学生在学习本节课之前,已经掌握了小学阶段的正数知识,如正整数的加减乘除运算、数的大小比较等。然而,他们可能存在以下学习障碍:
人教版七年级数学上册:1.1《正数和负数》教学设计
人教版七年级数学上册:1.1《正数和负数》教学设计一. 教材分析《正数和负数》是人教版七年级数学上册的第一章第一节内容。
本节课主要介绍了正数和负数的定义,以及它们的性质。
学生通过本节课的学习,能够理解正数和负数的含义,掌握它们的运算规则,并能运用到实际问题中。
二. 学情分析七年级的学生已经具备了初步的数学基础,但对于正数和负数的概念可能还比较陌生。
因此,在教学过程中,教师需要引导学生从实际情境出发,理解正数和负数的含义,并通过大量的练习让学生熟练掌握它们的运算规则。
三. 教学目标1.知识与技能:理解正数和负数的定义,掌握它们的性质和运算规则。
2.过程与方法:通过观察、操作、思考、交流等过程,培养学生的数学思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.重点:正数和负数的定义,它们的性质和运算规则。
2.难点:正数和负数的运算规则,以及如何在实际问题中运用。
五. 教学方法1.情境教学法:通过实际情境引导学生理解正数和负数的含义。
2.动手操作法:让学生通过实际操作,加深对正数和负数概念的理解。
3.小组合作学习:培养学生团队合作意识,提高学生的数学思维能力。
六. 教学准备1.教学课件:制作精美的课件,帮助学生直观地理解正数和负数的概念。
2.教学素材:准备一些实际问题,让学生运用正数和负数进行解决。
3.练习题:准备一些练习题,用于巩固学生对正数和负数的掌握程度。
七. 教学过程1.导入(5分钟)利用课件展示一些实际情境,如温度计、体重秤等,引导学生思考正数和负数的含义。
2.呈现(10分钟)讲解正数和负数的定义,通过实例让学生理解正数和负数的概念。
3.操练(10分钟)让学生进行一些简单的正数和负数运算,如加减乘除等,巩固学生对正数和负数的掌握。
4.巩固(10分钟)出示一些实际问题,让学生运用正数和负数进行解决,加深学生对正数和负数的理解。
5.拓展(10分钟)引导学生思考正数和负数在实际生活中的应用,如购物、理财等,培养学生的数学应用能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1正数和负数教案(第一课时)人教版数学
第一章有理数
单元教学内容
1.本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,•从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系。
引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念。
2.通过怎样用数简明地表示一条东西走向的马路旁的树、•电线杆与汽车站的相对位置关系引入数轴。
数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用:
(1)数轴能反映出数形之间的对应关系。
(2)数轴能反映数的性质。
(3)数轴能解释数的某些概念,如相反数、绝对值、近似数。
(4)数轴可使有理数大小的比较形象化。
3.对于相反数的概念,•从数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等来说明相反数的几何意义,同时补充零的相反数是零作为相反数意义的一部
分。
4.正确理解绝对值的概念是难点。
根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质:
(1)任何有理数都有唯一的绝对值。
(2)有理数的绝对值是一个非负数,即最小的绝对值是零。
(3)两个互为相反数的绝对值相等,即│a│=│-a│。
(4)任何有理数都不大于它的绝对值,即│a│a,│a│-a.
(5)若│a│=│b│,则a=b,或a=-b或a=b=0.
三维目标
1.知识与技能
(1)了解正数、负数的实际意义,会判断一个数是正数还是负数。
(2)掌握数轴的画法,能将已知数在数轴上表示出来,•能说出数轴上已知点所表示的解。
(3)理解相反数、绝对值的几何意义和代数意义,•会求一个数的相反数和绝对值。
(4)会利用数轴和绝对值比较有理数的大小。
2.过程与方法
经过探索有理数运算法则和运算律的过程,体会类比、转化、数形结合等数学方法。
3.情感态度与价值观
使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言。
重、难点与关键
1.重点:正确理解有理数、相反数、绝对值等概念;会用正、•负数表示具有相反意义的量,会求一个数的相反数和绝对值。
2.难点:准确理解负数、绝对值等概念。
3.关键:正确理解负数的意义和绝对值的意义。
课时划分
1.1 正数和负数 2课时
1.2 有理数 5课时
1.3 有理数的加减法 4课时
1.4 有理数的乘除法 5课时
1.5 有理数的乘方 4课时
第一章有理数(复习) 2课时
1.1正数和负数
第一课时
三维目标
一。
知识与技能
能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量。
二。
过程与方法
借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性。
三。
情感态度与价值观
培养学生积极思考,合作交流的意识和能力。
教学重、难点与关键
1.重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法。
2.难点:正确理解负数的概念。
3.关键:创设情境,充分利用学生身边熟悉的事物,•加深对负数意义的理解。
教具准备
投影仪。
教学过程
四、课堂引入
我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的。
人们由记数、排序、产生数1,2,3,为了表示没有物体、空位引进了数0,•测量和分配有时不能得到整数的结果,为此产生了分数和小数。
在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2•页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%.
五、讲授新课
(1)、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号-的数)叫做负数。
而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,•它们与负数具有相反的意义,我们把这样的数(即以前学过的0•以外的数)叫做正数,有时在正数前面也加上+(正)号,例如,+3,+2,+0.5,+,就是3,2,0.5,一个数前面的+、-号叫做它的符号,这种符号叫做性质符号。
(2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数。
(3)、数0既不是正数,也不是负数,但0是正数与负数的分界数。
(4) 、0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度。
用正负数表示具有相反意义的量
(5)、把0以外的数分为正数和负数,起源于表示两种相反意义的量。
•正数和负数在许多方面被广泛地应用。
在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度。
例如:珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为-155m.记录账目时,通常用正数表示
收入款额,负数表示支出款额。
(6)、请学生解释课本中图1.1-2,图1.1-3中的正数和负数的含义。
(7)、你能再举一些用正负数表示数量的实际例子吗?
(8)、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量。
六、巩固练习
课本第3页,练习1、2、3、4题。
七、课堂小结
为了表示现实生活中的具有相反意义的量,我们引进了负数。
正数就是我们过去学过的数(除0外),在正数前放上-号,就是负数,•但不能说:带正号的数是正数,带负号的数是负数,在一个数前面添上负号,它表示的是原数意义相反的数。
如果原数是一个负数,那么前面放上-号后所表示的数反而是正数了,另外应注意0既不是正数,也不是负数。
八、作业布置
1.课本第5页习题1.1复习巩固第1、2、3题。
九、板书设计
1.1正数和负数
第一课时
1、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号-的数)叫做负数。
而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,•它们与负数具有相反的意义,我们把这样的数(即以前学过的0•以外的数)叫做正数,有时在正数前面也加上+(正)号,例如,+3,+2,+0.5,+,就是3,2,0.5,一个数前面的+、-号叫做它的符号,这种符号叫做性质符号。
2、随堂练习。
3、小结。
4、课后作业。
十、课后反思。