样本容量的确定

合集下载

样本容量的确定

样本容量的确定
抽样结果的点估计在很少的情况下完全准确 因此人们更偏于区间估计 区间估计就是 对变量值如总体平均值的区间或范围进行估计 除了要说明区间大小外 习惯上还要说明实 际总体平均值在区间范围以内的概率 这一概率通常被称为置信系数或者置信度 区间则被 称为置信区间
都在此范围内 而通过简单随机样本对总体做的估计为实际总体平均值 2 倍标准误差范围 内的概率为 95 在实际总体平均值 3 倍标准误 差范围内的概率为 99.7 5.5.3 点估计和区间估计
当利用抽样要对总体平均值进行估计时 有两种估计方法 点估计和区间估计 点估计 是指把样本平均值作为总体平均数的估计值 观察图 5.3 的平均数抽样分布可知某一特定的 抽样结果 其平均数很可能相对更接近总体平均数 但是 样本平均数分布中的任一个值都 可能是这一特定样本的平均值 有一小部分的样本平均值与实际总体平均值有相当的差距 这种差距就叫抽样误差
在任何确定样本容量的问题中 都必须认真考虑所要分析并要据此做统计推断的总体样 本的各个子群的数目的预期容量 例如 从整体上看样本容量为 400 很符合要求 但若要分 别分析男性和女性被调查者 并且要求男性与女性的样本各占一半 那么每个子群的容量仅
1
广州方舟市场研究有限公司
统计学基础知识
为 200 这个数字是否符合要求 能使分析人员对两组的特征做出预期的统计推断呢 再如 要按年龄和性别分析调研结果 问题就变得更复杂了 假设要按以下方式将总体样本划分为 四组
5
广州方舟市场研究有限公司
统计学基础知识
5.5.2 根据单个样本做出推断 在实际操作中 人们往往不愿从总体中抽出所有可能的随机样本 画出像表 5.3 和图 5.4
那样的频率分布表和直方图来 人们希望进行简单的随机抽样 并据此对总体进行统计推断 问题出现了 通过任一简单的随机样本对总体均数进行的估计 其估计值在总体平均值 1 个标准误差内的概率究竟为多大 根据表 5.2 可知概率为 68 因为所有样本平均数有 68

第十三章 确定样本容量

第十三章 确定样本容量
小总体情况是指在其样本超过总体总容量 的5% 如果是小总体, 如果是小总体,则样本容量的公式就需要用有限 乘数来进行调整。 乘数来进行调整。有限乘数是指近似于不包括样 本的总体比率的平方根的一个调整因素。 本的总体比率的平方根的一个调整因素。
采用有限乘数来计算样本容量的公式如 下:
N −n 样 容 =样 容 公 × 本 量 本 量 式 N −1
(二)、用平均数确定样本容量 )、用平均数确定样本容量
其公式如下:
s2 z2 n= 2 联 的标准误差来表明);s为由估计的标准差表明的 可变性;e为样本估计值相对于总体的精确度或可 接受误差。
三、确定样本大小时实际应考虑的问题
(一)如何估计总体的差异性 一
)、置信区间法 (五)、置信区间法
运用差异性置信区间、 置信区间法:运用差异性置信区间、样本分布 以及平均数标准误差或百分率标准误差等概念来 创建一个有效的样本。 创建一个有效的样本。 1、差异性的概念 、 差异性是指受访者对某一特定问题的答案在相异 差异性是指受访者对某一特定问题的答案在相异 或相似性)方面的总括。 性(或相似性)方面的总括。 如果多数回答都接近同一个数字, 如果多数回答都接近同一个数字,而且大多数的 回答都集中在某一小范围内,则差异性小;反之, 回答都集中在某一小范围内,则差异性小;反之, 则差异性大。 则差异性大。
平均数标准误差的计算公式如下: 平均数标准误差的计算公式如下: 的计算公式如下
S Sx = n 式 : x为 均 标 误 ; 为 本 准 ; 中 S 平 数 准 差 S 样 标 差 n为 本 量 样 容 。
百分率标准误差计算公式如下: 百分率标准误差计算公式如下: 计算公式如下
p×q Sp = n 式 : p为 分 标 差 p为 本 的 分 ; 中 s 百 率 准 ; 样 中 百 率 q为 100 − p) n为 本 量 ( ; 样 容 。

第五章 抽样:样本容量的确定(市场调研-北京大学,胡健颖)

第五章  抽样:样本容量的确定(市场调研-北京大学,胡健颖)

9
第五章 抽样:样本容量的确定
3) 均值或比例的标准误差(standard error) ,或抽 样平均误差,公式为: 均值 比例
x

n
P
P(1 P) n
2014-2-6
北京大学光华管理学院 胡健颖
10
第五章 抽样:样本容量的确定
4) 通常总体标准差 σ 是未知的,在这种情况下,可以通过 下面的公式从样本中估计总体的标准差: 均值 比例
思考题: ① 迪斯尼世界的调查表明,有 60%的老顾客喜欢玩滑行铁道。 若要求误差不超过 2%, 置信度为 90% (Z 值查参考书 552 页) , 求所需的样本容量。 ② 客户要求置信度为 99%,允许抽样误差为 2%,按此计算出 需要样本容量为 500,调查费用是 20,000 美元,但他只有 17,000 美元的预算,问有没有其他方案可供选择? ③ 在具有什么条件下,进行调查前就可以将样本容量确定下 来?
在确定估计比例所需的样本容量时有一个优势:如果缺乏估计 P 的依据,可以对 P 值做最糟糕的假设。给定 Z 值和 E 值,P 值 为多大时要求的样本容量最大呢?当 P=0.05 时, “P(1-P)”有极大 值 0.25 存在。
2014-2-6
北京大学光华管理学院 胡健颖
30
第五章 抽样:样本容量的确定
2014-2-6
北京大学光华管理学院 胡健颖
25
第五章 抽样:样本容量的确定
表 5-1 1000 个样本平均数的概率分析:最近 30 天内吃快餐的平均次数 次数分组 2.6-3.5 3.6-4.5 4.6-5.5 5.6-6.5 6.6-7.5 7.6-8.5 8.6-9.5 9.6-10.5 10.6-11.5

产品质量检测中的抽样方法与样本容量确定

产品质量检测中的抽样方法与样本容量确定

产品质量检测中的抽样方法与样本容量确定产品质量是消费者关注的重要指标之一,而产品的质量检测则是确保产品符合相关标准和要求的关键环节。

其中,抽样方法与样本容量确定是产品质量检测过程中的关键问题。

本文就产品质量检测中的抽样方法与样本容量确定进行探讨。

一、抽样方法的选择不同的产品质量检测需要采用不同的抽样方法。

常见的抽样方法有随机抽样、分层抽样和整群抽样等。

随机抽样是指从一个总体中以随机的方式抽取样本,将其作为总体的一个子集进行检测。

这种方法能保证样本具有代表性,减小误差。

分层抽样是指将总体分成若干层次,从每一层次中分别抽取一定数量的样本,以保证样本充分代表各个层次的特征。

而整群抽样则是指将总体分成若干个相似的群体,然后从中随机抽取一个或多个群体作为样本。

通过不同的抽样方法,可以降低抽样误差,提高样本的代表性。

二、样本容量的确定样本容量的确定需要根据产品的特性、质量标准和检测要求等因素进行综合考虑。

如果样本容量过小,可能导致抽样误差过大,无法反映产品总体的真实情况;而样本容量过大,则会增加检测成本和时间。

一般来说,样本容量的确定需要考虑以下几个因素:1.产品特性:不同的产品具有不同的特性,需要根据产品的特点确定相应的样本容量。

例如,对于体积较大的产品,可以适当增加样本容量,以保证检测结果的准确性。

2.质量标准:产品的质量标准是决定样本容量的重要因素之一。

如果产品的质量标准相对宽松,可以适当缩小样本容量;而如果产品的质量标准较为严格,需要增加样本容量以保证抽样结果的可靠性。

3.检测要求:不同的检测要求对样本容量也会有所影响。

如果对产品的合格率要求较高,需要增加样本容量以提高检测的精度和可信度。

在确定样本容量时,还应该综合考虑资源限制、时间要求和经济成本等因素。

例如,如果资源有限,可以采用抽样检测的方法,通过少量样本对产品进行检测,以降低成本和节约时间。

总之,产品质量检测中的抽样方法与样本容量的确定是确保检测结果准确可靠的关键环节。

样本容量的确定

样本容量的确定

四、样本容量的确定
2. 估计总体比例时样本容量的确定
(1)重复抽样条件下样本容量的确定。 进行总体比例的区间估计时,总体比例p的置信区间为
(5-53) (2)不重复抽样条件下样本容量的确定。 当有限总体不重复抽样时,同理可得允许误差为
(5-57)
四、样本容量的确定
【例5-25】 某茶叶生产厂对某批10000包茶叶的每ቤተ መጻሕፍቲ ባይዱ包平均重量和合格率进行检验,根据以往资料,每包平均重 量的标准差为10g,茶叶合格率为92%,在概率保证程度 为95.45%、每包茶叶平均重量的抽样极限误差不过2g、 合格率的抽样极限误码差不超过5%的条件下,求应抽取多 少包茶叶进行检验。
四、样本容量的确定

式中,n′为重复抽样的样本容量。 抽检合格率,由p=92%,Z=2,Δp=5%,得

所以,在不重复抽样条件下,抽检平均每包重量时需要抽取99包茶叶,抽 检合格率时需要抽取117包茶叶。
四、样本容量的确定
3. 估计两个总体均值之差时样本容量的确定
(在估计两个总体均值之差时,样 本容量的计算与上述类似,在给定的允 许误差和置信水平条件下,估计两个总 体均值之差所需要的样本容量为
(5-59)
四、样本容量的确定
4. 估计两个总体比率之差时样本容量的确定
在给定的允许误差和置信水平为1-α的 条件下,估计两个总体比率之差时所需的样本 容量为
(5-60)
四、样本容量的确定
【例5-27】 某厂家要估计消费者对一种新产品认知的广告效果,该厂在广 告前和广告后各抽取一个消费者随机样本进行调查,若以10%的允许误差和95% 的置信水平估计广告前和广告后知道该产品消费者的比率之差,则应从两个样本 中分别抽取多少名消费者进行调查?

研究样本的选择与样本容量的确定

研究样本的选择与样本容量的确定

研究样本的选择与样本容量的确定研究样本的选择与样本容量的确定是科学研究中至关重要的环节。

合理的样本选择和确定适当的样本容量对于研究结果的准确性和可靠性具有重要影响。

本文将介绍研究样本的选择与样本容量的确定的原则和方法。

一、研究样本的选择研究样本的选择是指从总体中抽取出一部分个体作为研究对象,以代表总体进行研究。

样本的选择应当基于以下原则:1. 代表性原则研究样本应当能够准确反映总体的特征和特点。

为了保证样本具有代表性,研究者需要注意总体的各个特征,并从总体中随机抽取样本,确保每个个体都有被选中的机会。

例如,如果研究对象是某个城市的居民,研究者需要从不同年龄、性别、教育程度和职业等方面选取样本,以确保样本具有代表性。

2. 可获得性原则在一些情况下,某些特定群体的样本难以获得,如少数民族、患有罕见病的个体等。

为了解决这个问题,研究者可以采用方便抽样或者刻意抽样的方法,选择可获得的样本。

然而,需要注意的是,这种方法选择样本时可能产生一定的偏差,因此需要谨慎使用。

3. 样本大小原则样本的大小直接影响到研究结果的准确性和可靠性。

根据研究的目的和研究领域的特点,研究者需要确定适当的样本大小。

如果研究领域的知识较为有限,为了保证研究结果的可靠性,一般会选择较大的样本。

然而,如果研究领域已经有较多研究成果,研究者可以选择较小的样本。

二、样本容量的确定确定样本容量是指确定一项研究所需的最小样本量。

样本容量的确定需要考虑以下因素:1. 置信水平置信水平是研究结果的可靠程度的度量。

通常,研究者会选择95%或者99%的置信水平,这意味着研究者对所得到的结果有95%或者99%的信心认为其符合总体的真实情况。

2. 总体方差总体方差是一个衡量总体内个体之间差异的指标。

总体方差越大,样本容量越大;总体方差越小,样本容量越小。

研究者需要根据已知的总体方差来确定适当的样本容量。

3. 效应量效应量是指研究中所关心的变量之间的差异程度。

生物统计学8样本容量的确定

生物统计学8样本容量的确定
t 再以df=2(n1-1)为自由度查出 0.05 / 2,2n1 2 的值,代
入公式求出n2,直到求出的n(i-1)= n(i)为止。
例:有个家畜饲料比较试验,它们是对一种猪在育肥期饲以两 种饲料C1和C2,经过一个月后,调查量其重量(斤数),借 以判明两种饲料的育肥效果。若 = 4斤时,试验就要有一半 的可能性辨别出来,取s2=30,(此数据)是根据以往的试验 数据得出的),则该试验每处理的样本容量应为多少?
u
n
若:
u
x 0 1
n
µ0
µ1
x0
接受H0。
1 - 0 u u
n
接受HA。
二、平均数差异显著性测验中的样本容量问题
(一)单个样本平均数的差异显著性测验中的样本容量问题
1、已知时
n
u2 0.05 / 2
2
L2
其中 :2 =总体的方差
这个数据一般是依靠前人或本人对同类数据的试验来约略估计 的
L = 要求该调查或试验有一半的可能达到的对平均数估计的精 确范围。
L即距平均数上下的95%的置信区间(即置信半径)
该样本容量估算中,β的概率为50%(Ⅱ型错误的概率)。
2、 未知时:
样本容量:
n
t2 0.05 / 2
L2
s2
s2为对总体方差2 的估计值
(这个数据一般是依靠前人或本人对同类数据的试验来约略
则样本容量 n 为:
L u / 2
pˆ 1 pˆ
n
n
u2
/2
pˆ (1 L2
pˆ )
当显著水平为0.05时(置信度为0.95),上述公式的经验公
式为:
n
4
pˆ (1 L2

《统计学》样本容量的确定

《统计学》样本容量的确定
5.7 样本容量的确定
样本容量确定的两难
样本容量取得较大,收集的信息 就相对多,从而估计精度较高,但 进行观测所投入的费用、人力及时 间就比较多; 样本容量取得较小,则投入的费 用、人力及时间就相对节约,但收 集的信息也较少,从而估计精度较 低; 所以,精度和费用对样本量的影 响和要求是矛盾的,不存在既使精 度最高又使费用最省的样本量 。
估计总体均值时样本容量的确定 (例题分析)
解: 已知=2000,d=400, 1-=95%, z/2=1.96 置信度为95%的置信区间为:
n ( z 2 )2 2 (1.96 )2 20002
d2
4002
96.04 97
即应抽取97人作为样本。
估计总体比例时样本容量的确定
估计总体比例时ห้องสมุดไป่ตู้本容量的确定
1. 根据比例区间估计公式可得样本容量n为:
• •
重复抽样n
(
z
2
)2
d2
(1
)

2.
不重复抽n样
(
N
N( z 2 )2 (1 ) 1)d2 ( z 2 )2 (1
)
d的取值一般小于0.1
其中: d z 2
p(1 p ) n
3. π未知,以样本比例p替代
4. π或p都未知时,可取0.5,这是一种谨慎估计
1. 估计总体均值时样本容量n为:
• •
重复抽样 n
(
z
2
d
)2
2
2

不重复抽样
n
(N
N( z 2 )2 2 1)d2 ( z 2 )2 2
其中:d
Z
2

n
2. 样本容量n与总体方差成正比,与绝对误差成
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、在实际中采用不重复抽样,但常用重复抽样下的公式代替; 二、若和p未知,其处理方式是: 1.用过去近期的数据代替, 2.用样本数据代替, 3.取p=0.5或最接近0.5的值; 三、对同一总体,若求出的Nx,Np不等,这时取较大的作为必要样本容量, 以同时满足做两种调查的需要; 四、在实际工作中,常使用重复抽样下的简单随机抽样公式。
第四节
样本容量的确定
• 样本容量:
样本中个体的数目或组成抽样总体的单位数。
• 必要样本容量:
亦称必要样本单位数,是指满足调查目的要求的情况下, 至少需要选择的样本单位数。
一、估计总体均值时样本容量的确定
1.重复抽样 一旦确定了置信水平(1-α ),Zα/2的值就确定了,对于给定的的值 和总体标准差σ ,就可以确定任一希望的允许误差所需要的样本容量。令 E代表所希望达到的允许误差,即:
例:拥有MBA学位的研究生年薪的标准差大约为4000 元,假定想 要估计年薪95%的置信区间,希望允许误差为10000 元,应抽取 多大的样本容量? 解:已知 =4000,E=1000,1-=95%, Zα /2=1.96,所以,应抽取的样本容量为:
(1.96)2 40002 n 2 E 10002 61.47 62
即应抽取62人作为样本。
(z α 2 ) 2 σ 2
二、估计总体比例时样本容量的确定
1.重复抽样
一旦确定了置信水平(1-α ),Zα /2的值就确定了。由于总体比例的值是固定 的,所以允许误差由样本容量来确定,样本容量越大允许误差就越小。估计的 精度就越好。因此,对于给定的的π 值,就可以确定任一希望的允许误差所需 要的样本容量。令E代表所希望到的允许误差,即:
n (z α 2 ) 2 π(1 π)
E2 2 (1.96) 0.5 (1 0.5) 0.052 384.16 385
故需取385人的样本。
影响样本容量n的因素
a) 总体个单位之间的差异 b) 概率保证程度 c) 允许误差的大小 d) 抽样方式 e) 抽样的组织形式
确定样本容量的注意事项
E zα 2
π(1 π) n
由此可以推导出重复抽样和无限总体抽样条件确定样本容量的公式如下:
n
(zα 2 ) 2 π(1 π) E2
二、估计总体比例时样本容量的确定
2.不重复抽样
n
N ( z 2 )2 ( 1 ) ( N 1 )d 2 ( z 2 )2 ( 1 )
• d的取值一般小于0.1 • π 未知,以样本比例p替代 • π 或p都未知时,可取0.5,这是一种谨慎估计
例:某社区想通过抽样调查了解居民参加体育活动的比率,如果 把误差范围设定在5%,问如果以95%的置信水平进行参数估计, 需要多大的样本?
解:由于1-α =0.95,α =0.05,Zα /2 =1.96。 因为π 的值不知道,取使π (1-π )达到最大值的0.5,即π 取0.5, 于是:
E zα 2
σ n
2 2
由此可以推到出确定样本容量的公式如下:
n
(z α 2 ) σ E
2
一、估计总体均值时样本容量的确定
2.不重复抽样
n
N ( z 2 )
2 2
2 2 2
( N 1 )d ( z 2 )
• 样本容量n与总体方差成正比, • 与绝对误差成反比, • 与概率度成正比。
相关文档
最新文档